首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: How do pre‐fire conditions (community composition and environmental characteristics) and climate‐driven disturbance characteristics (fire severity) affect post‐fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14 black spruce stands before and after multiple, naturally occurring wildfires. We used a combination of vegetation table sorting, univariate (ANOVA, paired t‐tests), and multivariate (detrended correspondence analysis) statistics to determine the impact of fire severity and site moisture on community composition, dominant species and growth forms. Results: Severe wildfires caused a 50% reduction in number of plant species in our study sites. The largest species loss, and therefore the greatest change in species composition, occurred in severely burned sites. This was due mostly to loss of non‐vascular species (mosses and lichens) and evergreen shrubs. New species recruited most abundantly to severely burned sites, contributing to high species turnover on these sites. As well as the strong effect of fire severity, pre‐fire and post‐fire mineral soil pH had an effect on post‐fire vegetation patterns, suggesting a legacy effect of site acidity. In contrast, pre‐fire site moisture, which was a strong determinant of pre‐fire community composition, showed no relationship with post‐fire community composition. Site moisture was altered by fire, due to changes in permafrost, and therefore post‐fire site moisture overrode pre‐fire site moisture as a strong correlate. Conclusions: In the rapidly warming climate of interior Alaska, changes in fire severity had more effect on post‐fire community composition than did environmental factors (moisture and pH) that govern landscape patterns of unburned vegetation. This suggests that climate change effects on future community composition of black spruce forests may be mediated more strongly by fire severity than by current landscape patterns. Hence, models that represent the effects of climate change on boreal forests could improve their accuracy by including dynamic responses to fire disturbance.  相似文献   

2.
Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long‐lived organisms to reorganize in alternative configurations. This study used landscape‐scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre‐ and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self‐replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous‐dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous‐dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest.  相似文献   

3.
Climate warming and drying are modifying the fire dynamics of many boreal forests, moving them towards a regime with a higher frequency of extreme fire years characterized by large burns of high severity. Plot‐scale studies indicate that increased burn severity favors the recruitment of deciduous trees in the initial years following fire. Consequently, a set of biophysical effects of burn severity on postfire boreal successional trajectories at decadal timescales have been hypothesized. Prominent among these are a greater cover of deciduous tree species in intermediately aged stands after more severe burning, with associated implications for carbon and energy balances. Here we investigate whether the current vegetation composition of interior Alaska supports this hypothesis. A chronosequence of six decades of vegetation regrowth following fire was created using a database of burn scars, an existing forest biomass map, and maps of albedo and the deciduous fraction of vegetation that we derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The deciduous fraction map depicted the proportion of aboveground biomass in deciduous vegetation, derived using a RandomForest algorithm trained with field data sets (n=69, 71% variance explained). Analysis of the difference Normalized Burn Ratio, a remotely sensed index commonly used as an indicator of burn severity, indicated that burn size and ignition date can provide a proxy of burn severity for historical fires. LIDAR remote sensing and a bioclimatic model of evergreen forest distribution were used to further refine the stratification of the current landscape by burn severity. Our results show that since the 1950s, more severely burned areas in interior Alaska have produced a vegetation cohort that is characterized by greater deciduous biomass. We discuss the importance of this shift in vegetation composition due to climate‐induced changes in fire severity for carbon sequestration in forest biomass and surface reflectance (albedo), among other feedbacks to climate.  相似文献   

4.
Fire activity in the North American boreal region is projected to increase under a warming climate and trigger changes in vegetation composition. In black spruce forests of interior Alaska, fire severity impacts residual organic layer depth which is strongly linked to the relative dominance of deciduous versus coniferous trees in early succession. These alternate successional pathways may be reinforced by biogeochemical processes that affect the relative ability of deciduous versus coniferous trees to acquire limiting nutrients. To test this hypothesis, we examined changes in soil inorganic nitrogen (N) supply and in situ 15N root uptake by aspen (Populus tremuloides) and black spruce (Picea mariana) saplings regenerating in lightly and severely burned sites, 16 years following fire. Fire severity did not impact the composition or magnitude of N supply, and nitrate represented nearly 40 % of total N supply. Both aspen and spruce took up more N in severely burned than in lightly burned sites. Spruce exhibited only a moderately lower rate of nitrate uptake, and a higher ammonium uptake rate than aspen in severely burned sites. At the stand level, differences in species nutrient uptake were magnified, with aspen taking up nearly an order-of-magnitude more N per m2 in severely burned than in lightly burned sites. We suggest that differences in nutrient sinks (biomass) established early in succession and effects of post-fire organic layer depth on nutrient uptake, are key mechanisms reinforcing the opposing stand dominance patterns that have developed in response to variations in organic layer depth.  相似文献   

5.
Climate change has increased the occurrence, severity, and impact of disturbances on forested ecosystems worldwide, resulting in a need to identify factors that contribute to an ecosystem’s resilience or capacity to recover from disturbance. Forest resilience to disturbance may decline with climate change if mature trees are able to persist under stressful environmental conditions that do not permit successful recruitment and survival after a disturbance. In this study, we used the change in proportional representation of black spruce pre- to post-fire as a surrogate for resilience. We explored links between patterns of resilience and tree ring signals of drought stress across topographic moisture gradients within the boreal forest. We sampled 72 recently (2004) burned stands of black spruce in interior Alaska (USA); the relative dominance of black spruce after fire ranged from almost no change (high resilience) to a 90% decrease (low resilience). Variance partitioning analysis indicated that resilience was related to site environmental characteristics and climate–growth responses, with no unique contribution of pre-fire stand composition. The largest shifts in post-fire species composition occurred in sites that experienced the compounding effects of pre-fire drought stress and shallow post-fire organic layer thickness. These sites were generally located at warmer and drier landscape positions, suggesting they are less resilient to disturbance than sites in cool and moist locations. Climate–growth responses can provide an estimate of stand environmental stress to climate change and as such are a valuable tool for predicting landscape variations in forest ecosystem resilience.  相似文献   

6.
The two major disturbance types of boreal black spruce forest in north–central Quebec, Canada – natural disturbance by wildfire and anthropogenic disturbance by harvest – may affect processes of recovery differently and leave distinct post‐disturbance soil and vegetation spatial patterns. We tested whether 1) spatial patterns of physico‐chemical soil organic layer properties, black spruce diameter and density, and understory ericaceous shrub cover, differ between these two principal disturbance types; 2) operations associated with forest harvest result in distinct, regular spatial patterns of these same variables related to presence of machine trails; and 3) ericaceous shrub presence is a potential factor contributing to the legacy of spatial patterns after harvest. We explored these patterns on black spruce‐feathermoss forest stands, including fire‐origin stands (18 and 98 years) and stands originating from harvest (16 and 62 years) in central Quebec, Canada. We used two spatial analysis methods, spectral analysis and principal component analysis in the frequency domain, to characterize and relate spatial patterns of these soil and vegetation variables, measured along 50‐m transects on each site. Spatial patterns of distribution of soil and vegetation variables were different on the burned and the harvested forest sites. Wildfire gave rise to spatial patterns in soil and vegetation variables at multiple scales, reflecting the complexity generated by variable burn intensity. Patterns following forest harvest were mainly related to the regular structure defined by trails created by logging operations. In contrast to burned sites, ericaceous shrub patterns on harvested sites were strongly associated with spatial arrangements of spruce diameter and density, promoting absence of canopy closure and persistence of trails. Moreover, different spatial signatures did not converge in the long‐term (62–98 years) between the two disturbance types. The divergence in spatial structure between natural and anthropogenic disturbances has implications for ecosystem structure and function in the longer term.  相似文献   

7.
Fire, which is the dominant disturbance in the boreal forest, creates substantial heterogeneity in soil burn severity at patch and landscape scales. We present results from five field experiments in Yukon Territory, Canada, and Alaska, USA that document the effects of soil burn severity on the germination and establishment of four common boreal trees: Picea glauca, Picea mariana, Pinus contorta subsp. latifolia, and Populus tremuloides. Burn severity had strong positive effects on seed germination and net seedling establishment after 3 years. Growth of transplanted seedlings was also significantly higher on severely burned soils. Our data and a synthesis of the literature indicated a consistent, steep decline in conifer establishment on organic soils at depths greater than 2.5 cm. A meta-analysis of seedling responses found no difference in the magnitude of severity effects on germination versus net establishment. There were, however, significant differences in establishment but not germination responses among deciduous trees, spruce, and pine, suggesting that small-seeded species experience greater mortality on lightly burned, organic soils than large-seeded species. Together, our analyses indicate that variations in burn severity can influence multiple aspects of forest stand structure, by affecting the density and composition of tree seedlings that establish after fire. These effects are predicted to be most important in moderately-drained forest stands, where a high potential variability in soil burn severity is coupled with strong severity effects on tree recruitment.  相似文献   

8.
Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active‐layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active‐layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site‐specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0–6 cm) promoted increased ALTs, whereas deeper soil moisture (11–16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict future impacts of climate warming on permafrost degradation and subsequent feedback to climate.  相似文献   

9.
The boreal forest is the largest terrestrial biome in North America and holds a large portion of the world’s reactive soil carbon. Therefore, understanding soil carbon accumulation on a landscape or regional scale across the boreal forest is useful for predicting future soil carbon storage. Here, we examined the relationship between floristic composition and ecosystem parameters, such as soil carbon pools, the carbon-to-nitrogen (C/N) ratio of live black spruce needles, and normalized basal area increment (NBAI) of trees in black spruce communities, the most widespread forest type in the boreal forest of Alaska. Variability in ecosystem properties among black spruce stands was as large as that which had previously been documented among all forest types in the central interior of Alaska; we found an eightfold range in NBAI and fivefold range in mineral soil carbon and nitrogen pools. Acidic black spruce communities had significantly more carbon in the organic soil horizon than did nonacidic black spruce communities, but did not differ in any other measured ecosystem parameter. We explained 48% of the variation in total soil carbon with a combination of plant community indices and abiotic and biotic factors. Plant community composition was at least as effective as any single environmental factor or stand characteristic in predicting soil C pools in Alaskan black spruce ecosystems. We conclude that among the community properties analyzed, the presence of key groups of species, overall species composition, and diversity of certain functional types, especially Sphagnum moss species, are important predictors of soil carbon sequestration in the black spruce forest type.  相似文献   

10.
Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained following fire by changes in moisture and/or substrate quality that impede rates of decomposition. Author contributions: JAO: performed research, analyzed data, contributed new methods, wrote the paper; MRT: designed laboratory study, performed research, analyzed data; JWH: designed field study, performed research; KLM: performed research; LEP: performed research, contributed new method; GS: performed research; JCN: performed research.  相似文献   

11.
Climate change is increasing the frequency of extreme fires. In 2019–2020, extreme fires burned 97 000 km2 of native vegetation in south-eastern Australia, affecting many areas of rainforest, which has historically burned less frequently. One year post-fires, we surveyed litter macroinvertebrates in 52 temperate rainforest sites. Sites had experienced increasing levels of fire severity (unburnt, medium severity and high severity). We asked how fire severity affected: (1) litter macroinvertebrate habitats; (2) the abundance of litter macroinvertebrate taxa per unit area; and (3) abundance relative to litter habitat (volumetric density). We also estimated the loss of litter macroinvertebrates across rainforests in the study region. High severity burns supported only a fifth of the litter volume and canopy cover as unburnt sites, lower soil moisture and higher herb cover. Medium burns were intermediate. Macroinvertebrate abundance declined with burn severity: high severity burns supported only 26% of the abundance in unburnt sites; medium severity burns supported 80% of that in unburnt sites. Patterns were similar for all taxa, with millipedes declining most. High severity fires resulted in up to 1.90 million fewer macroinvertebrates per hectare; 0.53 million fewer per hectare of medium burn rainforest. Across the study region, we estimate that 60 billion fewer litter macroinvertebrates persisted in temperate rainforests alone. Volumetric densities of many litter macroinvertebrate taxa in high severity burns were marginally higher than in unburnt sites, suggesting nutrients may be more available post-fire, or that persisting individuals become concentrated in the leaf litter. For less desiccation-tolerant groups (e.g., amphipods), density declines with increasing severity may reflect the combined impact of low soil moisture and reduced litter cover. Many taxa persisted following high severity fires, but declines were substantial, and taxa differed in their vulnerability. Longer-term monitoring is required to understand the recovery trajectory and impacts on ecological function.  相似文献   

12.
Post-fire nutrient flushes are an important precursor to secondary succession in fire-driven boreal forest. We studied the magnitude of changes in post-fire soil nutrient status across a chronosequence of ericaceous shrub-dominated boreal forest stands in eastern Newfoundland, Canada. The chronosequence comprised nine stands burned between 1 and 38 years prior to the study. These sites have resisted tree reestablishment following forest fire-induced mortality of black spruce and a concomitant increase in dominance of the ericaceous dwarf shrub Kalmia angustifolia L. Our objectives were: (1) to identify the factors driving soil nutrient status in these post-fire stands dominated by ericaceous plants, and (2) to test hypotheses that specific relationships exist among environmental factors, dominant vegetation and indicators of soil nutrient status. Macronutrients such as NH4+, total organic N and mineral soil P concentrations showed non-linear declines with time since fire. These parameters were also negatively associated with cover of ericaceous plants. Potential phytotoxins such as total phenolics and aluminium concentrations increased with increasing cover of K. angustifolia. Variability in net ammonification, total P and total phenolic acids in organic soils were strongly related to ericaceous dominance even when the effect of time since fire was partialled out using regression analysis. These findings suggest a strong capacity for ericaceous vegetation to have top-down effects on soil chemical property particularly in the organic horizon with the increase in its post-fire dominance.  相似文献   

13.
M. Lavoie  M. C. Mack 《Biogeochemistry》2012,107(1-3):227-239
In this study we characterized spatial heterogeneity of soil carbon and nitrogen pools, soil moisture, and soil pH of the first 15?cm of the soil profile; depth of the organic horizon; forest floor covers; and understory vegetation abundances in three sites (1999, 1987 and 1920 wildfires) of a boreal forest chronosequence of interior Alaska. We also investigated the cross-dependence between understory vegetation distribution and soil characteristics. Our results showed higher microbial respiration rates and microbial biomass in the oldest site and greater net N mineralization rates in the mid-successional site. Although spatial heterogeneity was absent at the scale studied for the majority of soil variables (60%), understory vegetation abundances and forest floor cover, spatial heterogeneity decreased with time after fire for the depth of organic horizon, soil microbial biomass, N mineralization rates and feathermoss cover. Our results also showed that increasing time after fire decreased the number of correlations between understory vegetation and soil characteristics while it increased between forest floor covers and soil characteristics. Overall, our study suggest that fire initially creates a patchy mosaic of forest floor cover, from fire hot spots, where high intensity burning exposes mineral soil, to practically unburned areas with intact mosses and lichens. As time since fire passes, forest floor cover and soil characteristics tend to become more uniform as understory species fill in severely burned areas.  相似文献   

14.
Fire severity is predicted to increase in boreal regions due to global warming. We hypothesized that these extreme events will alter regeneration patterns of black spruce (Picea mariana). To test this hypothesis, we monitored seed dispersal and seedling emergence, survival and growth for 6 years from 2005 to 2010 after the 2004 wildfire on Poker Flat, interior Alaska, using 96 1 × 1 m plots. A total of 1,300 seedlings of black spruce and three broad-leaved deciduous trees (Populus tremuloides, Betula papyrifera, and Salix spp.) were recorded. Black spruce seedlings colonized burned and unburned ground surfaces for the first 2 years after the wildfire and established on any topographical surface, while the broad-leaved trees emerged less in areas of lower elevation, slope gradient and canopy openness and only on burned surfaces. Vascular plant cover on the ground floor increased the seedling establishment of black spruce and broad-leaved trees, most likely because of seed-trap effects. Black spruce grew faster on burned surface than on unburned surfaces. However, broad-leaved trees grew faster than black spruce on burned surfaces. Black spruce regenerates even after severe wildfire when the microtopography restricts the colonization of broad-leaved trees. The regeneration trajectories are determined soon after wildfire by a combination of seed limitation for black spruce and habitat preference for broad-leaved trees.  相似文献   

15.
We evaluated spatial patterns of soil N and C mineralization, microbial community composition (phospholipid fatty acids), and local site characteristics (plant/forest floor cover, soil pH, soil %C and %N) in a 0.25-ha burned black spruce forest stand in interior Alaska. Results indicated that factors governing soil N and C mineralization varied at two different scales. In situ net N mineralization was autocorrelated with microbial community composition at relatively broad scales (∼ ∼8 m) and with local site characteristics (`site' axis 1 of non-metric scaling ordination) at relatively fine scales (2–4 m). At the scale of the individual core, soil moisture was the best predictor of in situ net N mineralization and laboratory C mineralization, explaining between 47 and 67% of the variation (p < 0.001). Ordination of microbial lipid data showed that bacteria were more common in severely burned microsites, whereas fungi were more common in low fire severity microsites. We conclude that C and N mineralization rates in this burned black spruce stand were related to different variables depending on the scale of analysis, suggesting the importance of considering multiple scales of variability among key drivers of C and N transformations.  相似文献   

16.
Global warming is projected to be greatest in northern regions, where forest fires are also increasing in frequency. Thus, interactions between fire and temperature on soil respiration at high latitudes should be considered in determining feedbacks to climate. We tested the hypothesis that experimental warming will augment soil CO2 flux in a recently burned boreal forest by promoting microbial and root growth, but that this increase will be less apparent in more severely burned areas. We used open‐top chambers to raise temperatures 0.4–0.9°C across two levels of burn severity in a fire scar in Alaskan black spruce forest. After 3 consecutive years of warming, soil respiration was measured through a portable gas exchange system. Abundance of active microbes was determined by using Biolog EcoPlates? for bacteria and ergosterol analysis for fungi. Elevated temperatures increased soil CO2 flux by 20% and reduced root biomass, but had no effect on bacterial or fungal abundance or soil organic matter (SOM) content. Soil respiration, fungal abundance, SOM, and root biomass decreased with increasing burn severity. There were no significant interactions between temperature and burn severity with respect to any measurement. Higher soil respiration rates in the warmed plots may be because of higher metabolic activity of microbes or roots. All together, we found that postfire soils are a greater source of CO2 to the atmosphere under elevated temperatures even in severely burned areas, suggesting that global warming may produce a positive feedback to atmospheric CO2, even in young boreal ecosystems.  相似文献   

17.
Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature‐induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ?13C responses on a subsample of trees as representative of the wider region. The negative ?13C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ?13C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought‐induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions.  相似文献   

18.
A model of boreal forest dynamics was adapted to examine the factors controlling carbon and nitrogen cycling in the boreal forests of interior Alaska. Empirical relationships were used to simulate decomposition and nitrogen availability as a function of either substrate quality, the soil thermal regime, or their interactive effects. Test comparisons included black spruce forests growing on permafrost soils and black spruce, birch, and white spruce forests growing on permafrost-free soils. For each forest, simulated above-ground tree biomass, basal area, density, litterfall, moss biomass, and forest floor mass, turnover, thickness, and nitrogen concentration were compared to observed data. No one decay equation simulated forests entirely consistent with observed data, but over the range of upland forest types in interior Alaska, the equation that combined the effects of litter quality and the soil thermal regime simulated forests that were most consistent with observed data. For black spruce growing on permafrost soils, long-term simulated forest dynamics in the absence of fire resulted in unproductive forests with a thick forest floor and low nitrogen mineralization. Fires were an important means to interrupt this sequence and to restart forest succession.  相似文献   

19.
After decades of suppression, fire is returning to forests of the western United States through wildfires and prescribed burns. These fires may aid restoration of vegetation structure and processes, which could improve conditions for wildlife species and reduce severe wildfire risk. Understanding response of wildlife species to fires is essential to forest restoration because contemporary fires may not have the same effects as historical fires. Recent fires in the Chiricahua Mountains of southeastern Arizona provided opportunity to investigate long‐term effects of burn severity on habitat selection of a native wildlife species. We surveyed burned forest for squirrel feeding sign and related vegetation characteristics to frequency of feeding sign occurrence. We used radio‐telemetry within fire‐influenced forest to determine home ranges of Mexican fox squirrels, Sciurus nayaritensis chiricahuae, and compared vegetation characteristics within home ranges to random areas available to squirrels throughout burned conifer forest. Squirrels fed in forest with open understory and closed canopy cover. Vegetation within home ranges was characterized by lower understory density, consistent with the effects of low‐severity fire, and larger trees than random locations. Our results suggest that return of low‐severity fire can help restore habitat for Mexican fox squirrels and other native wildlife species with similar habitat affiliations in forests with a historical regime of frequent, low‐severity fire. Our study contributes to an understanding of the role and impact of fire in forest ecosystems and the implications for forest restoration as fire returns to the region.  相似文献   

20.
Fire is a common disturbance in the North American boreal forest that influences ecosystem structure and function. The temporal and spatial dynamics of fire are likely to be altered as climate continues to change. In this study, we ask the question: how will area burned in boreal North America by wildfire respond to future changes in climate? To evaluate this question, we developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5° (latitude × longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was substantially more predictable in the western portion of boreal North America than in eastern Canada. Burned area was also not very predictable in areas of substantial topographic relief and in areas along the transition between boreal forest and tundra. At the scale of Alaska and western Canada, the empirical fire models explain on the order of 82% of the variation in annual area burned for the period 1960–2002. July temperature was the most frequently occurring predictor across all models, but the fuel moisture codes for the months June through August (as a group) entered the models as the most important predictors of annual area burned. To predict changes in the temporal and spatial dynamics of fire under future climate, the empirical fire models used output from the Canadian Climate Center CGCM2 global climate model to predict annual area burned through the year 2100 across Alaska and western Canada. Relative to 1991–2000, the results suggest that average area burned per decade will double by 2041–2050 and will increase on the order of 3.5–5.5 times by the last decade of the 21st century. To improve the ability to better predict wildfire across Alaska and Canada, future research should focus on incorporating additional effects of long‐term and successional vegetation changes on area burned to account more fully for interactions among fire, climate, and vegetation dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号