首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We evaluated the immunohistochemical distribution of three major proteoglycans of cartilage, i.e., aggrecan, versican and perlecan vis-a-vis collagens I and II in the developing human spine of first-trimester foetuses. Aggrecan and perlecan were prominently immunolocalised in the cartilaginous vertebral body rudiments and to a lesser extent within the foetal intervertebral disc. In contrast, versican was only expressed in the developing intervertebral disc interspace. Using domain-specific monoclonal antibodies against the various modules of versican, we discovered the V0 isoform as the predominant form present. Versican immunolocalisations conducted with antibodies directed to epitopes in its N and C termini and GAG-α and GAG-β core protein domains provided evidence that versican in the nucleus pulposus was either synthesised devoid of a G3 domain or this domain was proteolytically removed in situ. The V0 versican isoform was localised with prominent fibrillar components in the annular lamellae of the outer annulus fibrosus. Perlecan was a notable pericellular proteoglycan in the annulus fibrosus and nucleus pulposus but poorly immunolocalised in the marginal tissues of the developing intervertebral disc, apparently delineating the intervertebral disc–vertebral body interface region destined to become the cartilaginous endplate in the mature intervertebral disc. The distribution of collagens I and II in the foetal spine was mutually exclusive with type I present in the outer annulus fibrosus, marginal tissues around the vertebral body rudiment and throughout the developing intervertebral disc, and type II prominent in the vertebral rudiment, absent in the outer annulus fibrosus and diffusely distributed in the inner annulus fibrosus and nucleus pulposus. Collectively, our findings suggest the existence of an intricate and finely balanced interplay between various proteoglycans and collagens and the spinal cell populations which synthesise and assemble these components during spinal development.  相似文献   

2.
Assays of several proteases, incorporating guanidinium chloride extracts of human femoral head cartilage and intervertebral disc, demonstrated that both tissues contain inhibitors of certain serine proteases. Trypsin, chymotrypsin and a granule extract of human polymorphonuclear leukocytes containing elastase and cathepsin G activities, were inhibited by low molecular weight fractions prepared by Sephadex G-75 chromatography. Using a radioassay, it was further shown that these fractions inhibit proteolysis of cartilage proteoglycan. The inhibitor in intervertebral disc is concentrated in the nucleus pulposus, with a decreasing gradient to the periphery of the annulus fibrosus. It is proposed that these inhibitors confer at least partial protection against pathological proteolysis of the proteoglycans in human articular cartilage and nucleus pulposus.  相似文献   

3.
Assays of several proteases, incorporating guanidinium chloride extracts of human femoral head cartilage and intervertebral disc, demonstrated that both tissues contain inhibitors of certain serine proteases. Trypsin, chymotrypsin and a granule extract of human polymorphonuclear leukocyte containing elastase and cathepsin G activities, were inhibited by low molecular weight fractions prepared by Sephadex G-75 chromatography. Using a radioassay, it was further shown that these fractions inhibit proteolysis of cartilage proteoglycan. The inhibitor in intervertebral disc is concentrated in the nucleus pulposus, with a decreasing gradient to the periphery of the annulus fibrosus.It is proposed that these inhibitors confer at least partial protection against pathological proteolysis of the proteoglycans in human articular cartilage and nucleus pulposus.  相似文献   

4.
The extracellular matrix surrounding chondrocytes within a chondron is likely to affect the metabolic activity of these cells. In this study we investigated this by analyzing protein synthesis by intact chondrons obtained from different types of cartilage and compared this with chondrocytes. Chondrons and chondrocytes from goats from different cartilage sources (articular cartilage, nucleus pulposus, and annulus fibrosus) were cultured for 0, 7, 18, and 25 days in alginate beads. Real‐time polymerase chain reaction analyses indicated that the gene expression of Col2a1 was consistently higher by the chondrons compared with the chondrocytes and the Col1a1 gene expression was consistently lower. Western blotting revealed that Type II collagen extracted from the chondrons was cross‐linked. No Type I collagen could be extracted. The amount of proteoglycans was higher for the chondrons from articular cartilage and nucleus pulposus compared with the chondrocytes, but no differences were found between chondrons and chondrocytes from annulus fibrosus. The expression of both Mmp2 and Mmp9 was higher by the chondrocytes from articular cartilage and nucleus pulposus compared with the chondrons, whereas no differences were found with the annulus fibrosus cells. Gene expression of Mmp13 increased strongly by the chondrocytes (>50‐fold), but not by the chondrons. Taken together, our data suggest that preserving the pericellular matrix has a positive effect on cell‐induced cartilage production. J. Cell. Biochem. 110: 260–271, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Yang BL  Yang BB  Erwin M  Ang LC  Finkelstein J  Yee AJ 《Life sciences》2003,73(26):3399-3413
The functional role of versican in influencing intervertebral disc cell adhesion and proliferation was analyzed in bovine intervertebral disc. We have previously demonstrated the C-terminal globular G3 (or selectin-like) domain of versican to influence mesenchymal chondrogenesis and fibroblast proliferation in vitro. For this study, a versican G3 expression construct was generated to examine the role of the G3 domain of versican. Nucleus pulposus and annulus fibrosus cells were isolated from adult bovine caudal discs using sequential enzymatic digestion and versican expression characterized by RT-PCR. In cell proliferation assays, we observed that there was greater cellular proliferation in the presence of versican G3 for both disc cell types. The higher proliferation rate of annulus fibrosus cells when compared to nucleus pulposus cells seeded in monolayer supports heterogeneity of intervertebral disc cell populations. The presence of versican G3 construct enhanced the adhesion of isolated nucleus pulposus and annulus fibrosus cells approximately 4 to 6 fold, respectively. Cellular adhesion was greater in the presence of versican G3 in a dose dependent manner. G3 product was purified using affinity columns, and the purified G3 also enhanced cell adhesion.  相似文献   

6.

Introduction  

Nucleus pulposus (NP) cells have a phenotype similar to articular cartilage (AC) cells. However, the matrix of the NP is clearly different to that of AC suggesting that specific cell phenotypes exist. The aim of this study was to identify novel genes that could be used to distinguish bovine NP cells from AC and annulus fibrosus (AF) cells, and to further determine their expression in normal and degenerate human intervertebral disc (IVD) cells.  相似文献   

7.
The expression of the matrix protein chondromodulin-I has been studied in human intervertebral discs of 101 people using immunohistochemical analyses. The purpose of this report is to present data on the metabolic changes that were found to occur in the chondrocytes of intervertebral discs during development and aging. Chondromodulin-I was highly expressed during the gestational period and gradually decreased after maturation. It was detected in both the extracellular matrix and chondrocytes in the zone of hypertrophic cartilage, the zone of proliferative cartilage and the zone of resting cartilage in fetal discs. It was also present in the annulus fibrosus, nucleus pulposus and end-plate cartilage in mature discs. In degenerative discs, chondromodulin-I immunoreactivity tended to be elevated in the remaining chondrocytes. Our findings suggest that the expression of the protein is developmentally regulated and upregulated through a defense mechanism against the degenerative processes of the aged intervertebral disc.  相似文献   

8.
The nucleus pulposus (NP) of the human intervertebral disc (IVD) is a hyperosmotic tissue that is subjected to daily dynamic compressive loads. In order to survive within this environment the resident chondrocyte-like cells must be able to control their cell volume, whilst also controlling the anabolism and catabolism of their extra-cellular matrix. Recent studies have demonstrated expression of a range of bi-directional, transmembrane water and solute transporters, named aquaporins (AQPs), within chondrocytes of articular cartilage. The aim of this study was to use immunohistochemsitry to investigate the expression of aquaporins 1, 2 and 3 within the human IVD. Results demonstrated expression of both AQP-1 and -3 by cells within the NP and inner annulus fibrosus (AF), while outer AF cells lacked expression of AQP-1 and showed very low numbers of AQP-3 immunopositive cells. Cells from all regions were negative for AQP-2. Therefore this study demonstrates similarities in the phenotype of NP cells and articular chondrocytes, which may be due to similarities in tissue osmolarity and mechanobiology. The decrease in expression of AQPs from the NP to the outer AF may signify changes in cellular phenotype in response to differences in mechanbiology, osmolarity and hydration between the gelatinous NP and the fibrous AF.  相似文献   

9.
Intervertebral disc degeneration is the main cause of low back pain. In the past 20 years, the injection of mesenchymal stromal cells (MSCs) into the nucleus pulposus of the degenerative disc has become the main approach for the treatment of low back pain. Despite the progress made in this field, there are still many barriers to overcome. First, intervertebral disc is a highly complex load-bearing composite tissue composed of annulus fibrosus, nucleus pulposus and cartilaginous endplates. Any structural damage will change its overall biomechanical function, thereby causing progressive degeneration of the entire intervertebral disc. Therefore, MSC-based treatment strategies should not only target the degenerated nucleus pulposus but also include degenerated annulus fibrosus or cartilaginous endplates. Second, to date, there has been relatively little research on the basic biology of annulus fibrosus and cartilaginous endplates, although their pathological changes such as annular tears or fissures, Modic changes, or Schmorl's nodes are more commonly associated with low back pain. Given the high complexity of the structure and composition of the annulus fibrosus and cartilaginous endplates, it remains an open question whether any regeneration techniques are available to achieve their restorative regeneration. Finally, due to the harsh microenvironment of the degenerated intervertebral disc, the delivered MSCs die quickly. Taken together, current MSC-based regenerative medicine therapies to regenerate the entire disc complex by targeting the degenerated nucleus pulposus alone are unlikely to be successful.  相似文献   

10.
We have used the racemization of aspartic acid as a marker for the "molecular age" of aggrecan components of the human intervertebral disc matrix (aggregating and non-aggregating proteoglycans as well as the different buoyant density fractions of aggrecan). By measuring the D/L(Asp) ratio of the various aggrecan species as a function of age and using the values of the racemization constant, k(i), found earlier for aggrecan in articular cartilage, we were able to establish directly the relative residence time of these molecules in human intervertebral disc matrix. For A1 preparations taken from normal tissue, turnover rates of 0.059 +/- 0.01 and 0.063 +/- 0.01/year correspond to half-life values of 12 +/- 2.0 and 11.23 +/- 1.9 years for nucleus pulposus and annulus fibrosus, respectively; the turnover rates of 0.084 +/- 0.022 and 0.092 +/- 0.034/year for degenerate tissue correspond to half-life values of 8.77 +/- 2.2 and 8.41 +/- 2.8 years, suggesting increased rate of removal of small aggrecan fragments. For the large monomer, fraction A1D1, turnover is 0.13 +/- 0.04/year, corresponding to a half-life of 5.56 +/- 1.58 years, similar to 3.4 years in human articular cartilage. For the binding region (A1D6), turnover is 0.033 +/- 0.0012/year, corresponding to a half-life of 21.53 +/- 0.6 years, similar to 23.5 years in articular cartilage. A1 preparations from nucleus pulposus contain a lower proportion of aggregating proteoglycans as compared with annulus fibrosus, suggesting increased proteolytic modification in the nucleus pulposus. D/L(Asp) values in aggregating and non-aggregating proteoglycans of a 24-year-old individual show similar results, suggesting that the non-aggregating molecules are synthesized initially as aggregating proteoglycans, which thereafter undergo cleavage and detachment from hyaluronan.  相似文献   

11.
We investigated whether the multifunctional intercellular proteoglycan, serglycin, is expressed in human intervertebral disc cells and assessed its localization. We also investigated expression levels of serglycin in human annulus fibrosus (annulus) cells exposed to IL-1ß and TNF-α, which are two proinflammatory cytokines that are expressed during disc degeneration. Immunolocalization of serglycin was common in many cells of the human annulus, but less common in the nucleus pulposus (nucleus). Both intracellular and cell membrane localization were observed. Annulus cells from Thompson grades III, IV and V degenerated discs exhibited a 4.69 fold up-regulation in serglycin expression vs. cells from healthier grades I and II discs. In monolayer annulus cell culture, cells from more degenerated discs exhibited a 9.4 fold up-regulation of serglycin expression compared to cells from healthier discs. Exposure of cultured cells to IL-1ß or TNF-α caused significant up-regulation of serglycin expression. We found that serglycin expression increased with increasing disc degeneration both in vivo and in vitro, and also increased with exposure in vitro to IL-1ß and TNF-α.  相似文献   

12.
To date, there have been no reports on the effect on disc cells of the intervertebral disc (IVD) of the amino terminal peptide of link protein (DHLSDNYTLDHDRAIH) (link N) which is generated by the cleavage of human link protein by stromelysins 1 and 2, gelatinase A and B, and collagenase between His(16) and Ile(17). However, link N has been shown to act as a growth factor and stimulate synthesis of proteoglycans and collagen by chondrocytes of human articular cartilage. There are also no studies on the effect of link N on type IX collagen in any tissue. In the studies reported here, a serum-free pellet culture system has been used to examine whether link N can play a role in maintaining the integrity of disc matrix, specifically at the level of matrix assembly by cells of the IVD. Using this culture system, we determined the capacity of link N to stimulate accumulation of these matrix proteins in the annulus fibrosus (AF) and nucleus pulposus (NP). Gross inspection of separate AF and NP pellet cultures in the absence of link N revealed a progressive increase in size and a transition from "spherical" to "polygonal" pellets after centrifugation. Addition of 10 ng/ml link N resulted in increased pellet sizes for both AF and NP pellet cultures. Link N increased proteoglycan, type II and type IX collagen contents with an increase in DNA content over time. This study demonstrates that link N can act directly on disc cells to stimulate matrix production, which involves increased accumulation of proteoglycan, and types II and IX collagens. This study also identifies the value of pellet cultures for studies of the IVD cells in a serum-free chemically defined medium, in which pellets can continue growing in size in response to growth factors with minimal cell loss. Link N may have value in stimulating the growth and regeneration of the damaged IVD.  相似文献   

13.
Potassium channels play a major role in intracellular homeostasis and regulation of cell volume. Intervertebral disc cells respond to mechanical loading in a complex manner. Mechanical loading may play a role in disc degeneration. Lumbar intervertebral disc samples from 5 patients (average age: 47 years, range: 25-64 years) were used for this study, investigating cells from the nucleus pulposus and the annulus fibrosus duplicate samples to determine RNA expression and protein expression. Analysis of mRNA expression by RT-PCR demonstrated that TREK 1 was expressed by nucleus pulposus (n=5) and annulus fibrosus (n=5) cells. Currently, TREK-1 is the only potassium channel known to be activated by intracellular acidosis, and responds to mechanical and chemical stimuli. Whilst the precise role of potassium channels in cellular homeostasis remains to be determined, TREK-1 may be important to protect disc cells against ischaemic damage, and subsequent disc degeneration, and may also play a role in effecting mechanotransduction. Further research is required to fully elucidate the role of the TREK-1 ion channel in intervertebral disc cells.  相似文献   

14.
Summary Monoclonal antibodies have been used to study the presence and distribution of various components of the proteoglycan molecule in the intervertebral disc and cartilage endplate. Link protein, hyaluronic acid binding region, keratan sulphate and chondroitin 4- and 6-sulphate have been investigated in tissues from humans and other mammals. Exposure of the carbohydrate and protein epitopes was enhanced by chondroitinase and trypsin pretreatment respectively. The degree of immunoreactivity varied with location, being greater in the nucleus pulposus than the annulus fibrosus with least reactivity in the cartilage endplate. In addition, there was increased staining in the pericellular domains, particularly in adult tissues. Areas of ectopic calcification exhibited very different immunoreactivity, depending on the type of calcium salt present. Calcium hydroxyapatite deposits showed greater staining for 8A4 (link protein), while calcium pyrophosphate deposits demonstrated greater staining for 3B3(-), 7D4(-) and 3D5 than the surrounding non-calcified matrix. Staining for chondroitin sulphate isomer epitopes 3B3(-) and 7D4(-), indicative of modified chondroitin sulphate chains, was greater in human tissues of degenerate than non-degenerate appearance. This suggests that expression of these epitopes may be an indicator of disease and subsequent reparative procedures in intervertebral disc and cartilage endplate, similar to that seen in articular cartilage degeneration.  相似文献   

15.
Human disc degeneration is associated with increased MMP 7 expression.   总被引:2,自引:0,他引:2  
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

16.
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

17.
During intervertebral disc (IVD) degeneration, normal matrix synthesis decreases and degradation of disc matrix increases. A number of proteases that are increased during disc degeneration are thought to be involved in its pathogenesis. Matrix metalloproteinase 7 (MMP 7) (Matrilysin, PUMP-1) is known to cleave the major matrix molecules found within the IVD, i.e., the proteoglycan aggrecan and collagen type II. To date, however, it is not known how its expression changes with degeneration or its exact location. We investigated the localization of MMP 7 in human, histologically graded, nondegenerate, degenerated and prolapsed discs to ascertain whether MMP 7 is up-regulated during disc degeneration. Samples of human IVD tissue were fixed in neutral buffered formalin, embedded in paraffin, and sections stained with hematoxylin and eosin to score the degree of morphological degeneration. Immunohistochemistry was performed to localize MMP 7 in 41 human IVDs with varying degrees of degeneration. We found that the chondrocyte-like cells of the nucleus pulposus and inner annulus fibrosus were MMP 7 immunopositive; little immunopositivity was observed in the outer annulus. Nondegenerate discs showed few immunopositive cells. A significant increase in the proportion of MMP 7 immunopositive cells was seen in the nucleus pulposus of discs classified as showing intermediate levels of degeneration and a further increase was seen in discs with severe degeneration. Prolapsed discs showed more MMP 7 immunopositive cells compared to nondegenerated discs, but fewer than those seen in cases of severe degeneration.  相似文献   

18.
A biotinylated complex of aggrecan G1-domain and link protein was used to characterize the distribution of hyaluronan in paraffin-embedded sections of adult human and canine intervertebral disc and cartilage endplate. Limited chondroitinase ABC and trypsin digestions of the sections before staining was utilized to expose hyaluronan potentially masked by aggrecan. Hyaluronan concentration and hyaluronan to uronic acid ratio in different parts of the discs were measured as a background for the histological analysis.Hyaluronan staining was strong in the nucleus pulposus and inner parts of annulus fibrosus of both species, corroborated by biochemical assays of the same compartments. Particularly in human samples, hyaluronan in the interterritorial matrix of nucleus pulposus and annulus fibrosus was readily accessible to the probe without enzyme treatments. In contrast, the cell-associated hyaluronan signal was enhanced after trypsin or limited chondroitinase ABC-treatment of the sections, suggesting that pericellular hyaluronan was more masked by aggrecan than in the distant matrix. A puzzling feature of canine cartilage endplate cells was their intensive cell-associated hyaluronan signal, part of which appeared intracellular. Hyaluronan was abundant between the collagenous lamellae in annulus fibrosus, perhaps important in the plasticity of this tissue.  相似文献   

19.

Introduction  

Although transforming growth factor β1 (TGFβ1) is known to be a potent inhibitor of proliferation in most cell types, it accelerates proliferation in certain mesenchymal cells, such as articular chondrocytes and nucleus pulposus cells. The low ability for self-renewal of nucleus pulposus cells is one obstacle in developing new therapeutic options for intervertebral disc diseases, and utilizing cytokines is one of the strategies to regulate nucleus pulposus cell proliferation. However, the precise cell cycle progression and molecular mechanisms by which TGFβ1 stimulates cell growth remain unclear. The aim of this study was to elucidate a mechanism that enables cell proliferation with TGFβ1 stimulation.  相似文献   

20.
The proteoglycans of the canine intervertebral disc   总被引:3,自引:0,他引:3  
The high-buoyant-density proteoglycans of the nucleus pulposus and annulus fibrosus of the beagle intervertebral disc have been isolated by CsCl density gradient ultracentrifugation. The sulphated proteoglycans were labelled in vivo with 35SO4, 24 h and 60 days prior to killing. The hydrodynamic size and aggregation of the 24 h, 60 day and resident (from hexuronic acid and hexosamine analysis) proteoglycan subunit populations were determined by Sepharose CL-2B chromatography in the presence or absence of excess hyaluronic acid. The hydrodynamic size of the keratan sulphate-proteoglycan core protein complexes were also determined by Sepharose CL-2B chromatography after chondroitinase ABC digestion of proteoglycans. When initially synthesised (24 h) or after 60 days, the percentage aggregation and hydrodynamic size of the proteoglycans derived from the annulus fibrosus were larger than those present in the nucleus pulposus. Hexosamine, hexuronic and protein determination of the high-buoyant-density fractions showed that the proteoglycans of the nucleus pulposus were richer in chondroitin sulphate than those in the annulus. However there was no difference in Mr of the chondroitin sulphate and keratan sulphate attached to the proteoglycans of the two disc regions, nor were differences detected by HPLC between the proportions of chondroitin 4-sulphate and chondroitin 6-sulphate present in these high-density fractions. In contrast, the low-buoyant-density (1.54 greater than p greater than 1.45) proteoglycan fractions and tissue residues remaining after 4 M GuHCl extraction were found to contain dermatan sulphate, suggesting the presence of a third proteoglycan species possibly associated with the collagen of the fibrocartilagenous matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号