首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
4-Amino-3,3′-dichloro-5,4′-dinitrobiphenyl (ADDB) is a novel chemical exerting strong mutagenicity, especially in the absence of metabolic activation. In addition to mutagenicity, ADDB may also disrupt the endocrine system in vitro. ADDB may be discharged from chemical plants near the Waka River and could be unintentionally formed via post-emission modification of drainage water containing 3,3′-dichlorobenzidine (DCB), which is a precursor in the manufacture of polymers and dye intermediates in chemical plants. The main purpose of this study was to make a comprehensive survey of the behaviour and levels of ADDB and suspected starting material or intermediates of ADDB, i.e., DCB, 3,3′-dichloro-4,4′-dinitrobiphenyl (DDB), and 4-amino-3,3′-dichloro-4′-nitrobipheny (ADNB) in Waka River water samples. We also postulated the formation pathway of ADDB. Water samples were collected at five sampling sites from the Waka River four times between March 2003 and December 2004. Samples were passed through Supelpak2 columns, and adsorbed materials were then extracted with methanol. Extracts were used for quantification of ADDB and the related chemicals by HPLC on reverse-phase columns; mutagenicity was evaluated in the Salmonella assay using the O-acetyltransferase-overexpressing strain YG1024. High levels of ADDB, DCB, DDB, and ADNB (12.0, 20,400, 134.8, and 149.4 ng/L-equivalent) were detected in the samples collected at the site where wastewater was discharged from chemical plants into the river. These water samples also showed stronger mutagenicity in YG1024 both with and without S9 mix than the other water samples collected from upstream and downstream sites. The results suggest that ADDB is unintentionally formed from DCB via ADNB in the process of wastewater treatment of drainage water containing DCB from chemical plants.  相似文献   

2.
Ohe T  White PA  DeMarini DM 《Mutation research》2003,534(1-2):101-112
The hanging technique using blue rayon, which specifically adsorbs mutagens with multicyclic planar structures, has the advantages over most conventional methods of not having to bring large volumes of water back to the laboratory for extraction of organic materials. Therefore, for the same effort the hanging blue rayon technique allows for the analysis of more samples from remote sites, although it has a disadvantage of not allowing quantitative analysis. In this study, the blue rayon hanging technique was used to collect organic mutagens in river waters that flow through metropolitan areas in northeastern North America. Monitoring was performed at a total of 21 sites: the Providence River system (4 sites), the Charles River (2 sites), the Potomac River (6 sites), the St. Lawrence River (5 sites), the Hudson River (3 sites), and the East River (1 site). Mutagenicity was evaluated using the Salmonella assay with strains TA98, TA100, YG1024, YG1041, and YG1042 with and without metabolic activation. The results demonstrated that strains YG1041 and YG1024 were much more sensitive than TA98 with S9 mix. Fifteen samples out of 21 were positive in YG1041 with S9 mix. Six samples gave 5000-18,400 revertants/g blue rayon equivalent. YG1042 was also much more sensitive than TA100. Eight samples were positive in YG1042 with S9 mix. The highest activity was 10,200 revertants/g blue rayon equivalent. The overall results showed that rivers flowing through major cities in North America contain frameshift-type, aromatic amine-like mutagenic activity. However, the levels of mutagenic activity in these rivers were much lower than expected based on prior analyses and calculated population-to-discharge ratios. Further research, such as detailed chemical analyses and/or simultaneous comparisons of several different adsorbents (e.g. XAD and blue rayon), will be needed to clarify the observed differences between North American blue rayon values and published values for European and Asian river systems.  相似文献   

3.
4-Amino-3,3'-dichloro-5,4'-dinitrobiphenyl (ADDB) is a novel chemical exerting strong mutagenicity, especially in the absence of metabolic activation. In addition to mutagenicity, ADDB may also disrupt the endocrine system in vitro. ADDB may be discharged from chemical plants near the Waka River and could be unintentionally formed via post-emission modification of drainage water containing 3,3'-dichlorobenzidine (DCB), which is a precursor in the manufacture of polymers and dye intermediates in chemical plants. The main purpose of this study was to make a comprehensive survey of the behaviour and levels of ADDB and suspected starting material or intermediates of ADDB, i.e., DCB, 3,3'-dichloro-4,4'-dinitrobiphenyl (DDB), and 4-amino-3,3'-dichloro-4'-nitrobipheny (ADNB) in Waka River water samples. We also postulated the formation pathway of ADDB. Water samples were collected at five sampling sites from the Waka River four times between March 2003 and December 2004. Samples were passed through Supelpak2 columns, and adsorbed materials were then extracted with methanol. Extracts were used for quantification of ADDB and the related chemicals by HPLC on reverse-phase columns; mutagenicity was evaluated in the Salmonella assay using the O-acetyltransferase-overexpressing strain YG1024. High levels of ADDB, DCB, DDB, and ADNB (12.0, 20,400, 134.8, and 149.4ng/L-equivalent) were detected in the samples collected at the site where wastewater was discharged from chemical plants into the river. These water samples also showed stronger mutagenicity in YG1024 both with and without S9 mix than the other water samples collected from upstream and downstream sites. The results suggest that ADDB is unintentionally formed from DCB via ADNB in the process of wastewater treatment of drainage water containing DCB from chemical plants.  相似文献   

4.
Blue cotton, bearing a covalently bound copper-phthalocyanine derivative capable of adsorbing polycyclic aromatic hydrocarbons (PAHs) over 3 rings, was applied to recover mutagens from the Katsura River which is a tributary of the Yodo River. The Ames Salmonella/microsome assay with TA98 and TA100 of the blue cotton concentrate recovered from the river water demonstrated indirect mutagenicity toward TA98. The subfractions separated by Sephadex G-25 gel chromatography also showed direct mutagenicity in strains YG1021 and YG1024, the nitroreductase- and O-acetyltransferase-overproducing derivatives of TA98; this activity was greatly increased by the addition of S9 mix, especially in YG1024. However, these subfractions were less mutagenic with TA98NR or TA98/1,8-DNP6, regardless of whether S9 mix was present or not. The behaviors of these mutagenic activities therefore suggested that frameshift mutagens of both directly mutagenic nitroarenes and indirectly mutagenic aminoarenes were present in the blue cotton concentrate from the river water.  相似文献   

5.
We recently identified dichlorobiphenyl (DCB) derivatives and 2-phenylbenzotriazole (PBTA) congeners as major mutagenic constituents of the waters of the Waka River and the Yodo River system in Japan, respectively. In this study we examined sister chromatid exchange (SCE) induction by two dichlorobiphenyl derivatives, 3,3′-dichlorobenzidine (DCB, 4,4′-diamino-3,3′-dichlorobiphenyl) and 4,4′-diamino-3,3′-dichloro-5-nitrobiphenyl (5-nitro-DCB); three PBTA congeners, 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1), 2-[2-(acetylamino)-4-[N-(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2), and 2-[2-(acetylamino)amino]-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6); and water concentrates from the Waka River in Chinese hamster lung (CHL) cells. Concentration-dependent induction of SCE was found for all DCBs and PBTAs examined in the presence of S9 mix, and statistically significant increases of SCEs were detected at 2 μg per ml of medium or higher concentrations. SCE induction of MeIQx was examined to compare genotoxic activities of these water pollutants. According to the results, a ranking of the SCE-inducing potency of these compounds is the following: 5-nitro-DCB ≈ MeIQx > PBTA6 > PBTA-1 ≈ PBTA-2 > DCB.Water samples collected at a site at the Waka River showed concentration-related increases in SCEs at 6.25–18.75 ml-equivalent of river water per ml of medium with S9 mix. The concentrations of 5-nitro-DCB and DCB in the river water samples were from 2.5 to 19.4 ng/l and from 4100 to 18,900 ng/l, respectively. However, these chemicals showed only small contribution to SCE induction by the Waka River water.  相似文献   

6.
Norharman, abundantly present in cigarette smoke and cooked foods, is not mutagenic to Salmonella typhimurium strains. However, norharman shows mutagenicity to S. typhimurium TA98 and YG1024 in the presence of S9 mix when coexisting with aromatic amines, including aniline, o- and m-toluidines. We previously reported that the mutagenicity from norharman and aniline in the presence of S9 mix was due to the formation of a mutagenic compound, 9-(4'-aminophenyl)-9H-pyrido[3,4-b]indole (aminophenylnorharman). In the present study, we analyzed the mutagens produced by norharman with o- or m-toluidine in the presence of S9 mix. When norharman and o-toluidine were reacted at 37 degrees C for 20 min, two mutagenic compounds, which were mutagenic with and without S9 mix, respectively, were produced, and these were isolated by HPLC. The former mutagen was deduced to be 9-(4'-amino-3'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-3'-methylphenylnorharman) on the basis of various spectral data, and this new heterocyclic amine was confirmed by its chemical synthesis. The latter mutagen was identified to be the hydroxyamino derivative. Amino-3'-methylphenylnorharman induced 41,000 revertants of TA98, and 698,000 revertants of YG1024 per microg with S9 mix. Formation of the same DNA adducts was observed in YG1024 when amino-3'-methylphenylnorharman or a mixture of norharman plus o-toluidine was incubated with S9 mix. These observations suggest that norharman reacts with o-toluidine in the presence of S9 mix to produce amino-3'-methylphenylnorharman, and this compound is metabolically activated to yield its hydroxyamino derivative. After activation by O-acetyltransferase, it might bind to DNA and exert mutagenicity in S. typhimurium TA98 and YG1024. When norharman and m-toluidine were reacted in the presence of S9 mix, 9-(4'-amino-2'-methylphenyl)-9H-pyrido[3,4-b]indole (amino-2'-methylphenylnorharman) was identified as a mutagen. Thus, the mutagenicity of norharman with m-toluidine may follow a mechanism similar to that with o-toluidine.  相似文献   

7.
To clarify their mutagenic potential, samples of water from the Mawatari, Asuwa and Kitsune rivers, which flow through the central area of Fukui, Japan, were seasonally collected at six sites using blue rayon from July 1998 to August 2000. Forty-five of 52 (87%) of the water samples exhibited mutagenicity toward Salmonella typhimurium YG1024 and YG1029 with and without S9 mix, and the highest potencies were observed in YG1024 with S9 mix. The samples collected in summer and autumn tended to be more mutagenic than those collected in winter and spring. Fractionation using high-performance liquid chromatography (HPLC) suggests that several compounds are responsible for the mutagenicity of river water samples, and some of the major mutagens seem to be common among the samples. Three 2-phenylbenzotriazole (PBTA)-type mutagens, 2-[2-(acetylamino)-4-[(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-3), 2-[2-(acetylamino)-4-amino-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-4) and 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6), were quantified in samples collected between July 1998 and April 1999. At least one of these PBTA-type mutagens was detected in 23/24 (96%) of the samples. The amounts of PBTA-3, -4 and -6 were <0.08-58.7, <0.1-15.0 and <0.07-467.9 ng/g of blue rayon, respectively, and high levels of PBTA congeners were detected in the samples collected from each river in July and November 1998. The contributions of these PBTA congeners to the mutagenicity of water samples were also high in July and November 1998. The highest total contribution was observed for samples from the Asuwa river (67.6%). These findings suggest that these three rivers were continually and heavily contaminated with mutagens, and PBTA congeners were some of the major mutagens in these rivers.  相似文献   

8.
We have previously isolated five mutagens in blue rayon-adsorbed substances from water at a site below sewage plants in the Nishitakase River, in Kyoto, Japan, and identified two of them as 2-phenylbenzotriazole derivatives, 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-1) and 2-[2-(acetylamino)-4-[(2-cyanoethyl)ethylamino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-2). In the present study, we collected adsorbed materials on blue cotton (3 kg x 9 times) at the same location, and isolated a sufficient amount (97 microg) of one of the remaining three mutagens other than PBTA-1 and PBTA-2, for structural analysis, by multiple column chromatography. The structure of mutagen, accounting for 12% of the total mutagenicity of the blue rayon-adsorbed substances, was determined to be a PBTA-1 analogue, 2-[2-(acetylamino)-4-amino-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-4). PBTA-4 is a potent mutagen, inducing 190,000 and 7,800,000 revertants of Salmonella typhimurium TA98 and YG1024 per microgram, respectively, in the presence of S9 mix. In addition to the water of the Nishitakase River, PBTA-4 was detected in water samples from two rivers that flow through other regions where textile-dyeing industries have been developed. Like other PBTA analogues, PBTA-4 might also be produced from azo dyes during industrial processes in dyeing factories and treatment at sewage plants.  相似文献   

9.
Coffee prepared in the usual way for drinking contains a substance(s) that is mutagenic to Salmonella typhimurium TA100 without mammalian microsomal enzymes. One cup of coffee (200 ml) contains mutagen(s) inducing 1.4-4.6 X 10(5) revertants under standard conditions. Instant coffee too is mutagenic to TA100 and one cup of instant coffee prepared from 1 g of coffee powder and 200 ml of water induced 5.6-5.8 X 10(4) revertants of TA100. Caffeine-free instant coffee also has similar mutagenicity. Addition of microsomal enzymes abolished the mutagenicity. Black tea, green tea and Japanese roasted tea were also mutagenic to TA100 without S9 mix and one cup of these teas prepared in the ordinary way produced 1.7-3.8 X 10(4) revertants of TA100. Black tea and green tea were also mutagenic to TA98 in the presence of S9 mix after treatment with a glycosidase from Aspergillus niger, hesperidinase. This type of mutagen in one cup of black tea induced 2.4 X 10(5) revertants of TA98.  相似文献   

10.
Three kinds of diphenyl ether herbicides, 4-nitrophenyl 2,4,6-trichlorophenyl ether (CNP, chlornitrofen), 2,4-dichlorophenyl 3-methoxy-4-nitrophenyl ether (chlomethoxynil) and 2,4-dichlorophenyl 3-methoxycarbonyl-4-nitrophenyl ether (bifenox), were tested for mutagenicity in Salmonella typhimurium YG1026 and YG1021, which have high nitroreductase activity, and also in S. typhimurium TA100 and TA98. CNP and chlomethoxynil showed mutagenicity in S. typhimurium YG1026, without S9 mix, inducing 50 and 304 revertants per μg. These mutagenicities were suppressed by the addition of S9 mix. CNP and chlomethoxynil were also mutagenic to YG1021 with and without S9 mix, and their mutagenicities were lower than those to YG1026. On the other hand, bifenox was mutagenic to YG1026 only with S9 mix, inducing 3.0 revertants per μg. These three herbicides showed no mutagenicity in S. typhimurium TA100 and TA98 either with or without S9 mix.  相似文献   

11.
Mutagens in surface waters: a review   总被引:4,自引:0,他引:4  
  相似文献   

12.
Three mutagenic heterocyclic amines, 2-amino-3-methylimidazo-[4, 5-f]quinoline (IQ), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 2-amino-9H-pyrido[2,3-b]indole (AalphaC), were isolated and identified in water from the Danube River in Vienna. Heterocyclic amines were extracted from river water by the blue rayon hanging method, and analyzed by gas chromatography with a nitrogen-phosphorous detector (GC-NPD) and GC-mass spectrometry (GC-MS) after conversion into their N-dimethylaminomethylene derivatives. Identity of IQ, Trp-P-1 and AalphaC in the river water was confirmed by GC-MS. The contents of IQ, Trp-P-1 and AalphaC were estimated by GC-NPD at 1.78+/-0.17, 0.14+/-0.02 and 0.44+/-0.02 ng/g blue rayon equivalent (n=3), respectively. The total amounts of these amines accounted for 26% of the mutagenicity of blue rayon extracts evaluated by the Ames test using TA98 with metabolic activation.  相似文献   

13.
We previously determined the chemical structures of four 2-phenylbenzotriazole mutagens (PBTA-1, -2, -3 and -4) in blue rayon-adsorbed material from the Nishitakase River in Kyoto prefecture and the Nikko River in Aichi prefecture in Japan. On the basis of a synthesis study, these four PBTA derivatives were deduced to have originated from corresponding dinitrophenylazo dyes by reduction and chlorination. 2-[(2-Bromo-4,6-dinitrophenyl)azo]-5-[bis(2-acetoxyethyl) amino]-4-methoxyacetanilide (Color Index Name, Disperse Blue 79:1; CAS Registry Number, 75497-74-4) is a very common dinitrophenylazo dye used in textile dyeing factories. In the present study, we synthesized 2-[4-[bis(2-acetoxyethyl)amino]-2-(acetylamino)-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-5) from Disperse Blue 79:1 by reduction with sodium hydrosulfite and subsequent chlorination with sodium hypochlorite. On hydrolysis of PBTA-5 with alkali, 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) was obtained. Both PBTA-5 and -6 were potent mutagens, inducing 723,000 revertants and 485,000 revertants per microgram of Salmonella typhimurium YG1024, respectively, in the presence of S9 mix. To clarify whether PBTA-5 and -6 exist in the environment, water samples were collected from five rivers flowing through regions where textile dyeing industries are developed. PBTA-6 was detected at levels of 3–134 ng/g blue rayon in all water samples that were examined. On the other hand, the amount of PBTA-5 in the samples was less than the detection limit.  相似文献   

14.
The most important harbor of Brazil is located in Santos Estuary. In the 1970s, this area was one of the major examples of coastal degradation and although the quality of the environment has improved, the sediment is still contaminated with polycyclic aromatic hydrocarbons (PAHs) and mutagenic activity. Because of sediment dredging and consequently contaminants resuspension, it is useful to have reliable methods to monitor the water quality. Considering that blue rayon (BR) has been successfully used in evaluation of mutagenicity and PAHs content the objective of this work was to verify the applicability and adapt the methodology to monitor the water for mutagenic activity using the BR associated with the Salmonella assay. Analysis of three sites with different levels of contamination was performed using a modification of the BR hanging method denominated in this work BR anchored technique. The microsuspension protocol of the Salmonella/microsome assay was employed with the strain YG1041. The water from the site 1 the most contaminated and under influence of the steel mill discharge presented the highest potency reaching 36,000 revertants/g of BR with S9. Sites 2 and 3 showed less mutagenicity than site 1 with values approximately 1000 revertants/g of BR. We conclude that the BR anchored technique associated with Salmonella assay using YG1041 is a reliable alternative to monitor estuarine waters, especially in regions where sediment resuspension or acute pollution episodes can occur.  相似文献   

15.
We previously reported on the isolation and structural determination of five 2-phenylbenzotriazole (PBTA)-type mutagens (PBTA-1, PBTA-2, PBTA-3, PBTA-4 and PBTA-6) in blue rayon/cotton adsorbed substances collected from surface waters at sites located downstream of sewage treatment plants. We also noted that PBTA-1 and PBTA-2 were discharged from sewage treatment plants and subsequently diluted or decomposed while moving down the Yodo River system. However, it has not been investigated whether they are commonly discharged from sewage treatment plants into rivers. The main purpose of this study was to make a comprehensive survey of levels and behavior of PBTA-type mutagens in effluents discharged from the sewage treatment plant located along the bank of the Uji River, one tributary of the Yodo River system. Water samples were collected at the outlet of the sewage treatment plant for 16 consecutive days in May 1999 and 11 consecutive days in December 1999. Organic constituents were obtained via sorption to blue rayon and subsequent methanol elution. Extract mutagenic activity was measured using Salmonella typhimurium YG1024 with metabolic activation. PBTA-type mutagens (PBTA-1, PBTA-2, PBTA-3, PBTA-4, PBTA-5 and PBTA-6) were quantified by HPLC with electrochemical detection, followed by HPLC purification on reverse-phase columns. The study showed that PBTA-2, PBTA-3, PBTA-4 and PBTA-6 were detected in most samples. The total contribution of these four PBTA-type mutagens to overall extract mutagenicity is on average 33% for the May 1999 sample and 58% for the December 1999 sample. The individual PBTA compounds that had the largest contribution to the overall mutagenicity were PBTA-3 and PBTA-4, accounting for 11 and 16% in May 1999, and 25 and 26% in December 1999. A further comparative study was done in December 1999 using the blue rayon hanging method and the results were similar to those obtained using the blue rayon column method. In conclusion, the present study showed that PBTA-2, PBTA-3, PBTA-4 and PBTA-6 were commonly discharged from a sewage treatment plant into the Uji River, and they accounted for a substantial portion of the effluent mutagenicity.  相似文献   

16.
The combination of mutagenicity tests and selective extraction methodologies can be useful to indicate the possible classes of genotoxic organic contaminants in water samples. Treated and source water samples from two sites were analyzed: a river under the influence of an azo dye-processing plant discharge and a reservoir not directly impacted with industrial discharges, but contaminated with untreated domestic sewage. Organic extraction was performed in columns packed with XAD4 resin, that adsorbs a broad class of mutagenic compounds like polycyclic aromatic hydrocarbons (PAHs), arylamines, nitrocompounds, quinolines, antraquinones, etc., including the halogenated disinfection by-products; and with blue rayon that selectively adsorbs polycyclic planar structures. The organic extracts were tested for mutagenicity with the Salmonella assay using TA98 and TA100 strains and the potencies were compared. A protocol for cleaning the blue rayon fibers was developed and the efficiency of the reused fibers was analyzed with spiked samples. For the river water samples under the influence of the azo-type dye-processing plant, the mutagenicity was much higher for both blue rayon and XAD4 extracts when compared to the water from the reservoir not directly impacted with industrial discharges. For the drinking water samples, although both sites showed mutagenic responses with XAD4, only samples from the site under the influence of the industrial discharge showed mutagenic activity with the blue rayon extraction, suggesting the presence of polycyclic compounds in those samples. As expected, negative results were found with the blue rayon extracts of the drinking water collected from the reservoir not contaminated with industrial discharges. In this case, it appears that using the blue rayon to extract drinking water samples and comparing the results with the XAD resin extracts we were able to distinguish the mutagenicity caused by industrial contaminants from the halogenated disinfection by-products generated during water treatment.  相似文献   

17.
After treatment with nitrite, Chinese cabbage showed direct-acting mutagenicity on Salmonella typhimurium TA100 inducing 3100 revertants per g. One of the mutagen precursors that became mutagenic after nitrite treatment was isolated, and identified as indole-3-acetonitrile. After treatment with nitrite, 1 mg of indole-3-acetonitrile induced 17 400 revertants of TA100 and 21 000 revertants of TA98 without S9 mix.  相似文献   

18.
We previously determined the chemical structures of four 2-phenylbenzotriazole mutagens (PBTA-1, -2, -3 and -4) in blue rayon-adsorbed material from the Nishitakase River in Kyoto prefecture and the Nikko River in Aichi prefecture in Japan. On the basis of a synthesis study, these four PBTA derivatives were deduced to have originated from corresponding dinitrophenylazo dyes by reduction and chlorination. 2-[(2-Bromo-4,6-dinitrophenyl)azo]-5-[bis(2-acetoxyethyl) amino]-4-methoxyacetanilide (Color Index Name, Disperse Blue 79:1; CAS Registry Number, 75497-74-4) is a very common dinitrophenylazo dye used in textile dyeing factories. In the present study, we synthesized 2-[4-[bis(2-acetoxyethyl)amino]-2-(acetylamino)-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-5) from Disperse Blue 79:1 by reduction with sodium hydrosulfite and subsequent chlorination with sodium hypochlorite. On hydrolysis of PBTA-5 with alkali, 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) was obtained. Both PBTA-5 and -6 were potent mutagens, inducing 723,000 revertants and 485,000 revertants per microgram of Salmonella typhimurium YG1024, respectively, in the presence of S9 mix. To clarify whether PBTA-5 and -6 exist in the environment, water samples were collected from five rivers flowing through regions where textile dyeing industries are developed. PBTA-6 was detected at levels of 3-134 ng/g blue rayon in all water samples that were examined. On the other hand, the amount of PBTA-5 in the samples was less than the detection limit.  相似文献   

19.
N-Nitroso compounds, such as N-nitrosodiethylamine (NDEA), are a versatile group of chemical carcinogens, being suspected to be involved in gastrointestinal tumors in humans. The intestinal microflora can modify a wide range of environmental chemicals either directly or in the course of enterohepatic circulation. Nitroreductases from bacteria seem to have a wide spectrum of substrates, as observed by the reduction of several nitroaromatic compounds, but their capacity to metabolize N-nitroso compounds has not been described. To elucidate the participation of nitroreductase or acetyltransferase enzymes in the mutagenic activity of NDEA, the bacterial (reverse) mutation test was carried out with the strains YG1021 (nitroreductase overexpression), YG1024 (acetyltransferase overexpression), TA98NR (nitroreductase deficient), and TA98DNP6 (acetyltrasferase deficient), and YG1041, which overexpresses both enzymes. The presence of high levels of acetyltransferase may generate toxic compounds that must be eliminated by cellular processes or can lead to cell death, and consequently decrease the mutagenic effect, as can be observed by the comparison of strain TA98DNP6 with the strains TA98 and YG1024. The slope curves for TA98 strain were 0.66 rev/microM (R(2) = 0.51) and 52.8 rev/microM (R(2) = 0.88), in the absence and presence of S9 mix, respectively. For YG1024 strain, the slope curve, in the presence of S9 mix was 6897 rev/microM (R(2) = 0.78). Our data suggest that N-nitroso compounds need to be initially metabolized by enzymes such as cytochromes P450 to induce mutagenicity. Nitroreductase stimulates toxicity, while acetyltransferase stimulates mutagenicity, and nitroreductase can neutralize the mechanism of mutagenicity generating innoccuos compounds, probably by acting on the product generated after NDEA activation.  相似文献   

20.
As part of a long-term program to investigate the impact of air pollution on the health of a population in a polluted region in Northern Bohemia, mutagenicity of extractable organic matter (EOM) from air particles PM10 was investigated by the means of Salmonella typhimurium indicator strains TA98 and YG1041 using the Ames plate incorporation assay. The air samples were collected in both the polluted and the control districts during the summers and winters of 1993-1994. In the polluted district, the collection was repeated during the winter of 1996-1997. The crude extracts from filters pooled according to the locality and the season were fractionated by acid-base partitioning into acid, base, and neutral fractions. The neutral fractions were further fractionated by silica gel column chromatography into five subfractions. The induction of revertants with the crude extracts was higher in winter samples than in summer samples. Both indirect-acting and direct-acting mutagenicity were observed. The indirect mutagenic potency of aromatic subfractions containing polycyclic aromatic hydrocarbons (PAHs) was generally low. The mutagenic potency detected with TA98 was more distinct only in the winter sample 1993-1994 from the polluted area, where the aromatic subfraction accounted for 23% of total mutagenicity. In both strains, the highest direct-acting mutagenicity was found in slightly polar fractions containing nitro-PAHs. The mutagenic potency detected with YG1041 was about two orders of magnitude higher than that detected with TA98. No substantial locational- or time-related variances in the mutagenic potencies of EOM, or in the spectrum of chemical components identified in individual fractions were found. The polluted district, in comparison to the control district, was found to have higher amounts of EOM, carcinogenic PAHs and mutagenicity of air particles (rev/m(3)). The fractionating process, combined with the bacterial mutagenicity test, confirmed that nitro-derivatives are the most important contributors to the bacterial mutagenicity of air particles. However, this study did not fulfill the expectancy to bring substantially new, clear-cut information on the composition and the biological activity of air pollution in both districts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号