首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We examined the action of porcine pancreatic and bee-venom phospholipase A2 towards bilayers of phosphatidylcholine as a function of several physical characteristics of the lipid-water interface. 1. Unsonicated liposomes of dimyristoyl phosphatidylcholine are degraded by both phospholipases in the temperature region of the phase transition only (cf. Op den Kamp et al. (1974) Biochim. Biophys. Acta 345, 253--256 and Op den Kamp et al. (1975) Biochim. Biophys. Acta 406, 169--177). With sonicates the temperature range in which hydrolysis occurs is much wider. This discrepancy between liposomes and sonicates cannot be ascribed entirely to differences in available substrate surface. 2. Below the phase-transition temperature the phospholipases degrade dimyristoyl phosphatidylcholine single-bilayer vesicles with a strongly curved surface much more effectively than larger single-bilayer vesicles with a relatively low degree of curvature. 3. Vesicles composed of egg phosphatidylcholine can be degraded by pancreatic phospholipase A2 at 37 degrees C, provided that the substrate bilayer is strongly curved. The bee-venom enzyme shows a similar, but less pronounced, preference for small substrate vesicles. 4. In a limited temperature region just above the transition temperature of the substrate the action of both phospholipases initially proceeds with a gradually increasing velocity. This stimulation is presumably due to an increase of the transition temperature, effectuated by the products of the phospholipase action. 5. Structural defects in the substrate bilayer, introduced by sonication below the phase-transition temperature (cf. Lawaczeck et al. (1976) Biochim. Biophys. Acta 443, 313--330) facilitate the action of both phospholipases. The results lead to the general conclusion that structural irregularities in the packing of the substrate molecules facilitate the action of phospholipases A2 on phosphatidylcholine bilayers. Within the phase transition and with bilayers containing structural defects these irregularities represent boundaries between separate lipid domains. The stimulatory effect of strong bilayer curvature can be ascribed to an overall perturbation of the lipid packing as well as to a change in the phase-transition temperature.  相似文献   

2.
The reaction progress curve for the action of pig-pancreatic phospholipase A2 on dimyristoylphosphatidylcholine vesicles is characterized under a variety of conditions. The factors that regulate the rate of hydrolysis during the presteady-state phase determine the latency period. The results demonstrate that the accelerated hydrolysis following the latency phase of the reaction progress curve is due to the product-assisted binding of the enzyme to the substrate bilayer by chaning the number of bindings sites and therefore the binding equilibrium. A critical mole fraction of products appears to be formed in the substrate bilayers before the steady-state phase of hydrolysis begins. The latency phase shows a minimum at the phase-transition temperature of the substrate vesicles; however, we did not observe a significant binding of the enzyme to pure substrate bilayers even at the phase-transition temperature. The rate of binding of the enzyme is found to be fast and the rate of desorption of the bound enzyme is very slow compared to the latency phase. The rate of redistribution of products between substrate bilayers is rather slow. These observations demonstrate that during the latency phase of the action of phospholipase A2, a critical mole fraction of products is formed in the substrate bilayer.  相似文献   

3.
The bilayer phase transitions of a series of ether-linked phospholipids, 1,2-dialkylphosphatidylcholines containing linear saturated alkyl chain (C(n)=12, 14, 16 and 18), were observed by differential scanning calorimetry (DSC) under ambient pressure and light-transmittance measurements under high pressure. The thermodynamic quantities of the pre- and main-transitions for the ether-linked PC bilayer membranes were calculated and compared with those of a series of ester-linked PCs, 1,2-diacylphosphatidylcholines. The thermodynamic quantities of the main transition for the ether-linked PC bilayers showed distinct dependence on alkyl-chain length and were slightly different from those of the ester-linked PC bilayers. From the comparison of thermodynamic quantities for the main transition between both PC bilayers, we revealed that the attractive interaction in the gel phase for the ether-linked PC bilayers is weaker than that for the ester-linked PC bilayers. Regarding the pretransition, although changes in enthalpy and entropy for both PC bilayers were comparable to each other, the volume changes of the ether-linked PC bilayers roughly doubled those of the ester-linked PC bilayers. The larger volume change results from the smallest partial molar volume of the ether-linked PC molecule in the interdigitated gel phase. Further, we constructed the temperature-pressure phase diagrams for the ether-linked PC bilayers by using the phase-transition data. The region of the interdigitated gel phase in the phase diagrams was extended by applying pressure and by increasing the alkyl-chain length of the molecule. Comparing the phase diagrams with those for the ester-linked PC bilayers, it was proved that the phase behavior of the ester-linked PC bilayers under high temperature and pressure is almost equivalent to that of the ether-linked PC bilayers in the vicinity of ambient pressure.  相似文献   

4.
The reflection coefficients of bilayer lipid vesicles (liposomes) of various compositions have been determined for a number of non-electrolytes. The solutes were the same and the method of measurement was essentially the same as those which have been used to estimate an equivalent pore radius for erythrocytes. The method involves matching the osmotic pressure of solutions of a permeant test solute with that of a known inpermeant solute. Reflection coefficients for cholesterol-containing liposomes and those of erythrocytes are, when account is taken of those solutes known to permeate the erythrocyte by specialized pathways, not greatly different. Lipid bilayers can thus account for most of the permeability characteristics of the cell originally interpreted as due to aqueous pores. Reflection coefficients are significantly higher for egg phosphatidylcholine membranes that contain cholesterol than those which do not. There is a strong correlation between relative permeabilities derived from reflection coefficients and oil-water partition coefficients. There is also good agreement between these permeabilities and permeabilities measured by others, which exhibit an inverse dependence on molecular size. It is suggested that this tendency of membranes to pass small molecules more readily than large molecules, other properties being equal, is a consequence of the surface pressure of the constituent monolayers of the membrane.  相似文献   

5.
The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated peptide, which is a synthetic decapeptide N-terminally linked to a C14 acyl chain (C14-peptide), is incorporated into DPPC bilayers in amounts ranging from 0-20 mol %. The calorimetric scans of the two-component system demonstrate a distinct influence of the C14-peptide on the lipid bilayer thermodynamics. This is manifested as a concentration-dependent downshift of both the main phase transition and the pretransition. In addition, the main phase transition peak is significantly broadened, indicating phase coexistence. In the AFM imaging scans we found that the C14-peptide, when added to supported gel phase DPPC bilayers, inserts preferentially into preexisting defect regions and has a noticeable influence on the organization of the surrounding lipids. The presence of the C14-peptide gives rise to a laterally heterogeneous bilayer structure with coexisting lipid domains characterized by a 10 A height difference. The AFM images also show that the appearance of the ripple phase of the DPPC lipid bilayers is unaffected by the C14-peptide. The experimental results are supported by molecular dynamics simulations, which show that the C14-peptide has a disordering effect on the lipid acyl chains and causes a lateral expansion of the lipid bilayer. These effects are most pronounced for gel-like bilayer structures and support the observed downshift in the phase-transition temperature. Moreover, the molecular dynamics data indicate a tendency of a tryptophan residue in the peptide sequence to position itself in the bilayer headgroup region.  相似文献   

6.
The bilayer phase transitions of a series of ether-linked phospholipids, 1,2-dialkylphosphatidylcholines containing linear saturated alkyl chain (Cn = 12, 14, 16 and 18), were observed by differential scanning calorimetry (DSC) under ambient pressure and light-transmittance measurements under high pressure. The thermodynamic quantities of the pre- and main-transitions for the ether-linked PC bilayer membranes were calculated and compared with those of a series of ester-linked PCs, 1,2-diacylphosphatidylcholines. The thermodynamic quantities of the main transition for the ether-linked PC bilayers showed distinct dependence on alkyl-chain length and were slightly different from those of the ester-linked PC bilayers. From the comparison of thermodynamic quantities for the main transition between both PC bilayers, we revealed that the attractive interaction in the gel phase for the ether-linked PC bilayers is weaker than that for the ester-linked PC bilayers. Regarding the pretransition, although changes in enthalpy and entropy for both PC bilayers were comparable to each other, the volume changes of the ether-linked PC bilayers roughly doubled those of the ester-linked PC bilayers. The larger volume change results from the smallest partial molar volume of the ether-linked PC molecule in the interdigitated gel phase. Further, we constructed the temperature-pressure phase diagrams for the ether-linked PC bilayers by using the phase-transition data. The region of the interdigitated gel phase in the phase diagrams was extended by applying pressure and by increasing the alkyl-chain length of the molecule. Comparing the phase diagrams with those for the ester-linked PC bilayers, it was proved that the phase behavior of the ester-linked PC bilayers under high temperature and pressure is almost equivalent to that of the ether-linked PC bilayers in the vicinity of ambient pressure.  相似文献   

7.
Two mechanisms have been proposed to account for solute permeation of lipid bilayers. Partitioning into the hydrophobic phase of the bilayer, followed by diffusion, is accepted by many for the permeation of water and other small neutral solutes, but transient pores have also been proposed to account for both water and ionic solute permeation. These two mechanisms make distinctively different predictions about the permeability coefficient as a function of bilayer thickness. Whereas the solubility-diffusion mechanism predicts only a modest variation related to bilayer thickness, the pore model predicts an exponential relationship. To test these models, we measured the permeability of phospholipid bilayers to protons, potassium ions, water, urea, and glycerol. Bilayers were prepared as liposomes, and thickness was varied systematically by using unsaturated lipids with chain lengths ranging from 14 to 24 carbon atoms. The permeability coefficient of water and neutral polar solutes displayed a modest dependence on bilayer thickness, with an approximately linear fivefold decrease as the carbon number varied from 14 to 24 atoms. In contrast, the permeability to protons and potassium ions decreased sharply by two orders of magnitude between 14 and 18 carbon atoms, and leveled off, when the chain length was further extended to 24 carbon atoms. The results for water and the neutral permeating solutes are best explained by the solubility-diffusion mechanism. The results for protons and potassium ions in shorter-chain lipids are consistent with the transient pore model, but better fit the theoretical line predicted by the solubility-diffusion model at longer chain lengths.  相似文献   

8.
The location of ubiquinone-10 in phospholipid bilayers was analyzed using a variety of physical techniques. Specifically, we examined the hypothesis that ubiquinone localizes at the geometric center of phospholipid bilayers. Light microscopy of dipalmitoylphosphatidylcholine at room temperature in the presence of 0.05-0.5 mol fraction ubiquinone showed two separate phases, one birefringent lamellar phase and one phase that consisted of isotropic liquid droplets. The isotropic phase had a distinct yellow color, characteristic of melted ubiquinone. [13C]NMR spectroscopy of phosphatidylcholine liposomes containing added ubiquinone indicated a marked effect on the 13C-spin lattice relaxation times of the lipid hydrocarbon chain atoms near the polar head region of the bilayer, but almost no effect on those atoms nearest the center of the bilayer. X-ray diffraction experiments showed that for phosphatidylcholine bilayers, both in the gel and liquid-crystal-line phases, the presence of ubiquinone did not change either the lamellar repeat period or the wide-angle reflections from the lipid hydrocarbon chains. In electron micrographs, the hydrophobic freeze-fracture surfaces of bilayers in the rippled (P beta') phase were also unmodified by the presence of ubiquinone. These results indicate that the ubiquinone which does partition into the bilayer is not localized preferentially between the monolayers, and that an appreciable fraction of the ubiquinone forms a separate phase located outside the lipid bilayer.  相似文献   

9.
We have determined the mixing properties and lamellar organization of bacterial membrane mimetics composed of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) and -phosphatidylglycerol (POPG) at various molar ratios applying differential scanning calorimetry, small and wide-angle X-ray scattering, as well as optical phase contrast microscopy. Combining the experimental thermodynamic data with a simulation of the liquidus and solidus lines, we were able to construct a phase diagram. Using this approach, we find that the lipids mix in all phases non-ideally in the thermodynamic sense. As expected, pure POPE assembles into multilamellar and pure POPG into unilamellar vesicles, respectively, which are stable within the studied temperature range. In contrast, mixtures of the two components form oligolamellar vesicles consisting of about three to five bilayers. The layers within these oligolamellar liposomes are positionally correlated within the gel phase, but become uncorrelated within the fluid phase exhibiting freely fluctuating bilayers, while the vesicles as a whole remain intact and do not break up into unilamellar forms. X-ray, as well as DSC data, respectively, reveal a miscibility gap due to a lateral phase segregation at POPG concentrations above about 70 mol%, similar to previously reported data on mixtures composed of disaturated PEs and PGs. Hence, the existence of a region of immiscibility is a general feature of PE/PG mixtures and the mixing properties are dominated by PE/PG headgroup interactions, but are largely independent of the composition of the hydrocarbon chains. This is in accordance with a recent theoretical prediction.  相似文献   

10.
We have determined the mixing properties and lamellar organization of bacterial membrane mimetics composed of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) and -phosphatidylglycerol (POPG) at various molar ratios applying differential scanning calorimetry, small and wide-angle X-ray scattering, as well as optical phase contrast microscopy. Combining the experimental thermodynamic data with a simulation of the liquidus and solidus lines, we were able to construct a phase diagram. Using this approach, we find that the lipids mix in all phases non-ideally in the thermodynamic sense. As expected, pure POPE assembles into multilamellar and pure POPG into unilamellar vesicles, respectively, which are stable within the studied temperature range. In contrast, mixtures of the two components form oligolamellar vesicles consisting of about three to five bilayers. The layers within these oligolamellar liposomes are positionally correlated within the gel phase, but become uncorrelated within the fluid phase exhibiting freely fluctuating bilayers, while the vesicles as a whole remain intact and do not break up into unilamellar forms. X-ray, as well as DSC data, respectively, reveal a miscibility gap due to a lateral phase segregation at POPG concentrations above about 70 mol%, similar to previously reported data on mixtures composed of disaturated PEs and PGs. Hence, the existence of a region of immiscibility is a general feature of PE/PG mixtures and the mixing properties are dominated by PE/PG headgroup interactions, but are largely independent of the composition of the hydrocarbon chains. This is in accordance with a recent theoretical prediction.  相似文献   

11.
Solute partitioning into lipid bilayer membranes   总被引:7,自引:0,他引:7  
L R De Young  K A Dill 《Biochemistry》1988,27(14):5281-5289
We have measured the membrane/water partition coefficients of benzene into lipid bilayers as a function of the surface density of the phospholipid chains. A simple 2H NMR method was used for the measurement of surface densities; it is shown to give results similar to those obtained from more demanding X-ray diffraction measurements. We observe that benzene partitioning into the bilayer is dependent not only on the partitioning chemistry, characterized by the oil/water partition coefficient, but also on the surface density of the bilayer chains. Increasing surface density leads to solute exclusion: benzene partitioning decreases by an order of magnitude as the surface density increases from 50% to 90% of its maximum value, a range readily accessible in bilayers and biomembranes under physiological conditions. This effect is independent of the nature of the agent used to alter surface density: temperature, cholesterol, and phospholipid chain length were tested here. These observations support the recent statistical thermodynamic theory of solute partitioning into chain molecule interphases, which predicts that the expulsion of solute is due to entropic effects of the orientational ordering among the phospholipid chains. We conclude that the partitioning of solutes into bilayer membranes, which are interfacial phases, is of a fundamentally different nature than partitioning into bulk oil and octanol phases.  相似文献   

12.
The location of ubiquinone-10 in phospholipid bilayers was analyzed using a variety of physical techniques. Specifically, we examined the hypothesis that ubiquinone localizes at the geometric center of phospholipid bilayers. Light microscopy of dipalmitoylphosphatidylcholine at room temperature in the presence of 0.05–0.5 mol fraction ubiquinone showed two separate phases, one birefringent lamellar phase and one phase that consisted of isotropic liquid droplets. The isotropic phase had a distinct yellow color, characteristic of melted ubiquinone. [13C]NMR spectroscopy of phosphatidylcholine liposomes containing added ubiquinone indicated a marked effect on the 13C-spin lattice relaxation times of the lipid hydrocarbon chain atoms near the polar head region of the bilayer, but almost no effect on those atoms nearest the center of the bilayer. X-ray diffraction experiments showed that for phosphatidylcholine bilayers, both in the gel and liquid-crystal-line phases, the presence of ubiquinone did not change either the lamellar repeat period or the wide-angle reflections from the lipid hydrocarbon chains. In electron micrographs, the hydrophobic freeze-fracture surfaces of bilayers in the rippled (Pβ′) phase were also unmodified by the presence of ubiquinone. These results indicate that the ubiquinone which does partition into the bilayer is not localized preferentially between the monolayers, and that an appreciable fraction of the ubiquinone forms a separate phase located outside the lipid bilayer.  相似文献   

13.
Comparative thermodynamic studies on the interactions of aqueous dispersions of dipalmitoyl phosphatidylcholine (DPPC) bilayer vesicles with hydrophobic and amphipathic species were conducted to elucidate the nature of the solute-induced interdigitated lipid phase. Cyclohexanol, a strong hydrophobic species, lowers the temperature (tm) of the lipid main phase transition from the gel to the liquid-crystalline phase. Unlike ethanol (an amphipathic species), as reported previously, cyclohexanol does not exert a biphasic effect on tm (lowering tm at lower concentrations and raising tm at higher concentrations). At cyclohexanol greater than or equal to 15.4 mg/ml or 0.154 M, the thermogram of DPPC vesicles exhibits a small transition adjacent to the main phase transition but at a lower temperature. In contrast, ethanol does not promote such a small transition. Furthermore, the enthalpy (delta H) of the transition is increased in the presence of cyclohexanol. The sign of the enthalpy change (delta H-delta Ho) is positive and that of the free energy change (delta G-delta Go) is negative, a characteristic of solute-solute hydrophobic interaction. In contrast, DPPC bilayer vesicles exhibit both (delta H-delta Ho) and (delta G-delta Go) greater than 0 in the presence of ethanol in a concentration range where lipid vesicles exist in an interdigitated phase. To support the above distinct thermodynamic observations, fluorescence steady-state polarization (P) measurements were also performed. At the temperature below tm, the value of P decreases as cyclohexanol concentration increases, while a biphasic effect on P was found in the presence of ethanol. These findings support the postulation that the solute-induced interdigitated lipid phase requires the solute molecule to be amphipathic in nature.  相似文献   

14.
Lipid bilayers of dimyristoyl phosphatidylcholine (DMPC) containing opioid peptide dynorphin A(1-17) are found to be spontaneously aligned to the applied magnetic field near at the phase transition temperature between the gel and liquid crystalline states (T(m)=24 degrees C), as examined by 31P NMR spectroscopy. The specific interaction between the peptide and lipid bilayer leading to this property was also examined by optical microscopy, light scattering, and potassium ion-selective electrode, together with a comparative study on dynorphin A(1-13). A substantial change in the light scattering intensity was noted for DMPC containing dynorphin A(1-17) near at T(m) but not for the system containing A(1-13). Besides, reversible change in morphology of bilayer, from small lipid particles to large vesicles, was observed by optical microscope at T(m). These results indicate that lysis and fusion of the lipid bilayers are induced by the presence of dynorphin A(1-17). It turned out that the bilayers are spontaneously aligned to the magnetic field above T(m) in parallel with the bilayer surface, because a single 31P NMR signal appeared at the perpendicular position of the 31P chemical shift tensor. In contrast, no such magnetic ordering was noted for DMPC bilayers containing dynorphin A(1-13). It was proved that DMPC bilayer in the presence of dynorphin A(1-17) forms vesicles above T(m), because leakage of potassium ion from the lipid bilayers was observed by potassium ion-selective electrode after adding Triton X-100. It is concluded that DMPC bilayer consists of elongated vesicles with the long axis parallel to the magnetic field, together with the data of microscopic observation of cylindrical shape of the vesicles. Further, the long axis is found to be at least five times longer than the short axis of the elongated vesicles in view of simulated 31P NMR lineshape.  相似文献   

15.
Summary The kinetic parameters for the steady-state rate of hydrolysis of egg phosphatidylcholine in multilamellar vesicles by bee venom phospholipase A2 are measured in the presence of 27 alkanols and several organic solvents. In general, small nonpolar solutes like enflurane, tetrahydrofuran, benzene, chloroform and diethylether do not promote the hydrolysis of multilamellar vesicles. The rate of hydrolysis shows a biphasic dependence upon the alkanol concentration for all higher (C5–C9) alcohols examined, i.e., an optimal rate of hydrolysis is observed at a characteristic concentration for each alcohol. The alkanol to lipid mole ratio (D/L ratio) in the bilayer at the peak activating concentration of an alkanol was computed from its bilayer/water partition coefficient. The branched chain alcohols induce peak activation of hydrolysis at lowerD/L ratios in the bilayer than the corresponding straight chain analogs. Similarly, the longer chainn-alkanols at peak activating concentration have a lowerD/L ratio than the corresponding lower alcohols. Both theK m andV m for phosphatidylcholine increase as a function of the chain length of the activating alcohol. These kinetic parameters also depend upon the position of the substituents on the activating alcohols. Both theD/L ratio andV m for an alcohol are found to change with the cross-sectional area of the activating alcohol across its long axis: alcohols with a more asymmetric cross-section exhibit higherV m and a lowerD/L ratio. Such correlations ofV m andD/L ratio with the molecular parameters of the alkanols are interpreted to suggest that the accessibility of the substrate molecule in the bilayer to the phospholipase is modulated by the free space introduced by the alkanols in the bilayer.Effect of tetradecane derivatives and A2C (a membrane fluidizing agent) on the phase transition characteristics of DPPC bilayers, and their susceptibility to phospholipase A2 from bee venom and pig pancreas is also reported. These solutes cause a broadening of the transition profile and reduce the size of the cooperative unit and the enthalpy of transition. These effects depend upon the mole fraction of a solute in the bilayer; however, equal concentrations of these solutes do not induce equal response. Susceptibility of the modified bilayers to phospholipase A2 depends not only upon the structure of the solute but also upon the source of the enzyme. The data show that the activity of the membrane-bound enzyme is modulated to different extents by different solutes, and the bilayer perturbing ability of these solutes may be related to the asymmetry of their cross-sectional area and to the free space introduced by the alkanols in a bilayer.  相似文献   

16.
The interaction of three vitamin A derivatives or retinoids: all-trans-retinoic acid, 13-cis-retinoic acid and retinol with multilamellar phospholipid bilayers was studied using a combination of 2H- and 31P-NMR measurements. The following model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers; (2) bilayers composed of a mixture of DPPC and bovine heart phosphatidylcholine (PC); (3) mixed PC/phosphatidylethanolamine (PE) bilayers. Only a weak interaction was observed between 13-cis-retinoic acid and DPPC membranes. Addition of all-trans-retinoic acid at a molar ratio of 1:2 to the lipid causes a small decrease (5 C degrees) in the gel to liquid crystalline phase-transition temperature of DPPC, a small increase in the order parameters of the lipid side-chains of single component bilayers and no measurable effect in the other lipid systems studied. Considerably larger perturbation in the lipid bilayer structure is introduced by addition of retinol which, at a molar ratio of 1:2 to the lipid, lowered the gel to liquid crystalline phase-transition temperature of DPPC by 21 C degrees and caused a decrease of order parameters of the lipid side-chains in all three lipid bilayer systems. These effects are consistent with intercalation of retinol molecules into the bilayer interior. The results for the mixed PC/PE bilayers indicate that the presence of retinol caused lateral separation of PE- and retinol-enriched regions.  相似文献   

17.
Interactions of progesterone with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) multilamellar liposomes were investigated as a function of temperature and progesterone concentration by using three non-invasive techniques namely Fourier transform infrared spectroscopy, turbidity at 440 nm, and differential scanning calorimetry. The results reveal that progesterone changes the physical properties of DPPC bilayers by decreasing the main phase-transition temperature, abolishing the pre-transition, broadening the phase-transition profile, disordering the system both in gel and liquid crystalline phase, increasing the dynamics at low concentrations whereas stabilizing the membrane at high concentrations, and inducing phase separation. Progesterone does not change the hydration of the CO groups, while it strengthens the hydrogen bonding between the PO2- groups of lipids and the water molecules around.  相似文献   

18.
The bilayer phase transitions of four kinds of unsaturated phospholipids with different-sized polar head groups, dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidyl-N-methylethanolamine (DOMePE), dioleoylphosphatidyl-N,N-dimethylethanolamine (DOMe2PE) and dioleoylphosphatidylcholine (DOPC), were observed by means of differential scanning calorimetry (DSC) and high-pressure light-transmittance. DSC thermogram and light-transmittance curve for each phospholipid vesicle solution exhibited only one phase transition under ambient pressure, respectively. The light-transmittance of DOPC solution at pressure higher than 234 MPa abruptly increased stepwise at two temperatures, which corresponds to the appearance of stable subgel and lamellar gel phases under high pressure in addition to the liquid crystal phase. The constructed temperature (T)-pressure (p) phase diagrams were compared among these phospholipids. The phase-transition temperatures of the phospholipids decreased stepwise by N-methylation of the head group. The slops of the T-p phase boundary (dT/dp) of DOPE, DOMePE and DOMe2PE bilayers (0.127-0.145 K MPa-1) were found to be close to that of the transition from the lamellar crystal (or subgel; Lc) phase to the liquid crystal (Lalpha) phase for DOPC bilayer (0.131 K MPa-1). On the other hand, the dT/dp value of the main transition from the lamellar gel (Lbeta) phase to the Lalpha phase for DOPC bilayer (0.233 K MPa-1) was significantly different from that of the Lc/Lalpha transition, hence both curves intersected with each other at 234 MPa. The thermodynamic quantities associated with the phase transition of DOPE, DOMePE and DOMe2PE bilayers had also similar values to those for the Lc/Lalpha transition of DOPC bilayer. Taking into account of the values of transition temperature, dT/dp and thermodynamic quantities compared with the corresponding results of saturated phospholipids, we identified the phase transitions observed in the DOPE, DOMePE and DOMe2PE bilayers as the transition from the Lc phase to the Lalpha phase although they have been regarded as the main transition in the previous studies. The Lbeta phase is probably unstable for DOPE, DOMePE and DOMe2PE bilayers at all pressures, it exists as a metastable phase at pressures below 234 MPa while as a stable phase at pressures above 234 MPa in DOPC bilayer. The difference in phase stability among the phospholipid bilayers is originated from that in hydration structure of the polar head groups.  相似文献   

19.
Small unilamellar lipid bilayer vesicles were prepared from brain phosphatidylserine, egg phosphatidylcholine, and synthetic dipalmitoylphosphatidylcholine, and were fused into larger structures by freezing and thawing, addition of calcium chloride, and passage through the lipid phase transition temperature. Fusion reactions were studied by electron microscopy, light scattering, and use of fluorescent probes. Fusion was accompanied by leakage of lipid vesicle constituents and of water-soluble solutes in the inner vesicle compartments, and by uptake of these types of components from the external solution. Such leakage was greater during fusion by freezing than by Ca2+. Passage through the transition temperature produced a moderate degree of fusion, without loss of membrane components. It is concluded that each fusion method gives rise to a characteristic size or narrow range of sizes of fusion products. The fraction of small vesicles fused into larger structure depends on the method of vesicle preparation, composition of the lipid bilayer, and composition of the external solution. Fusion is induced by creation of a discontinuity in the bilayer or by removal of water associated with the bilayer. The amount of water removed controls the extent of fusion. This is maximized in bilayers when in the liquid-crystal phase, as against the gel phase, in vesicles made by ethanol injection, as against sonication, and in charged bilayers, as against neutral ones.  相似文献   

20.
In this article, a novel delivery system for the anticancer drug, arsenic trioxide (ATO), is characterized. The release of ATO from DPPC liposomes with MPPC lysolipid incorporated into the bilayer was measured. Upon heating the liposomes to 37°C, there was a 15–25% release over 24 hours. The ATO release from the DPPC and DPPC:MPPC (5%) systems leveled off after 10 hours at 37°C, whereas the DPPC:MPPC (10%) liposomes continue to release ATO over the 24-hour time span. Upon heating the liposomes rapidly to 42°C, the release rate was substantially increased. The systems containing lysolipids exhibited a very rapid release of a significant amount of arsenic in the first hour. In the first hour, the DPPC:MPPC (5%) liposomes released 40% of the arsenic and the DPPC:MPPC (10%) liposomes released 55% of the arsenic. Arsenic release from pure DPPC liposomes was comparable at 37 and 42°C, indicating that the presence of a lysolipid is necessary for a significant enhancement of the release rate. A coarse-grained molecular dynamics (CGMD) model was used to investigate the enhanced permeability of lysolipid-incorporated liposomes and lipid bilayers. The CG liposomes did not form a gel phase when cooled due to the high curvature; however, permeability was still significantly lower below the liquid-to-gel phase-transition temperature. Simulations of flat DPPC:MPPC bilayers revealed that a peak in the permeability did coincide with the phase transition from the gel to LC state when the lysolipid, MPPC, was present. No pores were observed in the simulations, so it is unlikely this was the permeability-enhancing mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号