首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interplay between dietary specialism, the tolerance of food and water stress and level of cannibalism is likely to be important in determining the outcome of biological control using inundative releases of multiple natural enemies, such as phytoseiid mites in protected crops. The dietary specialist, Phytoseiulus persimilis, with a short immature development time (4-5 days) when plentiful food was available had a low ability to survive without food (5 days), even with access to water. The dietary generalists, Neoseiulus californicus, N. cucumeris and lphiseius degenerans, had longer immature development times (by up to 2 days) than P. persimilis. Survival ability differed amongst the generalist species when they were starved but provided with constant access to water. Both N. californicus and N. cucumeris survived the longest (8-10 days) and I. degenerans survived the shortest period (4 days). No negative intra-specific interaction between immatures was observed with P. persimilis when food was available and in the absence of food this species tended to starve rather than act cannibalistically. Both N. californicus and N. cucumeris showed a low degree of cannibalism between immatures, either when food was available, or when starved but given access to water. Even when food was available survival of I. degenerans fell by 30% in 4 days and remained at 60-70% for 3 further days; survival continued to decline rapidly when they were starved but provided with water. This indicates that immatures of I. degenerans could either feed on dead conspecifics or that they were capable of a degree of cannibalism. Adult females of P. persimilis did not feed on conspecific eggs even when deprived of food but provided with water. Adult female N. californicus and N. cucumeris did feed on conspecific eggs but at a low level (<1 egg per day), which occurred only after 48 h starvation. Although egg cannibalism occurred more consistently with adult female I. degenerans than with other mite species it was at a low level (<1 egg per day). If the tendency to cannibalism, not just of eggs but with more susceptible life stages such as larvae, is reduced when water is available freely this could be important in determining the interactions that occur under natural conditions.  相似文献   

2.
Discrimination between and predation preference for con- or heterospecific larvae was examined for adult females of P. persimilis and N. californicus in plexiglass cages with and without their primary prey T. urticae. Rates of intra- and interspecific predation on larvae were measured for females held on leaves and provided with excess amounts of spider mites. Females of the generalist N. californicus distinguished con- and heterospecific larvae and preferred to prey upon the latter. Females of the specialist P. persimilis appeared to lack discrimination ability and fed equally on con- and heterospecifics. When spider mites and phytoseiids were offered simultaneously, all P. persimilis females chose to first attack T. urticae, whereas N. californicus females attacked both tetranychids and heterospecific phytoseiids. Females of both predators preyed upon phytoseiid larvae when held on leaves with surplus T. urticae: while P. persimilis fed on both con- and heterospecifics, N. californicus attacked larvae of P. persimilis but avoided cannibalizing larvae. The different behaviors of P. persimilis and N. californicus are discussed with regard to different predation types (generalists vs. specialists) and the possible consequences of mixed release for biological control of spider mites in greenhouses.  相似文献   

3.
Oviposition behavior may be affected by the presence of potential future competitors, mates, or predators of offspring. We examined patch choice, oviposition site preference and egg production in the predaceous mites Phytoseiulus persimilis and Neoseiulus californicus (Acari: Phytoseiidae) when given a choice between paired spider mite patches with and without conspecific eggs, with and without heterospecific eggs, and with conspecific or heterospecific eggs. Neoseiulus californicus females had no patch preference and distributed their eggs randomly in all choice situations. This was also the case with P. persimilis females given a choice between patches with and without conspecific eggs and between patches with either con- or heterospecific eggs. Phytoseiulus persimilis females confronted with patches with and without heterospecific eggs preferentially stayed and oviposited in the predator free patches. We discuss the oviposition strategies of P. persimilis and N. californicus with respect to food competition, cannibalism and intraguild predation.  相似文献   

4.
Although all known phytoseiid mites (Acari: Phytoseiidae) are predators of mites or small insects, many readily feed and reproduce on pollen as well. This ability to feed on food from plant origin increases their survival during periods when prey is locally sparse, but might occur at the expense of the ability to utilize food as efficiently as specialized predators. In this study we compare two predatory mite species used as biological control agents against thrips, Neoseiulus cucumeris and Iphiseius degenerans, with respect to (1) the range of pollen species that may serve as food sources for a sustained oviposition; and (2) the life history and expected intrinsic growth rates on some suitable pollen diets. The results show that I. degenerans is, compared to N. cucumeris, able to utilize a larger proportion of approx. 25 pollen species tested, but does not show equally high ovipositional rates as N. cucumeris. Consequently, the highest intrinsic growth rate for I. degenerans (0.21 day –1) will be surpassed by N. cucumeris.  相似文献   

5.
We studied developmental plasticity under food stress in three female-biased size dimorphic predatory mite species, Phytoseiulus persimilis, Neoseiulus californicus, and Amblyseius andersoni. All three species prey on two-spotted spider mites but differ in the degree of adaptation to this prey. Phytoseiulus persimilis is a specialized spider mite predator, N. californicus is a generalist with a preference for spider mites, and A. andersoni is a broad generalist. Immature predators were offered prey patches of varying density and their survival chances, dispersal tendencies, age and size at maturity measured. Amblyseius andersoni dispersed earlier from and had lower survival chances in low density prey patches than N. californicus and P. persimilis. Age at maturity was not affected by prey density in the generalist A. andersoni, whereas both the specialist P. persimilis and the generalist N. californicus accelerated development at low prey densities. Species-specific plasticity in age at maturity reflects opposite survival strategies when confronted with limited prey: to prematurely leave and search for other food (A. andersoni) or to stay and accelerate development (P. persimilis, N. californicus). In all species, size at maturity was more plastic in females than males, indicating that males incur higher fitness costs from deviations from optimal body size.  相似文献   

6.
The goal of this study was to evaluate spider mite control efficacy of two dry-adapted strains of Neoseiulus californicus. Performance of these strains were compared to a commercial strain of Phytoseiulus persimilis on whole cucumber, pepper and strawberry plants infested with Tetranychus urticae at 50 +/- 5% RH. Under these dry conditions predators' performance was very different on each host plant. On cucumber, spider mite suppression was not attained by any of the three predators, plants 'burnt out' within 4 weeks of spider mite infestation. On strawberry, all predators satisfactorily suppressed spider mites yet they differed in short term efficacy and persistence. Phytoseiulus persimilis suppressed the spider mites more rapidly than did the BOKU and SI N. californicus strains. Both N. californicus strains persisted longer than did P. persimilis. The BOKU strain was superior to SI in population density reached, efficacy in spider mite suppression and persistence. On pepper, in the first 2 weeks of the experiment the BOKU strain was similar to P. persimilis and more efficacious in spider mite suppression than strain SI. Four weeks into the experiment the efficacy of P. persimilis dropped dramatically and was inferior to the SI and BOKU strains. Overall, mean predator density was highest on plants harbouring the BOKU strain, lowest on plants with P. persimilis and intermediate on plants with the SI strain. Implications for biocontrol of spider mites using phytoseiid species under dry conditions are discussed.  相似文献   

7.
In greenhouse agroecosystems, a guild of spider mite predators may consist of the oligophagous predatory mite Phytoseiulus persimilis Athias-Henriot, the polyphagous predatory mite Neoseiulus californicus McGregor (both Acari: Phytoseiidae) and the primarily herbivorous but facultatively predatory western flower thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Diet-specialization and the predator body size relative to prey are crucial factors in predation on F. occidentalis by P. persimilis and N. californicus. Here, it was tested whether the relevance of these factors changes during predator ontogeny. First, the predator (protonymphs and adult females of P. persimilis and N. californicus): prey (F. occidentalis first instars) body size ratios were measured. Second, the aggressiveness of P. persimilis and N. californicus towards F. occidentalis was assessed. Third, survival, development and oviposition of P. persimilis and N. californicus with F. occidentalis prey was determined. The body size ranking was P. persimilis females > N. californicus females > P. persimilis protonymphs > N. californicus protonymphs. Neoseiulus californicus females were the most aggressive predators, followed by highly aggressive N. californicus protonymphs and moderately aggressive P. persimilis protonymphs. Phytoseiulus persimilis females did not attack thrips. Frankliniella occidentalis larvae are an alternative prey for juvenile N. californicus and P. persimilis, enabling them to reach adulthood. Females of N. californicus but not P. persimilis sustained egg production with thrips prey. Within the guild studied here, N. californicus females are the most harmful predators for F. occidentalis larvae, followed by N. californicus and P. persimilis juveniles. Phytoseiulus persimilis females are harmless to F. occidentalis.  相似文献   

8.
We examined intra- and interspecific predation of adult females and immature stages of the generalist Neoseiulus californicus and the specialist Phytoseiulus persimilis. Adult females and immatures of both predators exhibited higher predation rates on larvae than on eggs and protonymphs. N. californicus fed more inter- than intraspecifically. Predation on P. persimilis by N. californicus was more severe than vice versa. P. persimilis had higher predation rates on conspecifics than heterospecifics and was more prone to cannibalism than N. californicus. When provided with phytoseiid prey, P. persimilis suffered higher mortality than N. californicus. When held without food, adult females and protonymphs of N. californicus survived longer than the corresponding stages of P. persimilis. N. californicus females were able to sustain oviposition when preying upon P. persimilis, whereas cannibalizing females did not lay eggs. Females of P. persimilis were not able to sustain oviposition, irrespective of con- or heterospecific prey. Immatures of both predators were able to reach adulthood when provided with either con- or heterospecifics. Juvenile development of N. californicus was shorter with heterospecific vs. conspecific larvae; mortality of P. persimilis immatures was less when feeding on conspecific vs. heterospecific larvae. Different behavioral pattern in intra- and interspecific predation are discussed in regard to their feeding types (generalist vs. specialist).  相似文献   

9.
Greenhouse and field experiments were conducted from 2003 to 2005 to determine the effectiveness of two predatory mite species, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor), and a reduced-risk miticide, Acramite 50 WP (bifenazate), for control of twospotted spider mite, Tetranychus urticae Koch, in strawberries (Fragaria x ananassa Duchesne). In greenhouse tests, three treatments consisting of releases of P. persimilis, N. californicus, and an untreated control were evaluated. Both species of predatory mites significantly reduced twospotted spider mite numbers below those found in the control during the first 3 wk of evaluation. However, during week 4, twospotted spider mite numbers on the plants treated with P. persimilis increased and did not differ significantly from the control. Field studies used releases of P. persimilis and N. californicus, applications of Acramite, and untreated control plots. Both N. californicus and P. persimilis significantly reduced populations of twospotted spider mite below numbers recorded in the control plots. During the 2003-2004 field season P. persimilis took longer than N. californicus to bring the twospotted spider mite population under control (< 10 mites per leaflet). Acramite was effective in reducing twospotted spider mite populations below 10 mites per leaflet during the 2003-2004 field season but not during the 2004-2005 field season, possibly because of a late application. These findings indicate that N. californicus releases and properly timed Acramite applications are promising options for twospotted spider mite control in strawberries for growers in north Florida and other areas of the southeast.  相似文献   

10.
Greenhouse and field experiments were conducted from 2003 to 2005 to determine the effectiveness of combining releases of two predatory mite species, Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor), and a reduced-risk miticide, Acramite (bifenazate), for control of twospotted spider mite (TSSM) (Tetranychus urticae Koch) in strawberries. In the greenhouse experiment, a combination treatment of P. persimilis and N. californicus was compared with single treatments of each species, Acramite application, and untreated control. All treatments significantly reduced TSSM numbers compared with the control. Field studies employed two approaches: one investigating the same five treatments as the greenhouse experiment and a second, comparing combination treatments of P. persimilis/N. californicus, Acramite/N. californicus, and Acramite/P. persimilis to single treatments of each and to control plots. Among the combination treatments, the P. persimilis/N. californicus treatment significantly reduced TSSM numbers compared with the control, but was not as effective as N. californicus alone during the 2003-2004 field season. Also, combination treatments of Acramite/N. californicus, and Acramite/P. persimilis significantly reduced TSSM populations compared with the control. These findings indicate that all three combination treatments are promising options for TSSM control in strawberries for growers in northern Florida and other strawberry producing areas of the world.  相似文献   

11.
Are Neoseiulus californicus (McGregor) and Neoseiulus fallacis (Garman) both specialized predators of spider mites? As part of a series of studies made to answer this question, responses by larvae were assessed in treatments either with or without prey (Tetranychus urticae Koch) and with either moderate or high relative humidities (a factor that may distinguish between these two morphologically similar species). Neoseiulus fallacis larvae had more feeding, ambulatory activity and jerking (intra– or interspecific communication) in all treatments than N. californicus. The percent egg hatch was less and development took longer for N. fallacis larvae than for N. californicus larvae without prey at moderate humidity levels. The nymphs of both mites showed similar drives to feed 1–2>h after being held 12–48 h without food and then given eggs of T. urticae. Neoseiulus californicus nymphs fed more on the eggs of either phytoseiid and thereafter became adults than did N. fallacis nymphs. These data indicate that N. californicus may be a less specialized predator of spider mites than is N. fallacis.  相似文献   

12.
The ability of Neoseiulus fallacis (Garman) to survive, reproduce and develop on a range of prey-food types was studied by holding adult females with each of 27 different prey-foods for 7 days. Survival and activity of adult females, eggs produced per female per day and quantity of immatures produced per female per day were estimated. Survival, reproduction and development were the highest and activity the lowest when held with Tetranychus species. Reproduction, survival and development were lower on non-tetranychid food although examples from nearly all prey-food types provided higher measured values than when without food. Proportional reproduction of N. fallacis on Tetranychus spider mites, other spider mites, eriophyid mites, other mites, insects and pollen was calculated. Proportions then were compared to values derived from a prey-food model based on the frequency of literature citations. The overall fit between data sets was good for the specialist type II species N. fallacis. Reproductive proportions for experimentally derived and literature-based data were estimated for four other phytoseiids that represent the specialist and generalist life style types I–IV: Phytoseiulus persimilis A. H., Typhlodromus pyri Scheuten, Euseius finlandicus (Oudemans) and Euseius hibisci (Chant). The literature model, based on records of feeding tests, did well in predicting feeding preference based on ovipositional rates for the specialist type I, P. persimilis, but was less accurate for the generalist type III, T. pyri and the generalists type IV, E. finlandicus and E. hibisci. Means to improve prey-food preference estimates for all life style types of phytoseiid species are discussed.  相似文献   

13.
Spider Mites Avoid Plants with Predators   总被引:1,自引:0,他引:1  
While searching for food, prey can use cues associated with their predators to select patches with a reduced predation risk. In many cases, odours indicate the presence of both food and predators. Spider mites are known to use odours to locate food and mates, but also to avoid interspecific competitors. We studied the response of the two-spotted spider mite, Tetranychus urticae, to cues associated with the presence of their predators, the phytoseiid Phytoseiulus persimilis. We found that the spider mites strongly avoid plants defended by this predator, but do not avoid plants with another predatory mite, Neoseiulus californicus. Since P. persimilis is commonly used in the greenhouse where our strain of T. urticae was collected and strains of this pest are known to adapt to greenhouse environments, we hypothesize that there has been selection on the pest to recognize its enemy. We further hypothesize that there has been no selection to recognize N. californicus, as it has not been used against two-spotted spider mites in the greenhouse where our spider mites were collected. We discuss the implications of avoidance of predation by spider mites and non-lethal effects of predators for biological control of this pest in greenhouses.  相似文献   

14.
The compatibility of Orius laevigatus Fieber with Neoseiulus (Amblyseius) cucumeris Oudemans as predators of Frankliniella occidentalis Pergande was assessed in 24 h tests on French bean leaf discs. At varying densities of N. cucumeris and F. occidentalis in the presence of a single female O. laevigatus, it was found that O. laevigatus fed on both other organisms to a similar extent, thus raising questions as to the suitability of this combination of predators in the biocontrol of F. occidentalis. In similar trials assessing the compatibility of O. laevigatus with Iphiseius (Amblyseius) degenerans Berlese, O. laevigatus preyed on F. occidentalis to a greater extent than on I. degenerans. It is hypothesized that O. laevigatus and I. degenerans could be used simultaneously in the biocontrol of F. occidentalis with minimal interference between them.  相似文献   

15.
《Biological Control》2000,17(2):125-131
Residual toxicities of avermectin b1 and pyridaben for 2- to 28-day exposure periods were assessed in laboratory and greenhouse trials for eight species of beneficial arthropods that are commercially produced for greenhouse pest management. In laboratory trials, Amblyseius degenerans Berlese, Aphidius colemani Viereck, Aphidoletes aphidimyza (Rondani), Dacnusa sibirica Telenga, Encarsia formosa (Gahan), and Orius insidiosus (Say) showed high mortality (>85%) when exposed to ≤6-day residues of both acaricides. Lower toxicities were observed for pyridaben to the predatory mites Amblyseius cucumeris (Oudermans) and Phytoseiulus persimilis Athias-Henroit and for avermectin b1 to A. cucumeris after exposure to ≤6-day residues. In greenhouse trials, pyridaben showed significantly higher residual toxicity to all beneficial species than avermectin b1. Pyridaben had high residual toxicity (40–60% mortality) to E. formosa, A. colemani, A. aphidimyza, A. degenerans, and P. persimilis 6 days after treatment. Residual toxicity of pyridaben to D. sibirica, A. cucumeris, and O. insidiosus decreased to a low level (<15% mortality) after 6 days. Avermectin b1 was slightly toxic or nontoxic to the predaceous mites A. cucumeris, A. degenerans, and P. persimilis. Toxicity of avermectin b1 to E. formosa, A. colemani, D. sibirica, and O. insidiosus rapidly decreased to <25% mortality 6 days after application. Based on the results of the greenhouse trials, avermectin b1 was considered suitable for use with predacious mites and could be combined in integrated pest management (IPM) programs with other beneficial species after residual toxicity is taken into consideration. Pyridaben can also be combined in IPM programs with A. cucumeris, O. insidiosus, and D. sibirica after a 6-day residual period.  相似文献   

16.
The pairings of Neoseiulus californicus (McGregor) and Neoseiulus fallacis (Garman) from western North America were monitored for tending by adult males, males in the mating position and oviposition and the activity of female deutonymphs and adults. The N. fallacis × N. californicus (♂ × ♀) tests had fewer males tending the deutonymphs but more in the mating position with new females than the reciprocal test. Afterwards, most of the females appeared gravid and approximately 20% produced an egg. Some eggs did not hatch but others became adult males, which mated with their mothers, but no eggs were produced. F1 males tended and mated with new N. fallacis females which had normal offspring. When held with new N. californicus females, F1 males tended the deutonymphs but were not seen mating and no eggs were laid. The pairings of N. californicus× N. fallacis had more males tending, less in the mating position and the females appeared non-gravid and produced no eggs. When same-species males were added to females held with F1 males for 15–20 days, normal levels and sexes of the progeny were produced. The female and male adults of N. fallacis were more active (ambulatory) than those of N. californicus. In within-species tests, the males had a high activity except while tending and mating, the female deutonymphs were inactive and the just mated females were more active than the ovipositing females. The timing of the tending and mating differed in the cross-pairings. Overall, these and other life-history data show that these two mites are distinct species, but that their males are promiscuous in tending and mating. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

17.
Arthropods use odours associated with the presence of their food, enemies and competitors when searching for patches. Responses to these odours therefore determine the spatial distribution of animals, and are decisive for the occurrence and strength of interactions among species. Therefore, a logical first step in studying food web interactions is the analysis of behaviour of individuals that are searching for patches of food. We followed this approach when studying interactions in an artificial food web occurring on greenhouse cucumber in the Netherlands. In an earlier paper we found that one of the predators of the food web, the predatory mite Phytoseiulus persimilis Athias-Henriot, used to control spider mites, discriminates between odours from plants with spider mites, Tetranychus urticae Koch, and plants with spider mites plus conspecific predators. The odours used for discrimination are produced by adult prey in response to the presence of predators, and probably serve as an alarm pheromone to warn related spider mites. Other predator species may also trigger production of this alarm pheromone, which P. persimilis could use in turn to avoid plants with heterospecific predators. We therefore studied the response of the latter to odours from plants with spider mites and 3 other predator species, i.e. the generalist predatory bug Orius laevigatus (Fieber), the polyphagous thrips Frankliniella occidentalis and the spider-mite predator Neoseiulus californicus (McGregor). Both olfactometer and greenhouse release experiments yielded no evidence that P. persimilis avoids plants with any of the 3 heterospecific predators. This suggests that these predators do not elicit production of alarm pheromones in spider mites, and we argue that this is caused by a lack of coevolutionary history. The consequences of the lack of avoidance of heterospecific predators for interactions in food webs and biological control are discussed.  相似文献   

18.
韦德卫  于永浩  曾涛 《昆虫知识》2008,45(2):269-271
在27℃条件下,以粗脚粉螨Acarus siro L.为饲料饲养观察南非盲走螨Typhlodromus(Anthoseius) transvaalensis(Nesbitt)的生长发育和繁殖情况,组建实验种群生命表。结果表明,南非盲走螨行孤雌生殖,卵、幼螨、前若螨、后若螨、成螨产卵前期各阶段发育历期分别为2.00,0.72,1.96,1.53,1.77d,完成1个世代发育需7.98d,雌成螨平均寿命14.82d、平均产卵量25.75粒,各种群生命参数分别为:净增殖率R0=25.01,世代平均周期T=13.71,内禀增长率rm=0.23,周限增长率λ=1.26,种群倍增所需日数t=2.95。采用小空间湿度控制法,测定不同湿度对南非盲走螨卵的孵化和成螨产卵的影响。结果表明,卵发育和孵化的最适湿度为75.0%~85.0%,96.0%的相对高湿度对成螨的产卵和存活均有不利影响。以橘全爪螨Panonychus citri McGregor不同螨态为猎物时,南非盲走螨对橘全爪螨幼螨的捕食量最大,日平均捕食量为5.40头,而对橘全爪螨雌成螨则几乎不取食。  相似文献   

19.
To determine how adult Typhlodromus occidentalis, a mite used in the biological control of spider mites, thrive in arid western North America, the water balance characteristics of adult females were compared to those of a laboratory colony of Amblyseius finlandicus originating from Finnish apple orchards. The mites contained comparable amounts of water (73.6 and 74.9%, respectively, for T. occidentalis and A. finlandicus), absorbed water from the air between 86% and 92% relative humidity (RH) (critical equilibrium humidity) and drank free water from droplets. Typhlodromus occidentalis were distinguished, however, by having lower net water loss rates (0.8% versus 1.3% h–1 at 0% RH, 20°C for A. finlandicus), a feature that enables them to retain water more effectively. Above the critical equilibrium humidity water was lost by adult female T. occidentalis whose mouth parts had been blocked with wax, implying an oral uptake mechanism for the absorption of water vapour. © Rapid Science Ltd. 1998  相似文献   

20.
The effectiveness of non-prey food items, such as pollen, honeydew, and microbes, in maintaining phytoseiid mite populations is widely accepted. However, the availability of such naturally occurring non-prey foods varies with the season and surrounding environment; thus, it is difficult to manipulate and maintain supplies of these food sources. A great deal of research has examined the development and reproduction of phytoseiid mites on artificial diets. Although phytoseiid mites frequently develop, several studies have detected low fecundities of adult females reared on artificial diets. Therefore, the use of artificial diets for commercial propagation is often difficult. However, the potential of artificial diets to maintain phytoseiid mite populations has not yet been evaluated. In this study, we investigated the developmental success and survival of Neoseiulus californicus (McGregor) on an artificial diet. This mite may be one of the most effective phytoseiid species used in agricultural systems for the control of spider mites. N. californicus successfully developed on the artificial diets: 93.5-100% of individuals reached adulthood 4-7 days after hatching. The survival rates of gravid adult females maintained on the AD-1 artificial diet composed of yeast components, saccharides, and egg yolk at 25 degrees C were 100, 80, and 48.9% over 36, 60, and 90 days, respectively. Moreover, >80% of the surviving females maintained on AD-1 for 36 or 60 days laid eggs after being switched to a diet of the spider mite Tetranychus urticae Koch, although they had laid few eggs during the maintenance periods on the artificial diet. Our results indicate that artificial diets can serve as a potentially useful food source for the long-term maintenance of N. californicus populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号