首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Summary Experimental field plantings showed that plant diversity strongly affected the population dynamics of a specialist herbivore, the striped cucumber beetle, Acalymma vittata (Fab.) (Coleoptera: Chrysomelidae). Population densities over time were characterized by two peaks in numbers (from colonization and reproduction, respectively) and were consistently higher in cucumber monocultures (Cucumis sativus L.) than in polycultures of cucumbers, corn (Zea mays L.), and broccoli (Brassica oleracea L.). Greater abundances in monocultures appear to result from two factors: (1) per individual reproductive rates were greater in monocultures than in polycultures, and (2) mark-recapture studies confirmed that beetles stay in monocultures for a longer period of time than in polycultures. Differences in predation did not appear to contribute to the overall differences in herbivore abundances.The primary impact of A. vittata on its host plant, C. sativus, is the dissemination of bacterial wilt disease, Erwinia tracheiphila (E.F.Sm.). Greater numbers of beetles led to greater plant mortality in monocultures. It is suggested that factors other than numbers of beetles (e.g., shading, allelopathy, microclimate) are more important in influencing plant reproduction, since cucumber plants in monocultures had greater yields than did plants grown in polycultures. However, time of beetle colonization strongly affected plant parameters, indicating that the length of time during which herbivores are interacting with plants is of critical importance to plant survivorship, and thus reproduction.  相似文献   

2.
Stephen J. Risch 《Oecologia》1979,42(2):195-211
Summary The insect fauna of 80 day-old plots of corn and sweet potato monocultures and dicultures in Costa Rica were compared using sweep sampling. Six hundred sweeps were taken in each of the three habitats. There were 15% more total species in the diculture than either monoculture but approximately the same total number of individuals. There were 75% more species and approximately 100% more individuals of parasitic Hymenoptera in the diculture than the monocultures. The ratio of numbers of phytophagous individuals to predaceous/parasitic individuals was lowest in the diculture (2.5) and highest in the sweet potato monoculture (14.3). It is suggested that these patterns may be explained if phytophagous insects are limited basically by abundance and diversity of food so that a diculture is at best the sum of two monocultures. However if abundance and diversity of parasitic insects depends more on structural complexity, the result of putting together two monocultures would be synergistic in terms of numbers and species of insects.Two chrysomelid beetles and two leaf-hopper species that were extremely common in the monocultures were significantly less common or absent in the polyculture, and only one leaf-hopper that was rare in the monocultures was relatively more common in the diculture. Comparison of species similarity showed that the corn monoculture and the diculture were much more similar than the sweet potato monoculture and the diculture, and the two monocultures showed the least similarity.Statistically smoothed out species-subsample curves were constructed for each of the three habitats, the curves were fitted to a mathematical model, and they were then extended in order to predict the theoretical total number of species in all three communities sampled. Extrapolation of the curves suggests that approximately 33% of the total sweepable insect community was sampled in the three habitats.One year after the initial sweep samples were taken, the populations of two sweet potato pests, Diabrotica balteata and Diabrotica adelpha, were sampled ten times over a 120 day period in plots of corn and sweet potato monocultures and dicultures. Approximately 50 days after planting, the numbers of both beetles on sweet potato in monocultures were much higher than in dicultures. This trend continued the rest of the season, the difference reaching a maximum approximately 90 days after planting.These data suggest that indigenous agriculturalists are correct: increasing resource diversity in a cropping system may act as a form of biological control, by increasing the relative abundance and diversity of the predaceous parasitic fauna and decreasing the abundance of the major herbivores.  相似文献   

3.
Large plant species self-thin to disproportionately lower densities than smaller plant species, and therefore may leave more patches of unused space suitable for invasion. Using experimental monocultures of 11 old-field perennial plant species differing in maximum size, as well as mixtures composed of all monoculture species, we tested our primary hypothesis that monocultures of larger species will be more susceptible to natural invasion. After 3 years, monocultures of larger species were invaded by a significantly greater number of species, and more ramets, from the surrounding vegetation. Invading plant species were significantly smaller than the monoculture species being invaded, suggesting that smaller plant species may be better invaders. Thus, we quantified a trade-off between species size, which is frequently associated with increased competitive ability for light, and invasibility, suggesting one reason why large and small species coexist in virtually all plant communities. Although we expected that invasion would enhance biomass production by more fully capturing available resources, we found that the most highly invaded plots of each species produced significantly less biomass. This suggests that increased diversity resulting from invasion did not result in complementary resource use. Mixture plots containing all experimental species did not admit a significantly different number of invading ramets or species than most monocultures, indicating no obvious role for diversity in resistance to invasion, or complementary resource use. Our results suggest that relatively large species may be limited in their capacity to competitively exclude other, smaller species from communities because pure stands of the former are more susceptible to invasion by the latter.  相似文献   

4.
This study examined whether insects can alter relationships between plant species diversity and ecosystem function in grassland communities, by (i) altering biomass across a plant diversity gradient, (ii) altering relative abundances of plant species, or (iii) altering ecosystem function directly. We measured herbivore damage on seminatural grassland plots planted with 1, 2, 4, 8, or 12 plant species, and compared plant biomass in a subset of these plots with replicates in which insect levels were reduced. Plant biomass and herbivore damage increased with species richness. Reducing insect populations resulted in greater evenness of relative plant species abundances and revealed a strong positive relationship between plant species richness and above-ground biomass. Reducing insects also changed the relationship between plant species richness and decomposition. Plant species mixtures and their relative abundances partially explained plant biomass results, but not decomposition results. These results suggest that insects can alter relationships between plant diversity and ecosystem processes through all three mechanisms.  相似文献   

5.
R. J. Goldburg 《Oecologia》1987,74(2):247-252
Summary As neighboring plants flower sequentially, do flower feeders preferentially remain in the area, rather than move to another area with flowering plants? I examined the movements of the meloid beetle Epicauta pennsylvanica, a flower predator specializing on Solidago, in four types of replicated experimental plots — monocultures of Solidago altissima, or S. altissima interplanted with members of the same genus, same family, or different taxonomic orders. I released marked beetles only in the genus plots, which contained four species of Solidago, two that bloom before S. altissima. The number of beetles in the genus plots declined steadily as S. altissima came into flower in all the plots; the total number of beetles in all the plots remained fairly constant. I found no evidence that plant neighborhoods affected beetle distribution. Beetles foraging on the early blooming Solidago species did not remain in the genus plots as S. altissima came into flower. In addition, beetles that left the genus plots did not differentially accumulate in any of the other plot types, even though one type of plot was a monoculture with four times the density of S. altissima than the other plots.  相似文献   

6.
Summary The effects of host plant patch size on the abundances of two specialist herbivores (the chrysomelid beetle, Acalymma innubum and the pentatomid bug, Piezosternum subulatum) were investigated in a natural forest community in the Virgin Islands. Abundances were compared early and late in the season in different sized patches of the cucurbit host plant (Cayaponia americana) growing in open habitat (with no surrounding plant community) and forest habitat (with diverse surrounding plant community). For both herbivore species, adult abundances per patch were positively correlated with patch leaf area, but there was a significant patch size effect (i.e., correlation between herbivore density per unit plant and patch leaf area) only for beetles in the forest habitat. Both herbivore species were significantly affected by surrounding plant diversity, but in opposite ways: beetles were more abundant in open patches whereas bugs were more abundant in forest patches. Relationships between abundance and patch size in open and forest patches changed through the season for both herbivore species. These changing abundance patterns are discussed with respect to (1) increases in the diversity of the plant community surrounding host plant patches, and (2) differences in herbivore movement patterns.  相似文献   

7.
Vegetational diversity in agricultural systems is predicted to reduce herbivore populations, but we observed the opposite effect: higher nymph population densities of a functionally monophagous herbivore, the squash bug, Anasa tristis (Hemiptera: Coreidae) in a vegetationally diverse squash-bean-corn polyculture than in a squash monoculture. We examined spatial and temporal aspects of squash bug and predator populations in relation to vegetational diversity. Average colonization, oviposition, and mortality rates for the herbivore were similar in monocultures and polycultures. In the polyculture, however, we found that squash bugs eggs were highly aggregated on plants on the outer edges of plots. Predation was also lower on plants near the edges, allowing the large aggregations of eggs found in the polyculture to escape predation and ultimately produce more squash bugs. Spatial interactions between herbivores and natural enemies may underlie some of the general effects of vegetational diversity on herbivores.  相似文献   

8.
Overall, mammalian herbivores are more harmful in mixed plantations than in monocultures, but the effect of herbivore abundance has not been experimentally tested in this context. It has been proposed that there is a critical threshold density where herbivore pressure spreads from preferred plants to everything edible, leading to non-linear density effects on low-quality plants. We experimentally investigated whether survival of an unpalatable plant is similarly related to herbivore density in both monocultures and mixed stands. This we did by establishing monocultures of unpalatable black alder (Alnus glutinosa) and mixed stands of black alder and five more palatable tree species in enclosures, where Microtus voles were introduced and their abundances monitored.The effect of stand diversity tended to depend on vole abundance. Vole damage of tree saplings did not differ between monocultures and mixed stands, but at higher vole abundances attacks had a stronger effect on sapling survival in the monocultures. Sapling survival showed a significant drop in the monocultures at peak abundance of approximately 300 voles ha?1. In monocultures herbivores do not have alternatives and therefore are forced to become deadlier consumers.  相似文献   

9.
10.
Intraspecific variation and genotypic diversity of host-plants can affect the structure of associated arthropod communities and the dynamics of populations. Similarly, neighboring plants can also affect interactions between host-plants and their associated arthropods. However, most studies on the effects of host-plant genotypes have largely ignored the potential effects of neighboring host-plants on arthropod communities. In this study, we used a common garden experiment to ask how spatial effects of neighboring patches, along with genotype identity and genotypic diversity in tall goldenrod (Solidago altissima), affect the abundances of a common goldenrod herbivore (Uroleucon nigrotuberculatum) and their dominant predator (Harmonia axyridis, a ladybird beetle). Aphid abundance varied 80-fold among genotypes, while ladybird beetle abundance was not affected by genotype identity. Additionally, there were strong effects of neighboring plots: aphid abundance in a focal plot was positively correlated to aphid abundance in nearby plots, suggesting strong spatial patterning in the abundance of aphids. Neither aphid nor ladybird beetle abundance was affected by genotypic diversity. However, focal plot genotypic diversity mediated the strength of the neighborhood effect (i.e., strong effects for genotype polyculture focal plots and weak effects for genotype monoculture focal plots). Our results show that aphids were directly influenced by host-plant genotype identity while ladybird beetles responded mainly to prey abundance, and suggest that genotypic diversity can influence the effects of spatial processes on the plant-herbivore interactions.  相似文献   

11.
The effects of producer diversity on predators have received little attention in arboreal plant communities, particularly in the tropics. This is particularly true in the case of tree diversity effects on web‐building spiders, one of the most important groups of invertebrate predators in terrestrial plant communities. We evaluated the effects of tree species diversity on the community of weaver spiders associated with big‐leaf mahogany (Swietenia macrophylla) in 19, 21 × 21‐m plots (64 plants/plot) of a tropical forest plantation which were either mahogany monocultures (12 plots) or polycultures (seven plots) that included mahogany and three other tree species. We conducted two surveys of weaver spiders on mahogany trees to evaluate the effects of tree diversity on spider abundance, species richness, diversity, and species composition associated with mahogany. Our results indicated that tree species mixtures exhibited significantly greater spider abundance, species richness, and diversity, as well as differences in spider species composition relative to monocultures. These results could be due to species polycultures providing a broader range of microhabitat conditions favoring spider species with different habitat requirements, a greater availability of web‐building sites, or due to increased diversity or abundance of prey. Accordingly, these results emphasize the importance of mixed forest plantations for boosting predator abundance and diversity and potentially enhancing herbivore pest suppression. Future work is necessary to determine the specific mechanisms underlying these patterns as well as the top‐down effects of increased spider abundance and species richness on herbivore abundance and damage.  相似文献   

12.
Plant monocultures are commonly believed to be more susceptible to herbivore attacks than stands composed of several plant species. However, few studies have experimentally tested the effects of tree species diversity on herbivory. In this paper, we present a meta-analysis of uniformly collected data on insect herbivore abundance and damage on three tree species (silver birch, black alder and sessile oak) from seven long-term forest diversity experiments in boreal and temperate forest zones. Our aim was to compare the effects of forest diversity on herbivores belonging to different feeding guilds and inhabiting different tree species. At the same time we also examined the variation in herbivore responses due to tree age and sampling period within the season, the effects of experimental design (plot size and planting density) and the stability of herbivore responses over time. Herbivore responses varied significantly both among insect feeding guilds and among host tree species. Among insect feeding guilds, only leaf miner densities were consistently lower and less variable in mixed stands as compared to tree monocultures regardless of the host tree species. The responses of other herbivores to forest diversity depended largely on host tree species. Insect herbivory on birch was significantly lower in mixtures than in birch monocultures, whereas insect herbivory on oak and alder was higher in mixtures than in oak and alder monocultures. The effects of tree species diversity were also more pronounced in older trees, in the earlier part of the season, at larger plots and at lower planting density. Overall our results demonstrate that forest diversity does not generally and uniformly reduce insect herbivory and suggest instead that insect herbivore responses to forest diversity are highly variable and strongly dependent on the host tree species and other stand characteristics as well as on the type of the herbivore.  相似文献   

13.
We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.  相似文献   

14.
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a highly polyphagous herbivore. This research was conducted to compare the development of B. tabaci reared in a multi‐plant treatment (polyculture) with those in single‐plant treatments (monocultures). Adult B. tabaci females fed on a mixture of tomato, cabbage, cotton, cucumber, and kidney bean survived longer and laid more eggs than those fed exclusively on one of these plant species. Egg numbers per plant laid in the polyculture treatment were positively correlated with those laid on the same plant species in the monoculture treatments, and egg numbers per plant laid on tomato, cotton, and cucumber in the polyculture were significantly higher than those laid on the same plants in the monocultures. Concentrations of total protein and trehalose in B. tabaci were not significantly different after 7 days of feeding in the respective treatments, but activities of superoxide dismutases (SOD) and alkaline phosphatase (AKP) of B. tabaci in polyculture were lower than those in monoculture. Conversely, activities of trehalase, sucrase, and amylase in B. tabaci kept in polyculture were higher than those of insects from the monoculture. In each of the monoculture treatments, there was a negative correlation between AKP in B. tabaci and oviposition, and also between AKP and amylase. SOD and sucrase activities in B. tabaci were positively correlated with polyphenol oxidase (PPO) and peroxidase (POD) activities in plants. In the plants damaged by whiteflies in the polyculture treatment, activities of SOD in cucumber, PPO in cotton and kidney bean, and POD in tomato and cucumber were lower than those in the monoculture treatments, whereas SOD in cabbage and catalase (CAT) in tomato in the polyculture treatment were higher than those in the monoculture treatments.  相似文献   

15.
Plant diversity can influence predators and omnivores and such effects may in turn influence herbivores and plants. However, evidence for these ecological feedbacks is rare. We evaluated if the effects of tree species (SD) and genotypic diversity (GD) on the abundance of different guilds of insect herbivores associated with big-leaf mahogany (Swietenia macrophylla) were contingent upon the protective effects of ants tending extra-floral nectaries of this species. This study was conducted within a larger experiment consisting of mahogany monocultures and species polycultures of four species and –within each of these two plot types– mahogany was represented by either one or four maternal families. We selected 24 plots spanning these treatment combinations, 10 mahogany plants/plot, and within each plot experimentally reduced ant abundance on half of the selected plants, and surveyed ant and herbivore abundance. There were positive effects of SD on generalist leaf-chewers and sap-feeders, but for the latter group this effect depended on the ant reduction treatment: SD positively influenced sap-feeders under ambient ant abundance but had no effect when ant abundance was reduced; at the same time, ants had negative effects on sap feeders in monoculture but no effect in polyculture. In contrast, SD did not influence specialist stem-borers or leaf-miners and this effect was not contingent upon ant reduction. Finally, GD did not influence any of the herbivore guilds studied, and such effects did not depend on the ant treatment. Overall, we show that tree species diversity influenced interactions between a focal plant species (mahogany) and ants, and that such effects in turn mediated plant diversity effects on some (sap-feeders) but not all the herbivores guilds studied. Our results suggest that the observed patterns are dependent on the combined effects of herbivore identity, diet breadth, and the source of plant diversity.  相似文献   

16.
Significantly higher population densities of a squash pest beetle, Acalymma vittatum, were observed in a squash monoculture than a triculture of squash, maize, and beans. One hypothesis for such differences is that non-host plants in the triculture cause the herbivore to move more frequently resulting in higher emigration rates from the tricultures. Plant to plant movement of the beetle was studied in vegetative winter squash to evaluate if differences in components of trivial movement would generate a higher emigration rate from the triculture. Tenure times were shorter on plants in the triculture than on plants in the squash monoculture, there was no movement directionality, movement distances were greater in squash monocultures than in tricultures and were greater during July than August. In the tricultures, plant-to-plant transitions were primarily to maize from non-host plants and to beans or squash from host plants during July, but during August, movement from any plant was primarily to maize. We integrated the values of the movement components from vegetative winter squash into a simple Markov model, and found that during July, emigration was estimated to be faster from the triculture than the monoculture, supporting the hypothesis. However, in August, emigration was estimated to be slower from the triculture. In August, maize plants were tall and, by acting like a fence, greatly reduced the movement distance of beetles. The effect of the differences in emigration rate on beetle population density was greatest for small patches, indicating that emigration may be important only in small-scale production systems.  相似文献   

17.
Cipollini  Donald F.  Bergelson  Joy 《Plant Ecology》2002,162(2):227-231
Resource competition can influence plant fitness either directly, or indirectly by influencing the amount of herbivore damage received by plants in the field. We previously found that competition could constrain the constitutive and woundinduced expression of defensive trypsin inhibitors in pot-grown Brassica napus seedlings in the greenhouse, suggesting that the ability of a plant to chemically defend itself could be constrained by competition in the field. Guided by these results, we investigated whether competition would affect growth and the presence of herbivores and herbivore damage on B. napus plants in the field. We established sixteen 1 m 2 plots in the field in a 7 x7 mgrid. Nine two-week-old B. napus seedlings were transplanted from the greenhouse into each 1 m 2 plot. Half of the plots were kept weed-free and half were left to develop interspecific weed competi-tors.After six weeks, three randomly chosen plants in each plot were measured for height, number of leaves, leaf area removed by herbivores, and the presence of aphids, leaf miners, and eggs of ladybird beetles. Consistent with the induction of the shade-avoidance response, plants in plots with weed competitors were significantly taller and had half as many leaves as plants in weed-free plots. Competing plants also had 60% more leaf arearemoved by herbivores, an 80% higher proportion of leaves with aphids, and an equal proportion of leaves with leaf miners. In this study, weed competition had dramatic effects on growth, leaf area removal by herbivores, and the presence of aphids on B. napus plants in the field. Together with our demonstration that competition can constrain the expression of trypsin inhibitor activity, these results suggest that resource competition may limit theability of a plant to defend itself from natural enemies, leading to greater herbivory. In turn, increased herbivory on competing plants could exacerbate the direct effects of competition on plant fitness.  相似文献   

18.
19.
20.
Field experiments were conducted to evaluate growth promotion and induced systemic disease resistance (ISR) in cucumber mediated by plant growth-promoting rhizobacteria (PGPR) with and without methyl bromide soil fumigation. In both fumigated and nonfumigated plots, numbers of cucumber beetles, Acalymma vittata (F.), and the incidence of bacterial wilt disease, caused by the beetle-transmitted pathogen Erwinia tracheiphila , were significantly lower with PGPR treatment compared with the nonbacterized control. However, in PGPR-treated plots, the incidence of bacterial wilt was more than 2-fold lower in the nonfumigated treatments compared with fumigated treatments, indicating that the level of PGPR-mediated ISR was greater without methyl bromide fumigation than with methyl bromide. Cucumber plant growth at 21 days after planting was greater in fumigated plots than in nonfumigated plots; however, plant height values in the nonfumigated, PGPR treatments and the fumigated, PGPR treatments were equivalent. This suggests that PGPR treatment compensated for delayed plant growth that often occurs in nonfumigated soil. These results indicate that, in cucumber production systems, withdrawal of methyl bromide will not negatively impact PGPRmediated ISR, and also that PGPR may have potential as an alternative to methyl bromide fumigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号