首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In vivo expression technology (IVET) analysis of rhizosphere-induced genes in the plant growth-promoting rhizobacterium (PGPR) Pseudomonas fluorescens SBW25 identified a homologue of the type III secretion system (TTSS) gene hrcC. The hrcC homologue resides within a 20-kb gene cluster that resembles the type III (Hrp) gene cluster of Pseudomonas syringae. The type III (Rsp) gene cluster in P. fluorescens SBW25 is flanked by a homologue of the P. syringae TTSS-secreted protein AvrE. P. fluorescens SBW25 is non-pathogenic and does not elicit the hypersensitive response (HR) in any host plant tested. However, strains constitutively expressing the rsp-specific sigma factor RspL elicit an AvrB-dependent HR in Arabidopsis thaliana ecotype Col-0, and a host-specific HR in Nicotiana clevelandii. The inability of wild-type P. fluorescens SBW25 to elicit a visible HR is therefore partly attributable to low expression of rsp genes in the leaf apoplast. DNA hybridization analysis indicates that rsp genes are present in many plant-colonizing Pseudomonas and PGPR, suggesting that TTSSs may have a significant role in the biology of PGPR. However, rsp and rsc mutants retain the ability to reach high population levels in the rhizosphere. While functionality of the TTSS has been demonstrated, the ecological significance of the rhizosphere-expressed TTSS of P. fluorescens SBW25 remains unclear.  相似文献   

2.
《Genome biology》2009,10(5):R51

Background

Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species.

Results

Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed ''repeat deserts'' lacking repeats, covering approximately 40% of the genome.

Conclusions

P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome.  相似文献   

3.
4.
5.
Signal extracts prepared from culture supernatants of Pseudomonas fluorescens CHA0 and Pseudomonas aeruginosa PAO stimulated GacA-dependent expression of small RNAs and hence of antibiotic compounds in both hosts. Pseudomonas corrugata LMG2172 and P. fluorescens SBW25 also produced signal molecules stimulating GacA-controlled antibiotic synthesis in strain CHA0, illustrating a novel, N-acyl-homoserine lactone-independent type of interspecies communication.  相似文献   

6.
Flagellin gene central regions from 111 isolates of Pseudomonas fluorescens SBW25 obtained from soil during a field release experiment were analysed using a combined PCR/RFLP technique to look for variation. In addition, a 858 bp flagellin gene sequence from the original strain and the last isolate obtained from the release site were compared. There was no variation in flagellin gene sequences indicating that the gene was stable over the period of the release, and that the flagellin gene is a suitable marker for use in the detection of bacteria in release experiments. A comparison of Pseudomonas fluorescens SBW25 flagellin with other sequenced flagellins revealed closest homology to the flagellin of Ps. putida PRS2000.  相似文献   

7.
Pseudomonas fluorescens SBW25 is a Gram-negative bacterium that grows in close association with plants. In common with a broad range of functionally similar bacteria it plays an important role in the turnover of organic matter and certain isolates can promote plant growth. Despite its environmental significance, the causes of its ecological success are poorly understood. Here we describe the development and application of a simple promoter trapping strategy (IVET) to identify P. fluorescens SBW25 genes showing elevated levels of expression in the sugar beet rhizosphere. A total of 25 rhizosphere-induced (rhi) fusions are reported with predicted roles in nutrient acquisition, stress responses, biosynthesis of phytohormones and antibiotics. One rhi fusion is to wss, an operon encoding an acetylated cellulose polymer. A mutant carrying a defective wss locus was competitively compromised (relative to the wild type) in the rhizosphere and in the phyllosphere, but not in bulk soil. The rhizosphere-induced wss locus therefore contributes to the ecological performance of SBW25 in the plant environment and supports our conjecture that genes inactive in the laboratory environment, but active in the wild, are likely to be determinants of fitness in natural environments.  相似文献   

8.
9.
10.
The aim of this study was to determine the impact of wild-type along with functionally and nonfunctionally modified Pseudomonas fluorescens strains in the rhizosphere. The wild-type F113 strain carried a gene encoding the production of the antibiotic 2,4-diacetylphloroglucinol (DAPG) useful in plant disease control, and was marked with a lacZY gene cassette. The first modified strain was a functional modification of strain F113 with repressed production of DAPG, creating the DAPG-negative strain F113 G22. The second paired comparison was a nonfunctional modification of wild-type (unmarked) strain SBW25, constructed to carry marker genes only, creating strain SBW25 EeZY-6KX. Significant perturbations were found in the indigenous bacterial population structure, with the F113 (DAPG+) strain causing a shift towards slower growing colonies (K strategists) compared with the nonantibiotic-producing derivative (F113 G22) and the SBW25 strains. The DAPG+ strain also significantly reduced, in comparison with the other inocula, the total Pseudomonas populations but did not affect the total microbial populations. The survival of F113 and F113 G22 were an order of magnitude lower than the SBW 25 strains. The DAPG+ strain caused a significant decrease in the shoot-to-root ratio in comparison to the control and other inoculants, indicating plant stress. F113 increased soil alkaline phosphatase, phosphodiesterase and aryl sulphatase activities compared to the other inocula, which themselves reduced the same enzyme activities compared to the control. In contrast to this, the β-glucosidase, β-galactosidase and N -acetyl glucosaminidase activities decreased with the inoculation of the DAPG+ strain. These results indicate that soil enzymes are sensitive to the impact of inoculation with genetically modified microorganisms (GMMs).  相似文献   

11.
AIMS: Four well-described strains of Pseudomonas fluorescens were assessed for their effect on pea growth and their antagonistic activity against large Pythium ultimum inocula. Methods and RESULTS: The effect of Pseudomonas strains on the indigenous soil microflora, soil enzyme activities and plant growth in the presence and absence of Pythium was assessed. Pythium inoculation reduced the shoot and root weights, root length, and the number of lateral roots. The effect of Pythium was reduced by the Pseudomonas strains. Strains F113, SBW25 and CHAO increased shoot weights (by 20%, 22% and 35%, respectively); strains Q2-87, SBW25 and CHAO increased root weights (14%, 14% and 52%). Strains SBW25 and CHAO increased root lengths (19% and 69%) and increased the number of lateral roots (14% and 29%). All the Pseudomonas strains reduced the number of lesions and the root and soil Pythium populations, while SBW25 and CHAO increased the number of lateral roots. Pythium inoculation increased root and soil microbial populations but the magnitude of this effect was Pseudomonas strain-specific. Pythium increased the activity of C, N and P cycle enzymes, while the Pseudomonas strains reduced this effect, indicating reduced plant damage. CONCLUSION: Strains SBW25 and CHAO had the greatest beneficial characteristics, as these strains produced the greatest reductions in the side effects of Pythium infection (microbial populations and enzyme activities) and resulted in significantly improved plant growth. Strain SBW25 does not produce antifungal metabolites, and its biocontrol activity was related to a greater colonization ability in the rhizosphere. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first critical comparison of such important strains of Ps. fluorescens showing disease biocontrol potential.  相似文献   

12.
The alternative sigma factor RpoN is a key regulator in the acclimation of Pseudomonas to complex natural environments. In this study we show that RpoN is required for efficient colonization of sugar beet seedlings by the plant growth-promoting bacterium Pseudomonas fluorescens SBW25, and use phenotypic and bioinformatic approaches to profile the RpoN-dependent traits and genes of P. fluorescens SBW25. RpoN is required for flagellar biosynthesis and for assimilation of a wide variety of nutrient sources including inorganic nitrogen, amino acids, sugar alcohols and dicarboxylic acids. Chemosensitivity assays indicate that RpoN-regulated genes contribute to acid tolerance and resistance to some antibiotics, including tetracyclines and aminoglycosides. Gain of function changes associated with loss of RpoN included increased tolerance to hydroxyurea and Guanazole. Bioinformatic predictions of RpoN-regulated genes show a close correspondence with phenotypic analyses of RpoN-regulated traits and suggest novel functions for RpoN in P. fluorescens, including regulation of poly(A) polymerase. The reduced plant colonization ability observed for an rpoN mutant of P. fluorescens is therefore likely to be due to defects in multiple traits including nutrient assimilation, protein secretion and stress tolerance.  相似文献   

13.
Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.  相似文献   

14.
Neutrally marked bacterial strains are useful in many experimental evolution and molecular ecology studies to assess the relative fitness of a given strain. Here we describe the construction and validation of a neutral marker for the model organism Pseudomonas fluorescens SBW25. The marked strain, called SBW25-lacZ, was created by integrating a promoterless 'lacZ into the defective prophage locus of the SBW25 chromosome. Fitness assays conducted in various laboratory media and in planta revealed that the fitness levels of SBW25-lacZ were comparable with the wild-type ancestor.  相似文献   

15.
The interactions between two plant growth-promoting rhizobacteria (PGPR, Pseudomonas fluorescens SBW25 and Paenibacillus brasilensis PB177), two arbuscular mycorrhizal (AM) fungi (Glomus mosseae and Glomus intraradices) and one pathogenic fungus (Microdochium nivale) were investigated on winter wheat (Triticum aestivum cultivar Tarso) in a greenhouse trial. PB177, but not SBW25, had strong inhibitory effects on M. nivale in dual culture plate assays. The results from the greenhouse experiment show very specific interactions; for example, the two AM fungi react differently when interacting with the same bacteria on plants. Glomus intraradices (single inoculation or together with SBW25) increased plant dry weight on M. nivale-infested plants, suggesting that the pathogenic fungus is counteracted by G. intraradices, but PB177 inhibited this positive effect. This is an example of two completely different reactions between the same AM fungus and two species of bacteria, previously known to enhance plant growth and inhibit pathogens. When searching for plant growth-promoting microorganisms, it is therefore important to test for the most suitable combination of plant, bacteria and fungi in order to achieve satisfactory plant growth benefits.  相似文献   

16.
A conserved mechanism for nitrile metabolism in bacteria and plants   总被引:1,自引:0,他引:1  
Pseudomonas fluorescens SBW25 is a plant growth-promoting bacterium that efficiently colonises the leaf surfaces and rhizosphere of a range of plants. Previous studies have identified a putative plant-induced nitrilase gene ( pinA ) in P. fluorescens SBW25 that is expressed in the rhizosphere of sugar beet plants. Nitrilase enzymes have been characterised in plants, bacteria and fungi and are thought to be important in detoxification of nitriles, utilisation of nitrogen and synthesis of plant hormones. We reveal that pinA is a NIT4-type nitrilase that catalyses the hydrolysis of β-cyano- l -alanine, a nitrile common in the plant environment and an intermediate in the cyanide detoxification pathway in plants. In plants cyanide is converted to β-cyano- l -alanine, which is subsequently detoxified to aspartic acid and ammonia by NIT4. In P. fluorescens SBW25 pinA is induced in the presence of β-cyano- l -alanine, and the β-cyano- l -alanine precursors cyanide and cysteine. pinA allows P. fluorescens SBW25 to use β-cyano- l -alanine as a nitrogen source and to tolerate toxic concentrations of this nitrile. In addition, pinA is shown to complement a NIT4 mutation in Arabidopsis thaliana , enabling plants to grow in concentrations of β-cyano- l -alanine that would otherwise prove lethal. Interestingly, over-expression of pinA in wild-type A. thaliana not only resulted in increased growth in high concentrations of β-cyano- l -alanine, but also resulted in increased root elongation in the absence of exogenous β-cyano- l -alanine, demonstrating that β-cyano- l -alanine nitrilase activity can have a significant effect on root physiology and root development.  相似文献   

17.
AIMS: To develop reporter constructs based on stable and unstable variants of the green fluorescent protein (GFP) for monitoring balanced production of antifungal compounds that are crucial for the capacity of the root-colonizing Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soil-borne pathogenic fungi. METHODS AND RESULTS: Pseudomonas fluorescens CHA0 produces the three antifungal metabolites 2,4-diacetylphloroglucinol (DAPG), pyoluteorin (PLT) and pyrrolnitrin (PRN). The gfp[mut3] and gfp[AAV] reporter genes were fused to the promoter regions of the DAPG, PLT and PRN biosynthetic genes. The reporter fusions were then used to follow the kinetics of expression of the three antifungal metabolites in a microplate assay. DAPG and PLT were found to display an inverse relationship in which each metabolite activates its own biosynthesis while repressing the synthesis of the other metabolite. PRN appears not to be involved in this balance. However, the microbial and plant phenolic metabolite salicylate was found to interfere with the expression of both DAPG and PLT. CONCLUSIONS: The results obtained provide evidence that P. fluorescens CHA0 may keep the antifungal compounds DAPG and PLT at a fine-tuned balance that can be affected by certain microbial and plant phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, the present study is the first to use stable and unstable GFP variants to study antibiotic gene expression in a biocontrol pseudomonad. The developed reporter fusions will be a highly valuable tool to study in situ expression of this bacterial biocontrol trait on plant roots, i.e. at the site of pathogen suppression.  相似文献   

18.
19.
Type III protein secretion systems play a key role in the virulence of many pathogenic proteobacteria, but they also occur in nonpathogenic, plant-associated bacteria. Certain type III protein secretion genes (e.g., hrcC) have been found in Pseudomonas sp. strain SBW25 (and other biocontrol pseudomonads), but other type III protein secretion genes, such as the ATPase-encoding gene hrcN, have not been found. Using both colony hybridization and a PCR approach, we show here that hrcN is nevertheless present in many biocontrol fluorescent pseudomonads. The phylogeny of biocontrol Pseudomonas strains based on partial hrcN sequences was largely congruent with the phylogenies derived from analyses of rrs (encoding 16S rRNA) and, to a lesser extent, biocontrol genes, such as phlD (for 2,4-diacetylphloroglucinol production) and hcnBC (for HCN production). Most biocontrol pseudomonads clustered separately from phytopathogenic proteobacteria, including pathogenic pseudomonads, in the hrcN tree. The exception was strain KD, which clustered with phytopathogenic pseudomonads, such as Pseudomonas syringae, suggesting that hrcN was acquired from the latter species. Indeed, strain KD (unlike strain SBW25) displayed the same organization of the hrpJ operon, which contains hrcN, as P. syringae. These results indicate that the occurrence of hrcN in most biocontrol pseudomonads is not the result of recent horizontal gene transfer from phytopathogenic bacteria, although such transfer might have occurred for a minority of biocontrol strains.  相似文献   

20.
The antibiotic 2,4-diacetylphloroglucinol (Phl) is produced by a range of naturally occurring fluorescent pseudomonads. One isolate, Pseudomonas fluorescens F113, protects pea plants from the pathogenic fungus Pythium ultimum by reducing the number of pathogenic lesions on plant roots, but with a concurrent reduction in the emergence of plants such as pea. The genes responsible for Phl production have been shown to be functionally conserved between the wild-type (wt) P. fluorescens strains F113 and Q2-87. In this study the genes from F113 were isolated using an optimized long PCR method and a 6.7-kb gene cluster inserted into the chromosome of the non-Phl-producing P. fluorescens strain SBW25 EeZY6KX. This strain is a lacZY, kmR marked derivative of the wt SBW25 which effects biological control against the plant pathogen Pythium ultimum by competitive exclusion as a result of its strong rhizosphere-colonizing ability. We describe here the integration of the Phl antifungal and competitive exclusion mechanisms into a single strain, and the impact this has on survival and plant emergence in microcosms. The insertion of the Phl biosynthetic genes from the F113 into the SBW25 chromosome gave a Phl-producing transformant (strain Pa21) able to suppress P. ultimum through antibiotic production. The growth of Pa21 was not reduced in flask culture at 20°C compared with its parent strain. When inoculated on pea seedlings, the strain containing the Phl operon behaved similarly to the SBW25 EeZY6KX parent but did not show the tendency of the wt Phl producer F113 to cause lower pea seed emergence. Pea roots inoculated with SBW25 EeZY6KX have significantly lower indigenous populations than with F113 and the control. This is indicative of this strains strong colonising presence. Pa21, the Phl-modified strain, is able to exclude the resident population from roots to the same degree as the SBW25 EeZY6KX from which it is derived. This suggests that it has maintained its competitiveness around the root systems of plants even with the introduction of the Phl locus. Thus, strain Pa21 possesses the qualities necessary to provide effective integrated biocontrol, through maintaining both its wt trait of competitive exclusion on the plant roots, while also expressing the genes from the F113 biocontrol strain for Phl production. Interestingly, however, an additional beneficial trait appears to emerge with the strain Pa21s lowered survival competence compared with SBW25 EeZY6KX in the rhizosphere soil. With fears of the spread of genetically modified organisms and persistence in the soil, this trait may be of some ecological and commercial benefit and becomes a candidate for further investigation and possible exploitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号