首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
Ecosystems are often arranged in naturally patchy landscapes with habitat patches linked by dispersal of species in a metacommunity. The size of a metacommunity, or number of patches, is predicted to influence community dynamics and therefore the structure and function of local communities. However, such predictions have yet to be experimentally tested using full food webs in natural metacommunities. We used the natural mesocosm system of aquatic macroinvertebrates in bromeliad phytotelmata to test the effect of the number of patches in a metacommunity on species richness, abundance, and community composition. We created metacommunities of varying size using fine mesh cages to enclose a gradient from a single bromeliad up to the full forest. We found that species richness, abundance, and biomass increased from enclosed metacommunities to the full forest size and that diversity and evenness also increased in larger enclosures. Community composition was affected by metacommunity size across the full gradient, with a more even detritivore community in larger metacommunities, and taxonomic groups such as mosquitoes going locally extinct in smaller metacommunities. We were able to divide the effects of metacommunity size into aquatic and terrestrial habitat components and found that the importance of each varied by species; those with simple life cycles were only affected by local aquatic habitat whereas insects with complex life cycles were also affected by the amount of terrestrial matrix. This differential survival of obligate and non‐obligate dispersers allowed us to partition the beta‐diversity between metacommunities among functional groups. Our study is one of the first tests of metacommunity size in a natural metacommunity landscape and shows that both diversity and community composition are significantly affected by metacommunity size. Synthesis Natural food webs are sensitive to meta‐community size, i.e. the number of patches connected through dispersal. We provide an empirical test using the aquatic foodweb associated within bromeliads as a model system. When we reduced the number of bromeliad patches connect through dispersal, we found a clear change of the foodweb in terms of population sizes, beta diversity, community composition and predator‐prey ratios. The response of individual taxa was predictable based on species traits including dispersal modes, life cycle, and adult resource requirements. Our study demonstrates that community structure is strongly influenced by the interplay of species traits and landscape properties.  相似文献   

2.
Binckley CA  Resetarits WJ 《Oecologia》2007,153(4):951-958
The specific dispersal/colonization strategies used by species to locate and colonize habitat patches can strongly influence both community and metacommunity structure. Habitat selection theory predicts nonrandom dispersal to and colonization of habitat patches based on their quality. We tested whether habitat selection was capable of generating patterns of diversity and abundance across a transition of canopy coverage (open and closed canopy) and nutrient addition by investigating oviposition site choice in two treefrog species (Hyla) and an aquatic beetle (Tropisternus lateralis), and the colonization dynamics of a diverse assemblage of aquatic insects (primarily beetles). Canopy cover produced dramatic patterns of presence/absence, abundance, and species richness, as open canopy ponds received 99.5% of propagules and 94.6% of adult insect colonists. Nutrient addition affected only Tropisternus oviposition, as females oviposited more egg cases at higher nutrient levels, but only in open canopy ponds. The behavioral partitioning of aquatic landscapes into suitable and unsuitable habitats via habitat selection behavior fundamentally alters how communities within larger ecological landscapes (metacommunities) are linked by dispersal and colonization.  相似文献   

3.
An observed species–area relationship (SAR) in assemblages of oribatid mites inhabiting natural canopy habitats (suspended soils) led to an experimental investigation of how patch size, height in canopy and moisture influence the species richness, abundance and community composition of arboreal oribatid mites. Colonisation by oribatid mites on 90 artificial canopy habitats (ACHs) of three sizes placed at each of three heights on the trunks of ten western redcedar trees was recorded over a 1‐year period. Fifty‐nine oribatid mite species colonised the ACHs, and richness increased with the moisture content and size of the habitat patch. Oribatid mite species richness and abundance, and ACH moisture content decreased with increasing ACH height in the canopy. Patterns in the species richness and community composition of ACHs were non‐random and demonstrated a significant nested pattern. Correlations of patch size, canopy height and moisture content with community nestedness suggest that species‐specific environmental tolerances combined with the differential dispersal abilities of species contributed to the non‐random patterns of composition in these habitats. In line with the prediction that niche‐selection filters out species from the regional pool that cannot tolerate environmental harshness, moisture‐stressed ACHs in the high canopy had lower community variability than ACHs in the lower canopy. Colonising source pools to ACHs were almost exclusively naturally‐occurring canopy sources, but low levels of colonisation from the forest floor were apparent at low heights within the ACH system. We conclude that stochastic dispersal dynamics within the canopy are crucial to understanding oribatid mite community structure in suspended soils, but that the relative importance of stochastic dispersal assembly may be dependent on a strong deterministic element to the environmental tolerances of individual species which drives non‐random patterns of community assembly.  相似文献   

4.
Dispersal among local communities can have a variety of effects on species composition and diversity at local and regional scales. Local conditions (e.g., resource and predator densities) can have independent effects, as well as interact with dispersal, to alter these patterns. Based on metacommunity models, we predicted that local diversity would show a unimodal relationship with dispersal frequency. We manipulated dispersal frequencies, resource levels, and the presence of predators (mosquito larvae) among communities found in the water-filled leaves of the pitcher plant Sarracenia purpurea. Diversity and abundance of species of the middle trophic level, protozoa and rotifers, were measured. Increased dispersal frequencies significantly increased regional species richness and protozoan abundance while decreasing the variance among local communities. Dispersal frequency interacted with predation at the local community scale to produce patterns of diversity consistent with the model. When predators were absent, we found a unimodal relationship between dispersal frequency and diversity, and when predators were present, there was a flat relationship. Intermediate dispersal frequencies maintained some species in the inquiline communities by offsetting extinction rates. Local community composition and the degree of connectivity between communities are both important for understanding species diversity patterns at local and regional scales.  相似文献   

5.
The growth of metacommunity ecology as a subdiscipline has increased interest in how processes at different spatial scales structure communities. However, there is still a significant knowledge gap with respect to relating the action of niche- and dispersal-assembly mechanisms to observed species distributions across gradients. Surveys of the larval dragonfly community (Odonata: Anisoptera) in 57 lakes and ponds in southeast Michigan were used to evaluate hypotheses about the processes regulating community structure in this system. We considered the roles of both niche- and dispersal-assembly processes in determining patterns of species richness and composition across a habitat gradient involving changes in the extent of habitat permanence, canopy cover, area, and top predator type. We compared observed richness patterns and species distributions in this system to patterns predicted by four general community models: species sorting related to adaptive trade-offs, a developmental constraints hypothesis, dispersal assembly, and a neutral community assemblage. Our results supported neither the developmental constraints nor the neutral-assemblage models. Observed patterns of richness and species distributions were consistent with patterns expected when adaptive tradeoffs and dispersal-assembly mechanisms affect community structure. Adaptive trade-offs appeared to be important in limiting the distributions of species which segregate across the habitat gradient. However, dispersal was important in shaping the distributions of species that utilize habitats with a broad range of hydroperiods and alternative top predator types. Our results also suggest that the relative importance of these mechanisms may change across this habitat gradient and that a metacommunity perspective which incorporates both niche- and dispersal-assembly processes is necessary to understand how communities are organized. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
A qualitative survey of the terrestrial bird community (sixty-five species) and a quantitative analysis of the five-diurnal raptor assemblage were earned out on 33 islands of the oceanic Andaman archipelago in the Bay of Bengal Among seven geographical parameters, island area was the main determinant of species richness for both the whole bird community and each category of species associated with four habitat types Species richness decreased most markedly with island size in the smallest islands and in open habitat species The rarest forest species were the most extinction prone with decreasing island size Specific habitat selection was the most prominent ecological correlate of inter island species distribution Observed species distribution patterns did not fit the random species placement or equprobable occurrence hypotheses Raptors were primarily forest species, two of them restricted to forest interior, two more tolerant of fragmentation and one naturally associated with mangroves Unexpectedly, the two rarest and most area sensitive raptors were the two smallest species with a strong active flight, whereas the most abundant and widespread species was the most forest interior and endemic taxon Both raptor species richness, species frequency of occurrence and abundance indices decreased with island area, which was consistently the most significant determinant of every species' occurrence and abundance There was a significant correlation between abundance or frequency of occurrence of every raptor species and the proportion of their preferred habitat type No relationship was found between habitat niche breadth or local abundance of any species and their distribution range among islands The hypothesis of random composition of species assemblages on islands was not supported because of species specific habitat selection Any evidence of interspecific competitive exclusion was limited to the striking habitat segregation of the two congeneric serpent eagles A metapopulation structure was suggested by small population distribution patterns, observed sea crossing and the circumstances of an apparent extinction  相似文献   

8.
In naturally fragmented, isolated, or patchily distributed habitats that contain non‐vagile organisms, we expect dispersal to be limited, and patterns of diversity to differ from similar, yet continuous habitats. We explored the alpha‐beta‐gamma relationship and community composition of oribatid mites (Acari: Oribatida) inhabiting spatially discrete canopy suspended soils, and compared the patterns of diversity with the continuous forest floor soils over two years. We explored dispersal limitation for oribatid mites in the canopy by using additive partitioning of species richness at multiple spatial scales. ANOSIM was used to demonstrate differences in oribatid mite community composition between the canopy and forest floor habitats over different sampling periods. Community composition of oribatid mites differed significantly between canopy and forest floor habitats, by season and yearly sampling period. Oribatid mite richness and abundance were positively correlated with substrate moisture content, particularly in the canopy. Richness and abundance of ground oribatid mites was greater in September than in June, a trend that is reversed in the canopy, suggesting canopy oribatid mite species may have altered life histories to take advantage of earlier moisture conditions. Alpha diversity of oribatid mites in the canopy was lower than the ground at all sampling levels, and not significantly different from a random distribution in either habitat. Beta diversity was greater than expected from a random distribution at the patch‐ and tree‐level in the canopy suggesting dispersal limitation associated with physical tree‐to‐tree dispersal barriers, and limited dispersal among patches within a tree. Beta diversity at the tree‐level was the largest contribution to overall species richness in both canopy and ground habitats, and was also greater than expected on the ground. These results suggest that factors other than physical dispersal barriers, such as aggregation, habitat availability, and environmental factors (moisture), may limit the distribution of species in both habitats.  相似文献   

9.
Contemporary insights from evolutionary ecology suggest that population divergence in ecologically important traits within predators can generate diversifying ecological selection on local community structure. Many studies acknowledging these effects of intraspecific variation assume that local populations are situated in communities that are unconnected to similar communities within a shared region. Recent work from metacommunity ecology suggests that species dispersal among communities can also influence species diversity and composition but can depend upon the relative importance of the local environment. Here, we study the relative effects of intraspecific phenotypic variation in a fish predator and spatial processes related to plankton species dispersal on multitrophic lake plankton metacommunity structure. Intraspecific diversification in foraging traits and residence time of the planktivorous fish alewife (Alosa pseudoharengus) among coastal lakes yields lake metacommunities supporting three lake types which differ in the phenotype and incidence of alewife: lakes with anadromous, landlocked, or no alewives. In coastal lakes, plankton community composition was attributed to dispersal versus local environmental predictors, including intraspecific variation in alewives. Local and beta diversity of zooplankton and phytoplankton was additionally measured in response to intraspecific variation in alewives. Zooplankton communities were structured by species sorting, with a strong influence of intraspecific variation in A. pseudoharengus. Intraspecific variation altered zooplankton species richness and beta diversity, where lake communities with landlocked alewives exhibited intermediate richness between lakes with anadromous alewives and without alewives, and greater community similarity. Phytoplankton diversity, in contrast, was highest in lakes with landlocked alewives. The results indicate that plankton dispersal in the region supplied a migrant pool that was strongly structured by intraspecific variation in alewives. This is one of the first studies to demonstrate that intraspecific phenotypic variation in a predator can maintain contrasting patterns of multitrophic diversity in metacommunities.  相似文献   

10.
Spatial variation of communities composition (metacommunities) results from multiple assembly mechanisms, including environmental filtering and dispersal; however, whether and why the relative importance of the assembly mechanisms in shaping bacterial metacommunity changes through time in marine pelagic systems remains poorly studied. Here, we applied the elements of metacommunity structure framework and the variation partitioning framework to examine whether temporal variation of hydrographic conditions influences bacterioplankton metacommunity dynamics in the southern East China Sea (ECS). The spatiotemporal variation of bacterial communities composition was revealed using 454 pyrosequencing of 16S rDNA. In addition to the whole bacterial community, we analyzed four dominant taxonomic groups (Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria) separately. Our analyses indicate that, considering the whole community level, the determinism of metacommunity structure varied among seasons. When the degree of connectivity was low (December), the metacommunity exhibited random distribution and was explained mainly by the environmental component. However, Clementsian metacommunity was found at intermediate connectivity (May), during which the environmental and spatial predictors were both significant. When connectivity was high (August), a random distribution pattern was found and no significant effect of environmental filtering or dispersal limitation was detected. Nevertheless, when considering different taxonomic groups, the differences in metacommunity dynamics among groups were found. Our results suggest that the driving forces of metacommunity dynamics varied depending on hydrography, as the degrees of environmental heterogeneity and connectivity among habitat patches were determined by circulation pattern. Moreover, mechanisms varied among different taxonomic groups, suggesting that differential dispersal capacity among taxonomic groups should be integrated into community assembly studies.  相似文献   

11.
We examined the effects of habitat fragmentation on the species distributions, guild membership, and community structure of old-field insects using a fine-scale experimental approach. A continuous 1-ha goldenrod field was fragmented into four treatments that varied in both patch size and degree of isolation. Each treatment was replicated four times and arranged in a Latin square design. Canopy insects in fragmented patches were sampled with sweep nets during early and late summer 1995. The species richness of insects was significantly lower in fragmented than in unfragmented treatments during July, but was similar among treatments in September. Overall community abundance showed no treatment effect during either month. We also found significant row and column effects, suggesting there was spatial heterogeneity in species richness and abundance apart from treatment effects. Differences in species richness during July were primarily due to the loss of rare species in highly fragmented plots. Overall abundance was less responsive to community change because deletions of rare species in fragmented areas were not detected in abundance analyses. Four feeding guilds showed different responses to fragmentation: the species richness of sucking herbivores and the abundance of parasitoids were significantly reduced by fragmentation but predators and chewing herbivores were largely unaffected. Analyses of a subset of individual species within guilds suggest that the greater effects of fragmentation on sucking herbivores and parasitoids may be due to the degree of habitat specificity of guild members. The effects of small-scale habitat fragmentation were therefore detectable at the level of community, guild, and individual species. Changes in species richness, guild structure and species distributions were likely due to differential effects of habitat alteration on individual movements and patch selection rather than dispersal or demographic change. Nonetheless, the selective loss of rare species, differential guild effects and changes in species occupancy that we found in this small-scale experiment are also factors that are likely to operate in fragmented habitats over broader spatial scales. Received: 11 May 1998 / Accepted: 27 September 1998  相似文献   

12.
Vole disturbances and plant diversity in a grassland metacommunity   总被引:1,自引:0,他引:1  
Questad EJ  Foster BL 《Oecologia》2007,153(2):341-351
We studied the disturbance associated with prairie vole burrows and its effects on grassland plant diversity at the patch (1 m2) and metacommunity (>5 ha) scales. We expected vole burrows to increase patch-scale plant species diversity by locally reducing competition for resources or creating niche opportunities that increase the presence of fugitive species. At the metacommunity scale, we expected burrows to increase resource heterogeneity and have a community composition distinct from the matrix. We measured resource variables and plant community composition in 30 paired plots representing disturbed burrows and undisturbed matrix patches in a cool-season grassland. Vole disturbance affected the mean values of nine resource variables measured and contributed more to resource heterogeneity in the metacommunity than matrix plots. Disturbance increased local plant species richness, metacommunity evenness, and the presence and abundance of fugitive species. To learn more about the contribution of burrow and matrix habitats to metacommunity diversity, we compared community similarity among burrow and matrix plots. Using Sorenson’s similarity index, which considers only presence–absence data, we found no difference in community similarity among burrows and matrix plots. Using a proportional similarity index, which considers both presence–absence and relative abundance data, we found low community similarity among burrows. Burrows appeared to shift the identity of dominant species away from the species dominant in the matrix. They also allowed subordinate species to persist in higher abundances. The patterns we observed are consistent with several diversity-maintaining mechanisms, including a successional mosaic and alternative successional trajectories. We also found evidence that prairie voles may be ecosystem engineers.  相似文献   

13.
Understanding the mechanisms that organize biodiversity is central in ecology and conservation. Beta diversity links local (alfa) and regional (gamma) diversity, giving insight into how communities organize spatially. Metacommunity ecology provides the framework to interpret regional and local processes interacting to shape communities. However, the lack of metacommunity studies for large vertebrates may limit the understanding and compromise the preservation of ecosystem functions and services. We aim to understand the mechanisms underlying differences in species composition among vertebrate scavenger communities ? which provide key ecosystem functions, e.g. carrion consumption ? within a metacommunity context. We obtained species richness and abundances at scavenger communities consuming ungulate carcasses monitored through motion‐triggered remote cameras in seven terrestrial ecosystems in Spain. We partitioned beta diversity to decompose incidence‐based (species presence/absence) and abundance‐based dissimilarities into their components (turnover/balanced variation and nestedness/abundance gradient, respectively). We identified the environmental factors explaining the observed patterns. The vertebrate scavenger metacommunity consisted of 3101 individuals from 30 species. Changes in composition among ecosystems were mostly (> 84%) due to species or individual replacement (i.e. turnover or balanced variation). Species or individual loss/gain (i.e. nestedness or abundance gradient) accounted for 13–16% of these changes. Mean carcass weight, elevation and habitat diversity were the main factors explaining species/individual replacement. Our findings suggest that local processes such as species‐sorting through habitat heterogeneity would dominate scavenger metacommunity dynamics together with stochastic forces (i.e. related to carrion unpredictability and scavenging being a widespread strategy among vertebrates). The presence of structured patterns (i.e. nestedness) in beta diversity could reflect a role of deterministic processes: mass‐effects through dispersal and defaunation. Vultures are long‐distance foragers and functionally dominant species, which would connect local assemblages within the metacommunity, supporting scavenger diversity and functions across space. These results highlight the importance of managing vertebrate scavenger assemblages within a metacommunity context.  相似文献   

14.
Colonization and extinction are primary drivers of local population dynamics, community structure, and spatial patterns of biological diversity. Existing paradigms of island biogeography, metapopulation biology, and metacommunity ecology, as well as habitat management and conservation biology based on those paradigms, emphasize patch size, number, and isolation as primary characteristics influencing colonization and extinction. Habitat selection theory suggests that patch quality could rival size, number, and isolation in determining rates of colonization and resulting community structure. We used naturally colonized experimental landscapes to address four issues: (a) how do colonizing aquatic beetles respond to variation in patch number, (b) how do they respond to variation in patch quality, (c) does patch context affect colonization dynamics, and (d) at what spatial scales do beetles respond to habitat variation? Increasing patch number had no effect on per patch colonization rates, while patch quality and context were critical in determining colonization rates and resulting patterns of abundance and species richness at multiple spatial scales. We graphically illustrate how variation in immigration rates driven by perceived predation risk (habitat quality) can further modify dynamics of the equilibrium theory of island biogeography beyond predator-driven effects on extinction rates. Our data support the importance of patch quality and context as primary determinants of colonization rate, occupancy, abundance, and resulting patterns of species richness, and reinforce the idea that management of metapopulations for species preservation, and metacommunities for local and regional diversity, should incorporate habitat quality into the predictive equation.  相似文献   

15.
Tommaso Zillio  Richard Condit 《Oikos》2007,116(6):931-940
We present a spatially-explicit generalization of Hubbell's model of community dynamics in which the assumption of neutrality is relaxed by incorporating dispersal limitation and habitat preference. In simulations, diversity and species abundances were governed by the rate at which new species were introduced (usually called 'speciation') and nearly unaffected by dispersal limitation and habitat preference. Of course, in the absence of species input, diversity is maintained solely by niche differences. We conclude that the success of the neutral model in predicting the abundance distribution has nothing to do with neutrality, but rather with the species-introduction process: when new species enter a community regularly as singletons, the typical J-shaped abundance distribution, with a long tail of rare species, is always observed, whether species differ in habitat preferences or not. We suggest that many communities are indeed driven by the introduction process, accounting for high diversity and rarity, and that species differences may be largely irrelevant for either.  相似文献   

16.
阿拉善荒漠啮齿动物集合群落实证研究   总被引:3,自引:2,他引:1  
当生态学家探求在破碎化的栖息地中,群落物种的共存机制、多样性、局域尺度的性质和过程被放到更广阔的时空框架内时,就出现了"集合群落"这一概念。Leibold提出了集合群落概念,他们将一个集合群落定义为局域群落集,这些群落由各个潜在的相互作用的物种的扩散连接在一起。集合群落理论描述了那些发生在集合群落尺度上的过程,并且提出思考关于物种相互作用的新方法。集合群落概念为群落生态学提供了一个新的革命性的范式,集合群落研究的最基本问题是同一系统中多物种共存的机理、多样性的形成原因与维持机制。该范式强调区域范围内群落中的综合变异,强调环境特证和栖息地之间通过扩散调节的生物相互作用和空间变化。Leibold等提出了解释集合群落结果理论上的4个生态范式,即(1)中性理论;(2)斑块动态理论;(3)物种分配理论;(4)集团效应理论。之后有大量有关检验这4种生态理论的研究,但是有关陆地脊椎动物系统的集合群落的研究较少。2010—2012年,通过在内蒙古阿拉善荒漠景观中的8个固定样地中,对啮齿动物、栖息地环境因子进行调查。利用冗余分析和偏冗余分析,评估环境特征和空间特征对物种组成的影响。结果表明,环境特征独自解释72.8%的啮齿动物物种组成变化,空间特征独自解释33.8%的物种组成变化,环境特征和空间特征共同解释86.5%的啮齿动物物种组成变化,结果显著(P=0.032);去除环境特征之后,空间特征解释13.7%的变化(P=0.246),结果不显著;去除空间特征之后,栖息地变化解释52.7%的变化(P=0.016);环境特征和空间特征的交互作用解释20.1%的物种组成的变化,该区域啮齿动物群落构成集合群落,物种共存中环境特征起着主导作用,由物种分配理论解释该集合群落结构。  相似文献   

17.
The question of whether species co‐occurrence is random or deterministic has received considerable attention, but little is known about how anthropogenic disturbance mediates the outcomes. By combining experiments, field surveys and analysis against null models, we tested the hypothesis that anthropogenic habitat modification disrupts species co‐occurrence in stream invertebrates across spatial scales. Whereas communities in unmodified conditions were structured deterministically with significant species segregation, catchment‐scale conversion to agriculture and sediment deposition at the patch‐ or micro‐habitat scale apparently randomized species co‐occurrences. This shift from non‐random to random was mostly independent of species richness, abundance and spatial scale. Data on community‐wide life‐history traits (body size, dispersal ability and predatory habits) and beta‐diversity indicated that anthropogenic modification disrupted community assembly by affecting biotic interactions and, to a lesser extent, altering habitat heterogeneity. These data illustrate that the balance between predictable and stochastic patterns in communities can reflect anthropogenic modifications that not only transcend scales but also change the relative forces that determine species coexistence. Research into the effects of habitat modification as a key to understanding global change should extend beyond species richness and composition to include species co‐occurrence, species interactions and any functional consequences.  相似文献   

18.
Arthropod communities in fragmented agricultural landscapes depend on local processes and the interactions between communities in the habitat islands. We aimed to study metacommunity structure of spiders, a group that is known for high dispersal power, local niche partitioning and for engaging in species interactions. While living in fragmented habitats could lead to nestedness, other ecological traits of spiders might equally lead to patterns dominated either by species interactions or habitat filtering. We asked, which community pattern will prevail in a typical agricultural landscape with isolated patches of semi-natural habitats. Such a situation was studied by sampling spiders in 28 grassland locations in a Hungarian agricultural landscape. We used the elements of metacommunity structure (EMS) framework to distinguish between alternative patterns that reveal community organization. The EMS analysis indicated coherent species ranges, high turnover and boundary clumping, suggesting Clementsian community organization. The greatest variation in species composition was explained by local habitat characteristics, indicating habitat filtering. The influence of dispersal could be detected by the significant effect of landscape composition, which was strongest at 500 m. We conclude that dispersal allows spiders to respond coherently to the environment, creating similar communities in similar habitats. Consistent habitat differences, such as species rich versus species poor vegetation, lead to recognisably different, recurrent communities. These characteristics make spiders a predictable and diverse source of natural enemies in agricultural landscapes. Sensitivity to habitat composition at medium distances warns us that landscape homogenization may alter these metacommunity processes.  相似文献   

19.
Metacommunity theory has advanced our understanding of how local and regional processes affect the structure of ecological communities. While parasites have largely been omitted from metacommunity research, parasite communities can provide the large sample sizes and discrete boundaries often required for evaluating metacommunity patterns. Here, we used assemblages of flatworm parasites that infect freshwater snails (Helisoma trivolvis) to evaluate three questions: 1) what factors affect individual host infections within ponds? 2) Is the parasite metacommunity structured among ponds? And 3) what is the relative role of local versus regional processes in determining metacommunity structure and species richness among ponds? We examined 10 821 snails from 96 sites in five park complexes in the San Francisco Bay area, California, and found 953 infections from six parasite groups. At the within‐pond level, infection status of host snails correlated positively with individual snail size and pond infection prevalence for all six parasite groups. Using an ordination method to test for metacommunity structure, we found that the parasite metacommunity was organized in a non‐random pattern with species responding individually along an environmental gradient. Based on a model selection approach involving local and regional predictors, parasite species richness and metacommunity structure correlated with both local abiotic (pH and total dissolved nitrogen) and biotic (non‐host mollusk density, and H. trivolvis biomass) factors, with little support for regional predictors. Overall, this trematode metacommunity most closely followed the predictions from the species sorting or mass effects metacommunity paradigm, in which community diversity is filtered by local site characteristics.  相似文献   

20.
1. The creation or severe disturbance of habitat patches is generally followed by a phase of community (re)assembly. After such an event, the trajectory of community assembly in habitat patches may be highly variable because of stochasticity during the dispersal and colonization process. Conversely, assembly patterns may also be deterministic if communities are shaped by prevalent environmental conditions in the habitat patches (species sorting), or by systematic differences in the dispersal capacities of species. 2. In this study, we investigated the pattern of community assembly of zooplankton species in 25 newly created ponds at 13 different sites in Flanders (Belgium). Over a period of three consecutive years, we assessed at what rate and with what frequency species of the regional species pool colonized the newly created ponds. We also studied the development of community structure over time and tested whether the dynamics were consistent across different ponds at the different locations. In addition, we characterized the dynamics of metacommunity features, such as alpha, beta and gamma diversity in clusters of ponds. 3. Even within the first year after their creation, the new ponds were rapidly colonized by a small subset of species from the regional species pool (Daphnia obtusa, Chydorus sphaericus and Simocephalus vetulus). These species dominated the cladoceran assemblages during the subsequent years. Other species in the regional species pools were only sporadically able to colonize ponds. 4. During the entire study period, we observed no significant shifts in species lists or in the occurrences of species among years. The low incidence of the majority of species may be the result of dispersal limitation or the failure of immigrants to establish due to priority effects exerted by the first colonizers. There was, nevertheless, a consistent change in the relative abundance of species, which was most probably mediated by differences in the hatching time among species influencing species composition in the first year. 5. In contrast to expectations, we observed no increase in average alpha diversity (local species richness) and gamma diversity (total richness of entire pond clusters) during the course of the study period. Beta diversity was relatively low from the beginning and remained constant throughout the study period. These deterministic patterns can mainly be attributed to the dominance of the three first colonizing species and the low success rate of other species in colonizing the ponds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号