首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron deficiency is the most prevalent micronutrient deficiency worldwide. Whereas dietary calcium is known to reduce the bioavailability of iron, the molecular basis of this interaction is not understood. We tested the hypothesis that divalent metal-ion transporter-1 (DMT1)—the principal or only mechanism by which nonheme iron is taken up at the intestinal brush border—is shared also by calcium. We expressed human DMT1 in RNA-injected Xenopus oocytes and examined its activity using radiotracer assays and the voltage clamp. DMT1 did not mediate 45Ca2+ uptake. Instead, we found that Ca2+ blocked the Fe2+-evoked currents and inhibited 55Fe2+ uptake in a noncompetitive manner (Ki ≈ 20 mM). The mechanism of inhibition was independent of voltage and did not involve intracellular Ca2+ signaling. The alkaline-earth metal ions Ba2+, Sr2+, and Mg2+ also inhibited DMT1-mediated iron-transport activity. We conclude that Ca2+ is a low-affinity noncompetitive inhibitor—but not a transported substrate—of DMT1, explaining in part the effect of high dietary calcium on iron bioavailability.  相似文献   

2.

Background

Vanadium is an essential transition metal in biological systems. Several key proteins related to vanadium accumulation and its physiological function have been isolated, but no vanadium ion transporter has yet been identified.

Methods

We identified and cloned a member of the Nramp/DCT family of membrane metal transporters (AsNramp) from the ascidian Ascidia sydneiensis samea, which can accumulate extremely high levels of vanadium in the vacuoles of a type of blood cell called signet ring cells (also called vanadocytes). We performed immunological and biochemical experiments to examine its expression and transport function.

Results

Western blotting analysis showed that AsNramp was localized at the vacuolar membrane of vanadocytes. Using the Xenopus oocyte expression system, we showed that AsNramp transported VO2+ into the oocyte as pH-dependent manner above pH 6, while no significant activity was observed below pH 6. Kinetic parameters (Km and Vmax) of AsNramp-mediated VO2+ transport at pH 8.5 were 90 nM and 9.1 pmol/oocyte/h, respectively. A rat homolog, DCT1, did not transport VO2+ under the same conditions. Excess Fe2+, Cu2+, Mn2+, or Zn2+ inhibited the transport of VO2+. AsNramp was revealed to be a novel VO2+/H+ antiporter, and we propose that AsNramp mediates vanadium accumulation coupled with the electrochemical gradient generated by vacuolar H+-ATPase in vanadocytes.

General Significance

This is the first report of identification and functional analysis on a membrane transporter for vanadium ions.  相似文献   

3.
In this work, we present evidence of Fe2+ transport by rat heart mitochondrial F1Fo ATP synthase. Iron uptake by the vesicles containing the enzyme was concentration- and temperature-dependent, with an optimum temperature of 37 °C. Both ATP and ADP stimulated iron uptake in a concentration-dependent manner, whereas AMP, AMPPCP, and mADP did not. Inhibitors of the enzyme, oligomycin, and resveratrol similarly blocked iron transport. The iron uptake was confirmed by inhibition using specific antibodies against the α, β, and c subunits of the enzyme. Interestingly, slight transport of common divalent and trivalent metal ions such as Mg+2, Ca+2, Mn+2, Zn+2, Cu+2, Fe+3, and Al+3 was observed. Moreover, Cu+2, even in the nM range, inhibited iron uptake and attained maximum inhibition of approximately 56%. Inorganic phosphate (Pi) in the medium exerted an opposite effect depending on the type of adenosine nucleotide, which was suppressed with ATP, but enhanced with ADP. A similarly stimulating effect of ATP and ADP with an inverse effect of Pi suggests that the activity of ATPase and ATP synthase may be associated with iron uptake in a different manner, probably via antiport of H+.  相似文献   

4.
A variety of metal ions can bind to the iron-transport protein, transferrin, at two specific sites. For each metal ion, a carboxylate anion is concomitantly bound. Six metal ions which were examined fall into two classes based on proton release and ultraviolet spectral changes which accompany binding to the protein. Class II ions, which include Cu2+ and Zn2+, release approximately 2 H+/metal bond. Class III ions, which include Fe3+, Ga3+, Al3+, and VO2+, release approximately 3 H+/metal bound. The increase in absorbance near 242 nm, characteristic of tyrosine ionization, has the ratio 0.55–0.75 for class II:class III ions. Both Fe3+ and Cu2+ form metal-transferrin-oxalate complexes in the presence of excess C2O42?. Fe3+ releases close to 3 H+/metal whether forming oxalate or bicarbonate complexes with transferrin. Binding of Cu2+ to transferrin releases 2 H+/metal in the presence of C2O2?4 or HCO3?. Since equal numbers of H+/metal are released for both anions, it is likely that the bicarbonate ion does not lose its proton, and remains as HCO3? in transferrin. These results are interpreted in terms of possible combinations of ligands at the metal binding sites.  相似文献   

5.
Despite recurrent exposure to zinc through inhalation of ambient air pollution particles, relatively little information is known about the homeostasis of this metal in respiratory epithelial cells. We describe zinc uptake and release by respiratory epithelial cells and test the postulate that Zn2+ transport interacts with iron homeostasis in these same cells. Zn2+ uptake after 4 and 8 h of exposure to zinc sulfate was concentration- and time-dependent. A majority of Zn2+ release occurred in the 4 h immediately following cell exposure to ZnSO4. Regarding metal importers, mRNA for Zip1 and Zip2 showed no change after respiratory epithelial cell exposure to zinc while mRNA for divalent metal transporter (DMT)1 increased. Western blot assay for DMT1 protein supported an elevated expression of this transport protein following zinc exposure. RT-PCR confirmed mRNA for the metal exporters ZnT1 and ZnT4 with the former increasing after ZnSO4. Cell concentrations of ferritin increased with zinc exposure while oxidative stress, measured as lipid peroxides, was decreased supporting an anti-oxidant function for Zn2+. Increased DMT1 expression, following pre-incubations of respiratory epithelial cells with TNF-α, IFN-γ, and endotoxin, was associated with significantly decreased intracellular zinc transport. Finally, incubations of respiratory epithelial cells with both zinc sulfate and ferric ammonium citrate resulted in elevated intracellular concentrations of both metals. We conclude that exposure to zinc increases iron uptake by respiratory epithelial cells. Elevations in cell iron can possibly affect an increased expression of DMT1 and ferritin which function to diminish oxidative stress. Comparable to other metal exposures, changes in iron homeostasis may contribute to the biological effects of zinc in specific cells and tissues.  相似文献   

6.
The yeast proteins Mrs3p and Mrs4p are two closely related members of the mitochondrial carrier family (MCF), which had previously been implicated in mitochondrial Fe2+ homeostasis. A vertebrate Mrs3/4 homologue named mitoferrin was shown to be essential for erythroid iron utilization and proposed to function as an essential mitochondrial iron importer. Indirect reporter assays in isolated yeast mitochondria indicated that the Mrs3/4 proteins are involved in mitochondrial Fe2+ utilization or transport under iron-limiting conditions. To have a more direct test for Mrs3/4p mediated iron uptake into mitochondria we studied iron (II) transport across yeast inner mitochondrial membrane vesicles (SMPs) using the iron-sensitive fluorophore PhenGreen SK (PGSK). Wild-type SMPs showed rapid uptake of Fe2+ which was driven by the external Fe2+ concentration and stimulated by acidic pH. SMPs from the double deletion strain mrs3/4Δ failed to show this rapid Fe2+ uptake, while SMPs from cells overproducing Mrs3/4p exhibited increased Fe2+ uptake rates. Cu2+ was transported at similar rates as Fe2+, while other divalent cations, such as Zn2+ and Cd2+ apparently did not serve as substrates for the Mrs3/4p transporters. We conclude that the carrier proteins Mrs3p and Mrs4p transport Fe2+ across the inner mitochondrial membrane. Their activity is dependent on the pH gradient and it is stimulated by iron shortage.  相似文献   

7.
Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin (Tf) was investigated at various physiological iron to Tf concentration ratios. Loading percentages for these metal ions are based on a two M n+ to one Tf (i.e., 100% loading) stoichiometry and were determined using a particle beam/hollow cathode–optical emission spectroscopy (PB/HC-OES) method. Serum iron concentrations typically found in normal, iron-deficient, iron-deficient from chronic disease, iron-deficient from inflammation, and iron-overload conditions were used to determine the effects of iron concentration on iron loading into Tf. The PB/HC-OES method allows the monitoring of metal ions in competition with Fe3+ for Tf binding. Iron-overload concentrations impeded the ability of chromium (15.0 μM) or nickel (10.3 μM) to load completely into Tf. Low Fe3+ uptake by Tf under iron-deficient or chronic disease iron concentrations limited Ni2+ loading into Tf. Competitive binding kinetic studies were performed with Fe3+, Cr3+, and Ni2+ to determine percentages of metal ion uptake into Tf as a function of time. The initial rates of Fe3+ loading increased in the presence of nickel or chromium, with maximal Fe3+ loading into Tf in all cases reaching approximately 24%. Addition of Cr3+ to 50% preloaded Fe3+–Tf showed that excess chromium (15.0 μM) displaced roughly 13% of Fe3+ from Tf, resulting in 7.6 ± 1.3% Cr3+ loading of Tf. The PB/HC-OES method provides the ability to monitor multiple metal ions competing for Tf binding and will help to understand metal competition for Tf binding.  相似文献   

8.
Kinetics of radioactive iron transport were examined in three strains of Bacillus megaterium. In strain ATCC 19213, which secretes the ferric-chelating secondary hydroxamic acid schizokinen, 59Fe3+ uptake from 59FeCl3 or the ferric hydroxamate Desferal-59Fe3+ was rapid and reached saturation within 3 min. In strain SK11, which does not secrete schizokinen, transport from 59FeCl3 was markedly reduced; the two ferric hydroxamates Desferal-59Fe3+ or schizokinen-59Fe3+ increased both total 59Fe3+ uptake and the 59Fe3+ appearing in a cellular trichloroacetic acid-insoluble fraction, although 10 min was required to reach saturation. Certain characteristics of transport from both ferric hydroxamates and FeCl3 suggest that iron uptake was an active process. The growth-inhibitory effect of aluminum on strain SK11 was probably due to the formation of nonutilizable iron-aluminum complexes which blocked uptake from 59FeCl3. Desferal or schizokinen prevented this blockage. A strain (ARD-1) resistant to the ferric hydroxamate antibiotic A22765 was isolated from strain SK11. Strain ARD-1 failed to grow with Desferal-Fe3+ as an iron source, and it was unable to incorporate 59Fe3+ from this source. Growth and iron uptake in strain ARD-1 were similar to strain SK11 with schizokinen-Fe3+ or the iron salt as sources. It is suggested that the ferric hydroxamates, or the iron they chelate, may be transported by a special system which might be selective for certain ferric hydroxamates. Strain ARD-1 may be unable to recognize both the antibiotic A22765 and the structurally similar chelate Desferal-Fe3+, while retaining its capacity to utilize schizokinen-Fe3+.  相似文献   

9.
A new rhodamine–ethylenediamine–nitrothiourea conjugate (RT) was synthesized and its sensing property as a fluorescent chemodosimeter toward metal ions was explored in water media. Analytical results from absorption and fluorescence spectra revealed that the addition of Hg2+ ions to the aqueous solution of the chemodosimeter RT caused a distinct fluorescence OFF–ON response with a remarkable visual color change from colorless to pink; however, no clear spectral and color changes were observed from other metal ions including: Zn2+, Cu2+, Cd2+, Pb2+, Ag+, Fe2+, Cr3+, Co3+, Ni2+, Ca2+, Mg2+, K+ and Na+. The sensing results and the molecular structure suggested that a Hg2+‐induced a desulfurization reaction and cyclic guanylation of the thiourea moiety followed by ring‐opening of the rhodamine spirolactam in RT are responsible for a distinct fluorescence turn‐on signal, indicating that RT is a remarkably sensitive and selective chemodosimeter for Hg2+ ions in aqueous solution. Hg2+ within a concentration range from 0.1 to 25 μM can be determined using RT as a chemodosimeter and a detection limit of 0.04 μM is achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Electron paramagnetic resonance (epr) studies demonstrate that at low levels of conalbumin (CA) saturation with Fe3+ or VO2+, a ph-dependent preference of the metal exists for different protein binding-site configurations,A, B, and C. The vanadyl ion epr spectra of mixed VO2+, Fe3+-conalbumin in which Fe3+ is preferentially bound to the N- or C-terminal binding site are consistent with all three configurations being formed at both metal sites. At high pH the spectra suggest interaction between binding sites. In the absence of HCO3?, VO2+ is bound almost exclusively in B configuration; a full binding capacity of 2 VO2+ per CA is retained. Stoichiometric amounts of HCO3? convert the epr spectrum from B to an A, B, C type. Addition of oxalate to bicarbonate-free preparations converts the B spectrum to an A′, B, C′ type where the B resonances have lost intensity to the A′ and C′ resonances but have not changed position. The data suggest that configuration B is anion independent and that only one equivalent of binding sites at pH 9 responds to the presence of HCO31? or oxalate by changing configuration but not metal binding capability. The form of the bound anion may be HCO3? rather than CO32?. The formation rate of the colored ferric conalbumin complex by oxidizing Fe2+ to Fe3+ in limited HCO3? at pH 9 is also consistent with one equivalent of sites having different anion requirements than the remaining sites. Increased NaCl or NaClO4 concentration or substitution of D2O for water as solvent affect the environment of bound VO2+, but the mechanisms of action are unknown.  相似文献   

11.
The reactions of mass-selected iron clusters Fen + (n=1-5) with dimethyl carbonate, (CH3O)2CO, are examined by means of Fourier-transform ion-cyclotron-resonance mass spectrometry. For the bare metal cation Fe+, loss of a methyl radical prevails which leads to the iron carbonate species FeOC(O)OCH3 +. For the corresponding Fen + clusters, this type of reaction is not observed anymore. Instead, the clusters show a strong tendency for a formal O-atom abstraction leading to the formation of the corresponding monoxide clusters FenO+ In addition, several bond activations of dimethyl carbonate are observed which markedly differ from the behavior of the mononuclear cation. Nevertheless, a mechanistic analysis implies that the initial steps are the same for bare Fe+ as well as small Fen + clusters.  相似文献   

12.
ZIP8 (SLC39A8) belongs to the ZIP family of metal-ion transporters. Among the ZIP proteins, ZIP8 is most closely related to ZIP14, which can transport iron, zinc, manganese, and cadmium. Here we investigated the iron transport ability of ZIP8, its subcellular localization, pH dependence, and regulation by iron. Transfection of HEK 293T cells with ZIP8 cDNA enhanced the uptake of 59Fe and 65Zn by 200 and 40%, respectively, compared with controls. Excess iron inhibited the uptake of zinc and vice versa. In RNA-injected Xenopus oocytes, ZIP8-mediated 55Fe2+ transport was saturable (K0.5 of ∼0.7 μm) and inhibited by zinc. ZIP8 also mediated the uptake of 109Cd2+, 57Co2+, 65Zn2+ > 54Mn2+, but not 64Cu (I or II). By using immunofluorescence analysis, we found that ZIP8 expressed in HEK 293T cells localized to the plasma membrane and partially in early endosomes. Iron loading increased total and cell-surface levels of ZIP8 in H4IIE rat hepatoma cells. We also determined by using site-directed mutagenesis that asparagine residues 40, 88, and 96 of rat ZIP8 are glycosylated and that N-glycosylation is not required for iron or zinc transport. Analysis of 20 different human tissues revealed abundant ZIP8 expression in lung and placenta and showed that its expression profile differs markedly from ZIP14, suggesting nonredundant functions. Suppression of endogenous ZIP8 expression in BeWo cells, a placental cell line, reduced iron uptake by ∼40%, suggesting that ZIP8 participates in placental iron transport. Collectively, these data identify ZIP8 as an iron transport protein that may function in iron metabolism.  相似文献   

13.
DMT1: A mammalian transporter for multiple metals   总被引:13,自引:0,他引:13  
DMT1 has four names, transports as many as eight metals, may have four or more isoforms and carries out its transport for multiple purposes. This review is a start at sorting out these multiplicities. A G185R mutation results in diminished gastrointestinal iron uptake and decreased endosomal iron exit in microcytic mice and Belgrade rats. Comparison of mutant to normal rodents is one analytical tool. Ectopic expression is another. Antibodies that distinguish the isoforms are also useful. Two mRNA isoforms differ in the 3′ UTR: +IRE DMT1 has an IRE (Iron Responsive Element) but -IRE DMT1 lacks this feature. The ±IRE proteins differ in the distal 18 or 25 amino acid residues after shared identity for the proximal 543 residues. A major function is serving as the apical iron transporter in the lumen of the gut. The +IRE isoform appears to have that role. Another role is endosomal exit of iron. Some evidence indicts the -IRE isoform for this function. In our ectopic expression assay for metal uptake, four metals – Fe2+, Mn2+, Ni2+ and Co2+ – respond to the normal DMT1 cDNA but not the G185 R mutant. Two metals did not – Cd2+ and Zn2+ – and two – Cu2+ and Pb2+–remain to be tested. In competition experiments in the same assay, Cd2+, Cu2+ and Pb2+ inhibit Mn2+ uptake but Zn2+ did not. In rodent mutants, Fe and Mn appear more dependent on DMT1 than Cu and Zn. Experiments based on ectopic expression, specific antibodies that inhibit metal uptake and labeling data indicate that Fe3+ uptake depends on a different pathway in multiple cells. Two isoforms localize differently in a number of cell types. Unexpectedly, the -IRE isoform is in the nuclei of cells with neuronal properties. While the function of -IRE DMT1 in the nucleus is speculative, one may safely infer that this localization identifies new role(s) for this multifunctional transporter. Management of toxic challenges is another function related to metal homeostasis. Airways represent a gateway tissue for metal entry. Preliminary evidence using specific PCR primers and antibodies specific to the two isoforms indicates that -IRE mRNA and protein increase in response to exposure to metal in lungs and in a cell culture model; the +IRE form is unresponsive. Thus the -IRE form could be part of a detoxification system in which +IRE DMT1 does not participate. How does iron status affect other metals' toxicity? In the case of Mn, iron deficiency may enhance cellular responses.  相似文献   

14.
A novel fluorescent probe‐based naphthalene Schiff, 1‐(C2‐glucosyl‐ylimino‐methyl)‐naphthalene‐2‐ol (L) was synthesized by coupling d ‐glucosamine hydrochloride with 2‐hydroxy‐1‐naphthaldehyde. It exhibited excellent selectivity and highly sensitivity for Al3+ in ethanol with a strong fluorescence response, while other common metal ions such as Pb2+, Mg2+, Cu2+, Co2+, Ni2+, Cd2+, Fe2+, Mn2+, Hg2+, Li+, Na+, K+, Fe3+, Cr3+, Zn2+, Ag+, Ba2+ and Ca2+ did not cause the same fluorescence response. The probe selectively bound Al3+ with a binding constant (Ka) of 5.748 × 103 M?1 and a lowest detection limit (LOD) of 4.08 nM. Moreover, the study found that the fluorescence of the L ? Al3+ complex could be quenched after addition of F? in the same medium, while other anions, including Cl?, Br?, I?, NO2?, NO3?, ClO4?, CO32?, HCO3?, SO42?, HSO4?, CH3COO?, PO43?, HPO42?, S2? and S2O32? had nearly no influence on probe behaviour. Binding of the [L ? Al3+] complex to a F? anion was established by different fluorescence titration studies, with a detection limit of 3.2 nM in ethanol. The fluorescent probe was also successfully applied in the imaging detection of Al3+ and F? in living cells.  相似文献   

15.
Ferric and ferrous ion plays critical roles in bioprocesses,their influences in many fields have not been fully explored due to the lack of methods for quantification of ferric and ferrous ions in biological system or complex matrix.In this study,an M13 bacteriophage(phage) was engineered for use as a sensor for ferric and ferrous ions via the display of a tyrosine residue on the P8 coat protein.The interaction between the specific phenol group of tyrosine and Fe~(3+)./ Fe~(2+).was used as the sensor.Transmission electron microscopy showed aggregation of the tyrosine-displaying phages after incubation with Fe~(3+) and Fe~(2+).The aggregated phages infected the host bacterium inefficiently.This phenomenon could be utilized for detection of ferric and ferrous ions.For ferric ions,a calibration curve ranging from 200 nmol/L to 8 μmol/L with a detection limit of 58 nmol/L was acquired.For ferrous ions,a calibration curve ranging from 800 nmol/L to 8μmol/L with a detection limit of 641.7 nmol/L was acquired.The assay was specific for Fe~((3+)) and Fe~((2+)) when tested against Ni~(2+),Pb~(2+),Zn~(2+),Mn~(2+),Co~(2+),Ca~(2+),Cu~(2+),Cr~(3+),Ba~(2+),and K~+.The tyrosine displaying phage to Fe~(3+) and Fe~(2+) interaction would have plenty of room in application to biomatenals and bionanotechnology.  相似文献   

16.
An oxadiazole derivative 2 was prepared by condensation reaction through cyclization of semicarbazone in the presence of bromine; the structural confirmation was supported by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, Fourier transform-infrared spectroscopy, and liquid chromatography-mass spectrometry. Its sensing ability towards Ni2+ ion was examined showing a binding constant of 1.04 × 105 compared with other suitable metal cations (Ca2+, Co2+, Cr3+, Ag+, Pb2+, Fe3+, Mg2+, and K+) using ultraviolet–visible (UV–vis) and fluorescence spectroscopic studies. The minimum concentration of Ni2+ ions and limit of detection was found to be 9.4 μM. A job's plot gave the binding stoichiometry ratio of oxadiazole derivative 2 vs Ni2+ ions as 2:1. Furthermore, the intercalative binding mode of oxadiazole derivative 2 with calf thymus DNA was supported by ultraviolet–visible (UV–vis) and fluorescent light, viscosity, cyclic voltammetry, time-resolved fluorescence, and circular dichroism measurements. The molecular docking result gave the binding score for oxadiazole derivative 2 as −6.5 kcal/mol, which further confirmed the intercalative interaction. In addition, the antifungal activity of oxadiazole derivative 2 was also screened against several fungal strains (C. albicans, C. glabrata, and C. tropicalis) by broth dilution and disc diffusion methods. In antioxidant studies, the oxadiazole derivative 2 showed potential scavenging activity against 2,2-diphenyl-1-picrylhydrazyl and H2O2 free radicals.  相似文献   

17.
Glutathione S-transferases (GSTs) are an important enzyme family which play a critical role in detoxification system. In our study, GST was purified from muscle tissue of Chalcalburnus tarichii Pallas with 301.5-fold purification and 19.07% recovery by glutathione agarose affinity chromatography. The purity of enzyme was checked by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, showing a two band, because of having heterodimer structure. KM values were 1.59 and 0.53?mM for 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH), respectively. Vmax values for CDNB and GSH were also determined as 5.58 and 1.88?EU/mL, respectively. In addition, inhibition effects of Ag+, Cu2+, Cd2+, Fe3+, Pb2+, Cr2+, Co2+ and Zn2+ metal ions were investigated on the enzyme activity and IC50, Ki values were calculated for these metal ions.  相似文献   

18.
Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe2+/O2 oxidoreduction and formation of [Fe3+O]n multimers within the protein cage, en route to the cavity, at sites distributed over ∼50 Å. Recent NMR and Co2+-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe2+ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe3+O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A650 nm) and on mineral growth (Fe3+O-A350 nm), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe2+ access/selectivity to the active sites (Glu130), (ii) distribution of Fe2+ to each of the three active sites near each ion channel (Asp127), (iii) product (diferric oxo) release into the Fe3+O nucleation channels (Ala26), and (iv) [Fe3+O]n transit through subunits (Val42, Thr149). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe2+ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits.  相似文献   

19.
Electron paramagnetic resonance (EPR) signals at g′ = 4.3 are commonly encountered in biological samples owing to mononuclear high-spin (S = 5/2) Fe3+ ions in sites of low symmetry. The present study was undertaken to develop the experimental method and a suitable g′ = 4.3 intensity standard and for accurately quantifying the amount of Fe3+ responsible for such signals. By following the work of Aasa and Vänngård (J. Magn. Reson. 19:308–315, 1975), we present equations relating the EPR intensity of S = 5/2 ions to the intensities of S = 1/2 standards more commonly employed in EPR spectrometry. Of the chelates tested, Fe3+–EDTA (1:3 ratio) in 1:3 glycerol/water (v/v), pH 2, was found to be an excellent standard for frozen-solution S = 5/2 samples at 77 K. The spin concentrations of Cu2+–EDTA and aqua VO2+, both S = 1/2 ions, and of Fe3+–transferrin, an S = 5/2 ion, were measured against this standard and found to agree within 2.2% of their known metal ion concentrations. Relative standard deviations of ±3.6, ±5.3 and ±2.9% in spin concentration were obtained for the three samples, respectively. The spin concentration determined for Fe3+–desferrioxamine of known Fe3+ concentration was anomalously low suggesting the presence of EPR-silent multimeric iron species in solution.  相似文献   

20.
Despite important advancesin the understanding of copper secretion and excretion, the molecularcomponents of intestinal copper absorption remain a mystery. DMT1, alsoknown as Nramp2 and DCT1, is the transporter responsible for intestinaliron uptake. Electrophysiological evidence suggests that DMT1 can alsobe a copper transporter. Thus we examined the potential role of DMT1 asa copper transporter in intestinal Caco-2 cells. Treatment of cellswith a DMT1 antisense oligonucleotide resulted in 80 and 48%inhibition of iron and copper uptake, respectively. Cells incorporatedconsiderable amounts of copper as Cu1+, whereasCu2+ transport was about 10-fold lower. Cu1+inhibited apical Fe2+ transport. Fe2+, but notFe3+, effectively inhibited Cu1+ uptake. Theiron content of the cells influenced both copper and iron uptake. Cellswith low iron content transported fourfold more iron and threefold morecopper than cells with high iron content. These results demonstratethat DMT1 is a physiologically relevant Cu1+ transporter inintestinal cells, indicating that intestinal absorption of copper andiron are intertwined.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号