首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Chemically defined conditions for human iPSC derivation and culture   总被引:1,自引:0,他引:1  
We re-examine the individual components for human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) culture and formulate a cell culture system in which all protein reagents for liquid media, attachment surfaces and splitting are chemically defined. A major improvement is the lack of a serum albumin component, as variations in either animal- or human-sourced albumin batches have previously plagued human ESC and iPSC culture with inconsistencies. Using this new medium (E8) and vitronectin-coated surfaces, we demonstrate improved derivation efficiencies of vector-free human iPSCs with an episomal approach. This simplified E8 medium should facilitate both the research use and clinical applications of human ESCs and iPSCs and their derivatives, and should be applicable to other reprogramming methods.  相似文献   

2.
Adipose tissue is an abundantly available source of proliferative and multipotent mesenchymal stem cells with promising potential for regenerative therapeutics. We previously demonstrated that both human and mouse adipose-derived stem cells (ASCs) can be reprogrammed into induced pluripotent stem cells (iPSCs) with efficiencies higher than those that have been reported for other cell types. The ASC-derived iPSCs can be generated in a feeder-independent manner, representing a unique model to study reprogramming and an important step toward establishing a safe, clinical grade of cells for therapeutic use. In this study, we provide a detailed protocol for isolation, preparation and transformation of ASCs from fat tissue into mouse iPSCs in feeder-free conditions and human iPSCs using feeder-dependent or feeder/xenobiotic-free processes. This protocol also describes how ASCs can be used as feeder cells for maintenance of other pluripotent stem cells. ASC derivation is rapid and can be completed in <1 week, with mouse and human iPS reprogramming times averaging 1.5 and 2.5 weeks, respectively.  相似文献   

3.
4.

Background

Epigenetic regulation is critical for the maintenance of human pluripotent stem cells. It has been shown that pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, appear to have a hypermethylated status compared with differentiated cells. However, the epigenetic differences in genes that maintain stemness and regulate reprogramming between embryonic stem cells and induced pluripotent stem cells remain unclear. Additionally, differential methylation patterns of induced pluripotent stem cells generated using diverse methods require further study.

Methodology

Here, we determined the DNA methylation profiles of 10 human cell lines, including 2 ESC lines, 4 virally derived iPSC lines, 2 episomally derived iPSC lines, and the 2 parental cell lines from which the iPSCs were derived using Illumina''s Infinium HumanMethylation450 BeadChip. The iPSCs exhibited a hypermethylation status similar to that of ESCs but with distinct differences from the parental cells. Genes with a common methylation pattern between iPSCs and ESCs were classified as critical factors for stemness, whereas differences between iPSCs and ESCs suggested that iPSCs partly retained the parental characteristics and gained de novo methylation aberrances during cellular reprogramming. No significant differences were identified between virally and episomally derived iPSCs. This study determined in detail the de novo differential methylation signatures of particular stem cell lines.

Conclusions

This study describes the DNA methylation profiles of human iPSCs generated using both viral and episomal methods, the corresponding somatic cells, and hESCs. Series of ss-DMRs and ES-iPS-DMRs were defined with high resolution. Knowledge of this type of epigenetic information could be used as a signature for stemness and self-renewal and provides a potential method for selecting optimal pluripotent stem cells for human regenerative medicine.  相似文献   

5.
Data suggest that clinical applications of human induced pluripotent stem cells (hiPSCs) will be realized. Nonetheless, clinical applications will require hiPSCs that are free of exogenous DNA and that can be manufactured through Good Manufacturing Practice (GMP). Optimally, derivation of hiPSCs should be rapid and efficient in order to minimize manipulations, reduce potential for accumulation of mutations and minimize financial costs. Previous studies reported the use of modified synthetic mRNAs to reprogram fibroblasts to a pluripotent state. Here, we provide an optimized, fully chemically defined and feeder-free protocol for the derivation of hiPSCs using synthetic mRNAs. The protocol results in derivation of fully reprogrammed hiPSC lines from adult dermal fibroblasts in less than two weeks. The hiPSC lines were successfully tested for their identity, purity, stability and safety at a GMP facility and cryopreserved. To our knowledge, as a proof of principle, these are the first integration-free iPSCs lines that were reproducibly generated through synthetic mRNA reprogramming that could be putatively used for clinical purposes.  相似文献   

6.
Mack AA  Kroboth S  Rajesh D  Wang WB 《PloS one》2011,6(11):e27956
The methodology to create induced pluripotent stem cells (iPSCs) affords the opportunity to generate cells specific to the individual providing the host tissue. However, existing methods of reprogramming as well as the types of source tissue have significant limitations that preclude the ability to generate iPSCs in a scalable manner from a readily available tissue source. We present the first study whereby iPSCs are derived in parallel from multiple donors using episomal, non-integrating, oriP/EBNA1-based plasmids from freshly drawn blood. Specifically, successful reprogramming was demonstrated from a single vial of blood or less using cells expressing the early lineage marker CD34 as well as from unpurified peripheral blood mononuclear cells. From these experiments, we also show that proliferation and cell identity play a role in the number of iPSCs per input cell number. Resulting iPSCs were further characterized and deemed free of transfected DNA, integrated transgene DNA, and lack detectable gene rearrangements such as those within the immunoglobulin heavy chain and T cell receptor loci of more differentiated cell types. Furthermore, additional improvements were made to incorporate completely defined media and matrices in an effort to facilitate a scalable transition for the production of clinic-grade iPSCs.  相似文献   

7.
Induced pluripotent stem cells (iPSCs) are characterised by their ability to differentiate into any cell type of the body. Accordingly, iPSCs possess immense potential for disease modelling, pharmaceutical screening and autologous cell therapies. The most common source of iPSCs derivation is skin fibroblasts. However, from a clinical point of view, skin fibroblasts may not be ideal, as invasive procedures such as skin biopsies are required for their extraction. Moreover, fibroblasts are highly heterogeneous with a poorly defined developmental pathway, which makes studying reprogramming mechanistics difficult. Granulocytes, on the other hand, are easily obtainable, their developmental pathway has been extensively studied and fluorescence activated cell sorting allows for the isolation of these cells at high purity; thus iPSCs derivation from granulocytes could provide an alternative to fibroblast-derived iPSCs. Previous studies succeeded in producing iPSC colonies from mouse granulocytes but with the use of a mitotically inactivated feeder layer, restricting their use for studying reprogramming mechanistics. As granulocytes display poor survival under culture conditions, we investigated the influence of haematopoietic cytokines to stabilise this cell type in vitro and allow for reprogramming in the absence of a feeder layer. Our results show that treatment with MEF-conditioned media and/or initial exposure to GM-CSF allows for reprogramming of granulocytes under feeder-free conditions. This work can serve as a basis for future work aimed at dissecting the reprogramming mechanism as well as obtaining large numbers of iPSCs from a clinically relevant cell source.  相似文献   

8.
9.
10.
A systematic evaluation of three different methods for generating induced pluripotent stem (iPS) cells was performed using the same set of parental cells in our quest to develop a feeder independent and xeno-free method for somatic cell reprogramming that could be transferred into a GMP environment. When using the BJ fibroblast cell line, the highest reprogramming efficiency (1.89% of starting cells) was observed with the mRNA based method which was almost 20 fold higher than that observed with the retrovirus (0.2%) and episomal plasmid (0.10%) methods. Standard characterisation tests did not reveal any differences in an array of pluripotency markers between the iPS lines derived using the various methods. However, when the same methods were used to reprogram three different primary fibroblasts lines, two derived from patients with rapid onset parkinsonism dystonia and one from an elderly healthy volunteer, we consistently observed higher reprogramming efficiencies with the episomal plasmid method, which was 4 fold higher when compared to the retroviral method and over 50 fold higher than the mRNA method. Additionally, with the plasmid reprogramming protocol, recombinant vitronectin and synthemax® could be used together with commercially available, fully defined, xeno-free essential 8 medium without significantly impacting the reprogramming efficiency. To demonstrate the robustness of this protocol, we reprogrammed a further 2 primary patient cell lines, one with retinosa pigmentosa and the other with Parkinsons disease. We believe that we have optimised a simple and reproducible method which could be used as a starting point for developing GMP protocols, a prerequisite for generating clinically relevant patient specific iPS cells.  相似文献   

11.
A few years ago, the establishment of human induced pluripotent stem cells (iPSCs) ushered in a new era in biomedicine. Potential uses of human iPSCs include modeling pathogenesis of human genetic diseases, autologous cell therapy after gene correction, and personalized drug screening by providing a source of patient-specific and symptom relevant cells. However, there are several hurdles to overcome, such as eliminating the remaining reprogramming factor transgene expression after human iPSCs production. More importantly, residual transgene expression in undifferentiated human iPSCs could hamper proper differentiations and misguide the interpretation of disease-relevant in vitro phenotypes. With this reason, integration-free and/or transgene-free human iPSCs have been developed using several methods, such as adenovirus, the piggyBac system, minicircle vector, episomal vectors, direct protein delivery and synthesized mRNA. However, efficiency of reprogramming using integration-free methods is quite low in most cases.Here, we present a method to isolate human iPSCs by using Sendai-virus (RNA virus) based reprogramming system. This reprogramming method shows consistent results and high efficiency in cost-effective manner.  相似文献   

12.
Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.  相似文献   

13.
The evolution of "humanized" (i.e., free of animal sourced reagents) and ultimately chemically defined culture systems for human embryo stem cell (hESC) isolation and culture is of importance to improving their efficacy and safety in research and therapeutic applications. This can be achieved by integration of a multitude of individual approaches to replace or eliminate specific animal sourced reagents into a single comprehensive protocol. In the present study our objective was to integrate strategies obviating reliance on some of the most poorly defined and path-critical factors associated with hESC derivation, namely the use of animal immune compliment to isolate embryo inner cell mass, and animal sourced serum products and feeder cells to sustain hESC growth and attachment. As a result we report the derivation of six new hESC lines isolated by outgrowth from whole blastocysts on an extracellular matrix substrate of purified human laminin (Ln) with transitional reliance on mitotically inactivated human fibroblast (HDF) feeder cells. With this integrated system hESC lines were isolated using either HDF conditioned medium supplemented with a bovine-sourced serum replacement (bSRM), or a defined serum-free medium (SFM) containing only human sourced and recombinant protein. Further, outgrowth of embryonic cells from whole blastocysts in both media could be achieved for up to 1 week without reliance on feeder cells. All variant conditions sustained undifferentiated cell status, a stable karyotype and the potential to form cells representative of all three germinal lineages in vitro and in vivo, when transitioned off of feeders onto Laminin or Matrigel. Our study thus demonstrates the capacity to integrate derivation strategies eliminating a requirement for animal immune compliment and serum products, with a transitional requirement for human feeder cells. This represents another sequential step in the generation of therapeutic grade stem cells with reduced risk of zoonotic pathogen transmission.  相似文献   

14.
15.
Although significant advancement has been made in the induced pluripotent stem cell (iPSC) field, current methods for iPSC derivation are labor intensive and costly. These methods involve manual selection, expansion, and characterization of multiple clones for each reprogrammed cell sample and therefore significantly hampers the feasibility of studies where a large number of iPSCs need to be derived. To develop higher throughput iPSC reprogramming methods, we generated iPSCs as a pooled culture using rigorous cell surface pluripotent marker selection with TRA-1-60 or SSEA4 antibodies followed by Magnetic Activated Cell Sorting (MACS). We observed that pool-selected cells are similar or identical to clonally derived iPSC lines from the same donor by all criteria examined, including stable expression of endogenous pluripotency genes, normal karyotype, loss of exogenous reprogramming factors, and in vitro spontaneous and lineage directed differentiation potential. This strategy can be generalized for iPSC generation using both integrating and non-integrating reprogramming methods. Our studies provide an attractive alternative to clonal derivation of iPSCs using rigorously selected cell pools and is amenable to automation.  相似文献   

16.
Induced pluripotent stem(iPS)cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs)are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentivirai expressed reprogramming factors.In our study,iPS cells expressed common pluripotency markers,displayed human embryonic stern cells(hESCs)morphology and unmethylated promoters of NANOG and OCT4.These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells.  相似文献   

17.
18.
The generation of induced pluripotent stem cells (iPSCs) by introducing reprogramming factors into somatic cells is a promising method for stem cell therapy in regenerative medicine. Therefore, it is desirable to develop a minimally invasive simple method to create iPSCs. In this study, we generated human nasal epithelial cells (HNECs)-derived iPSCs by gene transduction with Sendai virus (SeV) vectors. HNECs can be obtained from subjects in a noninvasive manner, without anesthesia or biopsy. In addition, SeV carries no risk of altering the host genome, which provides an additional level of safety during generation of human iPSCs. The multiplicity of SeV infection ranged from 3 to 4, and the reprogramming efficiency of HNECs was 0.08-0.10%. iPSCs derived from HNECs had global gene expression profiles and epigenetic states consistent with those of human embryonic stem cells. The ease with which HNECs can be obtained, together with their robust reprogramming characteristics, will provide opportunities to investigate disease pathogenesis and molecular mechanisms in vitro, using cells with particular genotypes.  相似文献   

19.
Chou BK  Mali P  Huang X  Ye Z  Dowey SN  Resar LM  Zou C  Zhang YA  Tong J  Cheng L 《Cell research》2011,21(3):518-529
To identify accessible and permissive human cell types for efficient derivation of induced pluripotent stem cells (iPSCs), we investigated epigenetic and gene expression signatures of multiple postnatal cell types such as fibroblasts and blood cells. Our analysis suggested that newborn cord blood (CB) and adult peripheral blood (PB) mononuclear cells (MNCs) display unique signatures that are closer to iPSCs and human embryonic stem cells (ESCs) than age-matched fibroblasts to iPSCs/ESCs, thus making blood MNCs an attractive cell choice for the generation of integration-free iPSCs. Using an improved EBNA1/OriP plasmid expressing 5 reprogramming factors, we demonstrated highly efficient reprogramming of briefly cultured blood MNCs. Within 14 days of one-time transfection by one plasmid, up to 1000 iPSC-like colonies per 2 million transfected CB MNCs were generated. The efficiency of deriving iPSCs from adult PB MNCs was approximately 50-fold lower, but could be enhanced by inclusion of a second EBNA1/OriP plasmid for transient expression of additional genes such as SV40 T antigen. The duration of obtaining bona fide iPSC colonies from adult PB MNCs was reduced to half (~14 days) as compared to adult fibroblastic cells (28-30 days). More than 9 human iPSC lines derived from PB or CB blood cells are extensively characterized, including those from PB MNCs of an adult patient with sickle cell disease. They lack V(D)J DNA rearrangements and vector DNA after expansion for 10-12 passages. This facile method of generating integration-free human iPSCs from blood MNCs will accelerate their use in both research and future clinical applications.  相似文献   

20.
Recently, induced pluripotent stem cells (iPSCs) were established as promising cell sources for revolutionary regenerative therapies. The initial culture system used for iPSC generation needed fetal calf serum in the culture medium and mouse embryonic fibroblast as a feeder layer, both of which could possibly transfer unknown exogenous antigens and pathogens into the iPSC population. Therefore, the development of culture systems designed to minimize such potential risks has become increasingly vital for future applications of iPSCs for clinical use. On another front, although donor cell types for generating iPSCs are wide-ranging, T cells have attracted attention as unique cell sources for iPSCs generation because T cell-derived iPSCs (TiPSCs) have a unique monoclonal T cell receptor genomic rearrangement that enables their differentiation into antigen-specific T cells, which can be applied to novel immunotherapies. In the present study, we generated transgene-free human TiPSCs using a combination of activated human T cells and Sendai virus under defined culture conditions. These TiPSCs expressed pluripotent markers by quantitative PCR and immunostaining, had a normal karyotype, and were capable of differentiating into cells from all three germ layers. This method of TiPSCs generation is more suitable for the therapeutic application of iPSC technology because it lowers the risks associated with the presence of undefined, animal-derived feeder cells and serum. Therefore this work will lead to establishment of safer iPSCs and extended clinical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号