首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accurate identification of protein structure class solely using extracted information from protein sequence is a complicated task in the current computational biology. Prediction of protein structural class for low-similarity sequences remains a challenging problem. In this study, the new computational method has been developed to predict protein structural class by fusing the sequence information and evolution information to represent a protein sample. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark data-sets, 1189 and 25PDB with sequence similarity lower than 40 and 25%, respectively. Comparison of our results with other methods shows that the proposed method by us is very promising and may provide a cost-effective alternative to predict protein structural class in particular for low-similarity data-sets.  相似文献   

2.
The accurate identification of protein structure class solely using extracted information from protein sequence is a complicated task in the current computational biology. Prediction of protein structural class for low-similarity sequences remains a challenging problem. In this study, the new computational method has been developed to predict protein structural class by fusing the sequence information and evolution information to represent a protein sample. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark data-sets, 1189 and 25PDB with sequence similarity lower than 40 and 25%, respectively. Comparison of our results with other methods shows that the proposed method by us is very promising and may provide a cost-effective alternative to predict protein structural class in particular for low-similarity data-sets.  相似文献   

3.
Advancements in sequencing technologies have witnessed an exponential rise in the number of newly found enzymes. Enzymes are proteins that catalyze bio-chemical reactions and play an important role in metabolic pathways. Commonly, function of such enzymes is determined by experiments that can be time consuming and costly. Hence, a need for a computing method is felt that can distinguish protein enzyme sequences from those of non-enzymes and reliably predict the function of the former. To address this problem, approaches that cluster enzymes based on their sequence and structural similarity have been presented. But, these approaches are known to fail for proteins that perform the same function and are dissimilar in their sequence and structure. In this article, we present a supervised machine learning model to predict the function class and sub-class of enzymes based on a set of 73 sequence-derived features. The functional classes are as defined by International Union of Biochemistry and Molecular Biology. Using an efficient data mining algorithm called random forest, we construct a top-down three layer model where the top layer classifies a query protein sequence as an enzyme or non-enzyme, the second layer predicts the main function class and bottom layer further predicts the sub-function class. The model reported overall classification accuracy of 94.87% for the first level, 87.7% for the second, and 84.25% for the bottom level. Our results compare very well with existing methods, and in many cases report better performance. Using feature selection methods, we have shown the biological relevance of a few of the top rank attributes.  相似文献   

4.
Knowledge of structural class plays an important role in understanding protein folding patterns. In this study, a simple and powerful computational method, which combines support vector machine with PSI-BLAST profile, is proposed to predict protein structural class for low-similarity sequences. The evolution information encoding in the PSI-BLAST profiles is converted into a series of fixed-length feature vectors by extracting amino acid composition and dipeptide composition from the profiles. The resulting vectors are then fed to a support vector machine classifier for the prediction of protein structural class. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark datasets, 1189 (containing 1092 proteins) and 25PDB (containing 1673 proteins) with sequence similarity lower than 40% and 25%, respectively. The overall accuracies attain 70.7% and 72.9% for 1189 and 25PDB datasets, respectively. Comparison of our results with other methods shows that our method is very promising to predict protein structural class particularly for low-similarity datasets and may at least play an important complementary role to existing methods.  相似文献   

5.
We present a protein fold recognition method, MANIFOLD, which uses the similarity between target and template proteins in predicted secondary structure, sequence and enzyme code to predict the fold of the target protein. We developed a non-linear ranking scheme in order to combine the scores of the three different similarity measures used. For a difficult test set of proteins with very little sequence similarity, the program predicts the fold class correctly in 34% of cases. This is an over twofold increase in accuracy compared with sequence-based methods such as PSI-BLAST or GenTHREADER, which score 13-14% correct first hits for the same test set. The functional similarity term increases the prediction accuracy by up to 3% compared with using the combination of secondary structure similarity and PSI-BLAST alone. We argue that using functional and secondary structure information can increase the fold recognition beyond sequence similarity.  相似文献   

6.
Structural class characterizes the overall folding type of a protein or its domain. A number of computational methods have been proposed to predict structural class based on primary sequences; however, the accuracy of these methods is strongly affected by sequence homology. This paper proposes, an ensemble classification method and a compact feature-based sequence representation. This method improves prediction accuracy for the four main structural classes compared to competing methods, and provides highly accurate predictions for sequences of widely varying homologies. The experimental evaluation of the proposed method shows superior results across sequences that are characterized by entire homology spectrum, ranging from 25% to 90% homology. The error rates were reduced by over 20% when compared with using individual prediction methods and most commonly used composition vector representation of protein sequences. Comparisons with competing methods on three large benchmark datasets consistently show the superiority of the proposed method.  相似文献   

7.
The knowledge collated from the known protein structures has revealed that the proteins are usually folded into the four structural classes: all-α, all-β, α/β and α + β. A number of methods have been proposed to predict the protein's structural class from its primary structure; however, it has been observed that these methods fail or perform poorly in the cases of distantly related sequences. In this paper, we propose a new method for protein structural class prediction using low homology (twilight-zone) protein sequences dataset. Since protein structural class prediction is a typical classification problem, we have developed a Support Vector Machine (SVM)-based method for protein structural class prediction that uses features derived from the predicted secondary structure and predicted burial information of amino acid residues. The examination of different individual as well as feature combinations revealed that the combination of secondary structural content, secondary structural and solvent accessibility state frequencies of amino acids gave rise to the best leave-one-out cross-validation accuracy of ~81% which is comparable to the best accuracy reported in the literature so far.  相似文献   

8.
Given the sequence of a protein, how can we predict whether it is an enzyme or a non‐enzyme? If it is, what enzyme family class it belongs to? Because these questions are closely relevant to the biological function of a protein and its acting object, their importance is self‐evident. Particularly with the explosion of protein sequences entering into data banks and the relatively much slower progress in using biochemical experiments to determine their functions, it is highly desired to develop an automated method that can be used to give fast answers to these questions. By hybridizing the gene ontology and pseudo‐amino‐acid composition, we have introduced a new method that is called GO‐PseAA predictor and operate it in a hybridization space. To avoid redundancy and bias, demonstrations were performed on a data set in which none of the proteins in an individual class has ≥40% sequence identity to any other. The overall success rate thus obtained by the jackknife cross‐validation test in identifying enzyme and non‐enzyme was 93%, and that in identifying the enzyme family was 94% for the following six main Enzyme Commission (EC) classes: (1) oxidoreductase, (2) transferase, (3) hydrolase, (4) lyase, (5) isomerase, and (6) ligase. The corresponding rates by the independent data set test were 98% and 97%, respectively.  相似文献   

9.
With the rapid increment of protein sequence data, it is indispensable to develop automated and reliable predictive methods for protein function annotation. One approach for facilitating protein function prediction is to classify proteins into functional families from primary sequence. Being the most important group of all proteins, the accurate prediction for enzyme family classes and subfamily classes is closely related to their biological functions. In this paper, for the prediction of enzyme subfamily classes, the Chou's amphiphilic pseudo-amino acid composition [Chou, K.C., 2005. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21, 10-19] has been adopted to represent the protein samples for training the 'one-versus-rest' support vector machine. As a demonstration, the jackknife test was performed on the dataset that contains 2640 oxidoreductase sequences classified into 16 subfamily classes [Chou, K.C., Elrod, D.W., 2003. Prediction of enzyme family classes. J. Proteome Res. 2, 183-190]. The overall accuracy thus obtained was 80.87%. The significant enhancement in the accuracy indicates that the current method might play a complementary role to the exiting methods.  相似文献   

10.
11.
Zhang S  Ding S  Wang T 《Biochimie》2011,93(4):710-714
Information on the structural classes of proteins has been proven to be important in many fields of bioinformatics. Prediction of protein structural class for low-similarity sequences is a challenge problem. In this study, 11 features (including 8 re-used features and 3 newly-designed features) are rationally utilized to reflect the general contents and spatial arrangements of the secondary structural elements of a given protein sequence. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark datasets, 1189 and 25PDB with sequence similarity lower than 40% and 25%, respectively. Comparison of our results with other methods shows that our proposed method is very promising and may provide a cost-effective alternative to predict protein structural class in particular for low-similarity datasets.  相似文献   

12.
从氨基酸序列预测蛋白质折叠速率   总被引:1,自引:0,他引:1  
蛋白质折叠速率预测是当今生物物理学最具挑战性的课题之一.近年来,许多科研工作者开展了大量的研究工作来探索折叠速率的决定因素,许多参数和方法被相继提出.但氨基酸残基间的相互作用、氨基酸的序列顺序等信息对折叠速率的影响从未被提及.采用伪氨基酸组成的方法提取氨基酸的序列顺序信息,利用蒙特卡洛方法选择最佳特征因子,建立线性回归模型进行折叠速率预测.该方法能在不需要任何(显示)结构信息的情况下,直接从蛋白质的氨基酸序列出发对折叠速率进行预测.在Jackknife交互检验方法的验证下,对含有99个蛋白质的数据集,发现折叠速率的预测值与实验值有很好的相关性,相关系数能达到0.81,预测误差仅为2.54.这一精度明显优于其他基于序列的方法,充分说明蛋白质的序列顺序信息是影响蛋白质折叠速率的重要因素.  相似文献   

13.
The ability to predict protein function from structure is becoming increasingly important as the number of structures resolved is growing more rapidly than our capacity to study function. Current methods for predicting protein function are mostly reliant on identifying a similar protein of known function. For proteins that are highly dissimilar or are only similar to proteins also lacking functional annotations, these methods fail. Here, we show that protein function can be predicted as enzymatic or not without resorting to alignments. We describe 1178 high-resolution proteins in a structurally non-redundant subset of the Protein Data Bank using simple features such as secondary-structure content, amino acid propensities, surface properties and ligands. The subset is split into two functional groupings, enzymes and non-enzymes. We use the support vector machine-learning algorithm to develop models that are capable of assigning the protein class. Validation of the method shows that the function can be predicted to an accuracy of 77% using 52 features to describe each protein. An adaptive search of possible subsets of features produces a simplified model based on 36 features that predicts at an accuracy of 80%. We compare the method to sequence-based methods that also avoid calculating alignments and predict a recently released set of unrelated proteins. The most useful features for distinguishing enzymes from non-enzymes are secondary-structure content, amino acid frequencies, number of disulphide bonds and size of the largest cleft. This method is applicable to any structure as it does not require the identification of sequence or structural similarity to a protein of known function.  相似文献   

14.
Protein structural class prediction is one of the challenging problems in bioinformatics. Previous methods directly based on the similarity of amino acid (AA) sequences have been shown to be insufficient for low-similarity protein data-sets. To improve the prediction accuracy for such low-similarity proteins, different methods have been recently proposed that explore the novel feature sets based on predicted secondary structure propensities. In this paper, we focus on protein structural class prediction using combinations of the novel features including secondary structure propensities as well as functional domain (FD) features extracted from the InterPro signature database. Our comprehensive experimental results based on several benchmark data-sets have shown that the integration of new FD features substantially improves the accuracy of structural class prediction for low-similarity proteins as they capture meaningful relationships among AA residues that are far away in protein sequence. The proposed prediction method has also been tested to predict structural classes for partially disordered proteins with the reasonable prediction accuracy, which is a more difficult problem comparing to structural class prediction for commonly used benchmark data-sets and has never been done before to the best of our knowledge. In addition, to avoid overfitting with a large number of features, feature selection is applied to select discriminating features that contribute to achieve high prediction accuracy. The selected features have been shown to achieve stable prediction performance across different benchmark data-sets.  相似文献   

15.
Protein structural class prediction is one of the challenging problems in bioinformatics. Previous methods directly based on the similarity of amino acid (AA) sequences have been shown to be insufficient for low-similarity protein data-sets. To improve the prediction accuracy for such low-similarity proteins, different methods have been recently proposed that explore the novel feature sets based on predicted secondary structure propensities. In this paper, we focus on protein structural class prediction using combinations of the novel features including secondary structure propensities as well as functional domain (FD) features extracted from the InterPro signature database. Our comprehensive experimental results based on several benchmark data-sets have shown that the integration of new FD features substantially improves the accuracy of structural class prediction for low-similarity proteins as they capture meaningful relationships among AA residues that are far away in protein sequence. The proposed prediction method has also been tested to predict structural classes for partially disordered proteins with the reasonable prediction accuracy, which is a more difficult problem comparing to structural class prediction for commonly used benchmark data-sets and has never been done before to the best of our knowledge. In addition, to avoid overfitting with a large number of features, feature selection is applied to select discriminating features that contribute to achieve high prediction accuracy. The selected features have been shown to achieve stable prediction performance across different benchmark data-sets.  相似文献   

16.
Cell membranes are vitally important to the life of a cell. Although the basic structure of biological membrane is provided by the lipid bilayer, membrane proteins perform most of the specific functions. Membrane proteins are putatively classified into five different types. Identification of their types is currently an important topic in bioinformatics and proteomics. In this paper, based on the concept of representing protein samples in terms of their pseudo-amino acid composition (Chou, K.C., 2001. Prediction of protein cellular attributes using pseudo amino acid composition. Proteins: Struct. Funct. Genet. 43, 246-255), the fuzzy K-nearest neighbors (KNN) algorithm has been introduced to predict membrane protein types, and high success rates were observed. It is anticipated that, the current approach, which is based on a branch of fuzzy mathematics and represents a new strategy, may play an important complementary role to the existing methods in this area. The novel approach may also have notable impact on prediction of the other attributes, such as protein structural class, protein subcellular localization, and enzyme family class, among many others.  相似文献   

17.

Background

Subcellular localization of a new protein sequence is very important and fruitful for understanding its function. As the number of new genomes has dramatically increased over recent years, a reliable and efficient system to predict protein subcellular location is urgently needed.

Results

Esub8 was developed to predict protein subcellular localizations for eukaryotic proteins based on amino acid composition. In this research, the proteins are classified into the following eight groups: chloroplast, cytoplasm, extracellular, Golgi apparatus, lysosome, mitochondria, nucleus and peroxisome. We know subcellular localization is a typical classification problem; consequently, a one-against-one (1-v-1) multi-class support vector machine was introduced to construct the classifier. Unlike previous methods, ours considers the order information of protein sequences by a different method. Our method is tested in three subcellular localization predictions for prokaryotic proteins and four subcellular localization predictions for eukaryotic proteins on Reinhardt's dataset. The results are then compared to several other methods. The total prediction accuracies of two tests are both 100% by a self-consistency test, and are 92.9% and 84.14% by the jackknife test, respectively. Esub8 also provides excellent results: the total prediction accuracies are 100% by a self-consistency test and 87% by the jackknife test.

Conclusions

Our method represents a different approach for predicting protein subcellular localization and achieved a satisfactory result; furthermore, we believe Esub8 will be a useful tool for predicting protein subcellular localizations in eukaryotic organisms.
  相似文献   

18.
Inferring protein functions from structures is a challenging task, as a large number of orphan protein structures from structural genomics project are now solved without their biochemical functions characterized. For proteins binding to similar substrates or ligands and carrying out similar functions, their binding surfaces are under similar physicochemical constraints, and hence the sets of allowed and forbidden residue substitutions are similar. However, it is difficult to isolate such selection pressure due to protein function from selection pressure due to protein folding, and evolutionary relationship reflected by global sequence and structure similarities between proteins is often unreliable for inferring protein function. We have developed a method, called pevoSOAR (pocket-based evolutionary search of amino acid residues), for predicting protein functions by solving the problem of uncovering amino acids residue substitution pattern due to protein function and separating it from amino acids substitution pattern due to protein folding. We incorporate evolutionary information specific to an individual binding region and match local surfaces on a large scale with millions of precomputed protein surfaces to identify those with similar functions. Our pevoSOAR method also generates a probablistic model called the computed binding a profile that characterizes protein-binding activities that may involve multiple substrates or ligands. We show that our method can be used to predict enzyme functions with accuracy. Our method can also assess enzyme binding specificity and promiscuity. In an objective large-scale test of 100 enzyme families with thousands of structures, our predictions are found to be sensitive and specific: At the stringent specificity level of 99.98%, we can correctly predict enzyme functions for 80.55% of the proteins. The overall area under the receiver operating characteristic curve measuring the performance of our prediction is 0.955, close to the perfect value of 1.00. The best Matthews coefficient is 86.6%. Our method also works well in predicting the biochemical functions of orphan proteins from structural genomics projects.  相似文献   

19.

Background

Recently, the metabolite-likeness of the drug space has emerged and has opened a new possibility for exploring human metabolite-like candidates in drug discovery. However, the applicability of metabolite-likeness in drug discovery has been largely unexplored. Moreover, there are no reports on its applications for the repositioning of drugs to possible enzyme modulators, although enzyme-drug relations could be directly inferred from the similarity relationships between enzyme’s metabolites and drugs.

Methods

We constructed a drug-metabolite structural similarity matrix, which contains 1,861 FDA-approved drugs and 1,110 human intermediary metabolites scored with the Tanimoto similarity. To verify the metabolite-likeness measure for drug repositioning, we analyzed 17 known antimetabolite drugs that resemble the innate metabolites of their eleven target enzymes as the gold standard positives. Highly scored drugs were selected as possible modulators of enzymes for their corresponding metabolites. Then, we assessed the performance of metabolite-likeness with a receiver operating characteristic analysis and compared it with other drug-target prediction methods. We set the similarity threshold for drug repositioning candidates of new enzyme modulators based on maximization of the Youden’s index. We also carried out literature surveys for supporting the drug repositioning results based on the metabolite-likeness.

Results

In this paper, we applied metabolite-likeness to repurpose FDA-approved drugs to disease-associated enzyme modulators that resemble human innate metabolites. All antimetabolite drugs were mapped with their known 11 target enzymes with statistically significant similarity values to the corresponding metabolites. The comparison with other drug-target prediction methods showed the higher performance of metabolite-likeness for predicting enzyme modulators. After that, the drugs scored higher than similarity score of 0.654 were selected as possible modulators of enzymes for their corresponding metabolites. In addition, we showed that drug repositioning results of 10 enzymes were concordant with the literature evidence.

Conclusions

This study introduced a method to predict the repositioning of known drugs to possible modulators of disease associated enzymes using human metabolite-likeness. We demonstrated that this approach works correctly with known antimetabolite drugs and showed that the proposed method has better performance compared to other drug target prediction methods in terms of enzyme modulators prediction. This study as a proof-of-concept showed how to apply metabolite-likeness to drug repositioning as well as potential in further expansion as we acquire more disease associated metabolite-target protein relations.
  相似文献   

20.
Knowledge of protein structural class can provide important information about its folding patterns. Many approaches have been developed for the prediction of protein structural classes. However, the information used by these approaches is primarily based on amino acid sequences. In this study, a novel method is presented to predict protein structural classes by use of chemical shift (CS) information derived from nuclear magnetic resonance spectra. Firstly, 399 non-homologue (about 15% identity) proteins were constructed to investigate the distribution of averaged CS values of six nuclei ((13)CO, (13)Cα, (13)Cβ, (1)HN, (1)Hα and (15)N) in three protein structural classes. Subsequently, support vector machine was proposed to predict three protein structural classes by using averaged CS information of six nuclei. Overall accuracy of jackknife cross-validation achieves 87.0%. Finally, the feature selection technique is applied to exclude redundant information and find out an optimized feature set. Results show that the overall accuracy increased to 88.0% by using the averaged CSs of (13)CO, (1)Hα and (15)N. The proposed approach outperformed other state-of-the-art methods in terms of predictive accuracy in particular for low-similarity protein data. We expect that our proposed approach will be an excellent alternative to traditional methods for protein structural class prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号