首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
Anaerobic bacteria that dechlorinate perchloroethene   总被引:11,自引:0,他引:11  
In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium.  相似文献   

2.
Abstract Eight homoacetogenic strains of the genera Acetobacterium, Clostridium and Sporomusa were tested for their ability to dechlorinate tetrachloroethylene (perchloroethene, PCE). Of the organisms tested only Sporomusa ovata was able to reductively dechlorinate PCE with methanol as an electron donor. Resting cells of S. ovata reductively dechlorinated PCE at a rate of 9.8 nmol h−1 (mg protein)−1 to trichloroethylene (TCE) as the sole product. The dechlorination activity depended on concomitant acetogenesis from methanol and CO2. Cell-free extracts of S. ovata, Clostridium formicoaceticum, Acetobacterium woodii , and the methanogenic bacterium Methanolobus tindarius transformed PCE to TCE with Ti(III) or carbon monoxide as electron donors. Corrinoids were shown in S. ovata to be involved in the dechlorination reaction of PCE to TCE as evident from the reversible inhibition with propyl iodide. Rates of dechlorination followed a pseudo-first-order kinetic.  相似文献   

3.
"Dehalococcoides ethenogenes" 195 can reductively dechlorinate tetrachloroethene (PCE) completely to ethene (ETH). When PCE-grown strain 195 was transferred (2% [vol/vol] inoculum) into growth medium amended with trichloroethene (TCE), cis-dichloroethene (DCE), 1,1-DCE, or 1,2-dichloroethane (DCA) as an electron acceptor, these chlorinated compounds were consumed at increasing rates over time, which indicated that growth occurred. Moreover, the number of cells increased when TCE, 1,1-DCE, or DCA was present. PCE, TCE, 1,1-DCE, and cis-DCE were converted mainly to vinyl chloride (VC) and then to ETH, while DCA was converted to ca. 99% ETH and 1% VC. cis-DCE was used at lower rates than PCE, TCE, 1,1-DCE, or DCA was used. When PCE-grown cultures were transferred to media containing VC or trans-DCE, products accumulated slowly, and there was no increase in the rate, which indicated that these two compounds did not support growth. When the intermediates in PCE dechlorination by strain 195 were monitored, TCE was detected first, followed by cis-DCE. After a lag, VC, 1,1-DCE, and trans-DCE accumulated, which is consistent with the hypothesis that cis-DCE is the precursor of these compounds. Both cis-DCE and 1,1-DCE were eventually consumed, and both of these compounds could be considered intermediates in PCE dechlorination, whereas the small amount of trans-DCE that was produced persisted. Cultures grown on TCE, 1,1-DCE, or DCA could immediately dechlorinate PCE, which indicated that PCE reductive dehalogenase activity was constitutive when these electron acceptors were used.  相似文献   

4.
A methanogenic and sulfate-reducing consortium, which was enriched on medium containing tetrachloroethylene (PCE), had the ability to dechlorinate high concentrations of PCE. Dehalogenation was due to the direct activity of methanogens. However, interactions between methanogenic and sulfate-reducing bacteria involved modification of the dechlorination process according to culture conditions. In the absence of sulfate, the relative percentage of electrons used in PCE dehalogenation increased after an addition of lactate in batch conditions. The sulfate reducers would produce further reductant from lactate catabolism. This reductant might be used by methanogenic bacteria in PCE dechlorination. A mutualistic interaction was observed in the absence of sulfate. However in the presence of sulfate, methanogenesis and dechlorination decreased because of interspecific competition, probably between the H(2)-oxydizing methanogenic and sulfate-reducing bacteria in batch conditions. In the semicontinuous fixed-bed reactor, the presence of sulfate did not affect dechlorination and methanogenesis. The sulfate-reducing bacteria may not be competitors of H(2)-consuming methanogens in the reactor because of the existence of microbial biofilm. The presence of the fixed film may be an advantage for bioremediation and industrial treatment of effluent charged in sulfate and PCE. This is the first report on the microbial ecology of a methanogenic and sulfate-reducing PCE-enrichment consortium.  相似文献   

5.
The strictly anaerobic, pentachlorophenol (PCP) degrading bacterium DCB-2 was immobilized in an Upflow Anaerobic Sludge Blanket (UASB) reactor containing sterile granules. PCP and lactate were fed to the reactor and the concentration of chlorophenols in the effluent were monitored for 641 days. PCP was found to be degraded and transformed into 3.4.5-trichlorophenol in the reactor where DCB-2 was introduced into the granular sludge. PCP was still transformed to 3.4.5-trichlorophenol when the hydraulic retention time was decreased to six hours which was much lower than the generation time of DCB-2 insuring no free living cells in the reactor. This indicated that DCB-2 was immobilized in the granular layer. A control reactor that contained only sterile granules did not dechlorinate PCP indicating that the performance in the inoculated reactor was only due to the introduced bacteria. Immobilization of DCB-2 in the granules was further demonstrated by adding an antibody raised against DCB-2 to sliced granules. Bacteria thus visualized formed a net structure inside the granules. No DCB-2 bacteria could be found in granules from the control reactor. When lactate was omitted from the influent, the reactor still dechlorinated PCP in accordance with our findings that lactate was not used by DCB-2. This suggested that the reducing equivalents for reductive dechlorination were derived from the granules themselves. The reactor performance was 120 mol·l reactor-1·day-1, comparable to the best described performance of a UASB-reactor and to aerobic reactors. Our study demonstrates that granules can be constructed which possess specific abilities such as a dechlorinating activity and at the same time be high performing. This result have implications for eco-engineering of granules for anaerobic treatment of contaminated waters.  相似文献   

6.
Tetrachloroethylene (perchloroethylene, PCE) is a suspected carcinogen and a common groundwater contaminant. Although PCE is highly resistant to aerobic biodegradation, it is subject to reductive dechlorination reactions in a variety of anaerobic habitats. The data presented here clearly establish that axenic cultures of Methanosarcina sp. strain DCM dechlorinate PCE to trichloroethylene and that this is a biological reaction. Growth on methanol, acetate, methylamine, and trimethylamine resulted in PCE dechlorination. The reductive dechlorination of PCE occurred only during methanogenesis, and no dechlorination was noted when CH4 production ceased. There was a clear dependence of the extent of PCE dechlorination on the amount of methanogenic substrate (methanol) consumed. The amount of trichloroethylene formed per millimole of CH4 formed remained essentially constant for a 20-fold range of methanol concentrations and for growth on acetate, methylamine, and trimethylamine. These results suggest that the reducing equivalents for PCE dechlorination are derived from CH4 biosynthesis and that the extent of chloroethylene dechlorination can be enhanced by stimulating methanogenesis. It is proposed that electrons transferred during methanogenesis are diverted to PCE by a reduced electron carrier involved in methane formation.  相似文献   

7.
This study examined the ability of different electron donors (i.e., hydrogen, methanol, butyrate, and yeast extract) to sustain long-term (500 days) reductive dechlorination of tetrachloroethene (PCE) in anerobic fill-and-draw bioreactors operated at 3:1 donor:PCE ratio (defined on a total-oxidation basis for the donor). Initially (i.e., until approximately day 80), the H(2)-fed bioreactor showed the best ability to completely dechlorinate the dosed PCE (0.5 mmol/L) to ethene whereas, in the presence of methanol, butyric acid or no electron donor added (but low-level yeast extract), dechlorination was limited by the fermentation of the organic substrates and in turn by H(2) availability. As the study progressed, the H(2)-fed reactor experienced a diminishing ability to dechlorinate, while more stable dechlorinating activity was maintained in the reactors that were fed organic donors. The initial diminished ability of the H(2)-fed reactor to dechlorinate (after about 100 days), could be partially explained in terms of increased competition for H(2) between dechlorinators and methanogens, whereas other factors such as growth-factor limitation and/or accumulation of toxic and/or inhibitory metabolites were shown to play a role for longer incubation periods (over 500 days). In spite of decreasing activity with time, the H(2)-fed reactor proved to be the most effective in PCE dechlorination: after about 500 days, more than 65% of the added PCE was dechlorinated to ethene in the H(2)-fed reactor, versus 36%, 22%, and <1% in the methanol-fed, butyrate-fed, and control reactors, respectively.  相似文献   

8.
Two tetrachlorethene (PCE)-dechlorinating populations, designated strains BB1 and BRS1, were isolated from pristine river sediment and chloroethene-contaminated aquifer material, respectively. PCE-to-cis-1,2-dichloroethene-dechlorinating activity could be transferred in defined basal salts medium with acetate as the electron donor and PCE as the electron acceptor. Taxonomic analysis based on 16S rRNA gene sequencing placed both isolates within the Desulfuromonas cluster in the delta subdivision of the Proteobacteria. PCE was dechlorinated at rates of at least 139 nmol min(-1) mg of protein(-1) at pH values between 7.0 and 7.5 and temperatures between 25 and 30 degrees C. Dechlorination also occurred at 10 degrees C. The electron donors that supported dechlorination included acetate, lactate, pyruvate, succinate, malate, and fumarate but not hydrogen, formate, ethanol, propionate, or sulfide. Growth occurred with malate or fumarate alone, whereas oxidation of the other electron donors depended strictly on the presence of fumarate, malate, ferric iron, sulfur, PCE, or TCE as an electron acceptor. Nitrate, sulfate, sulfite, thiosulfate, and other chlorinated compounds were not used as electron acceptors. Sulfite had a strong inhibitory effect on growth and dechlorination. Alternate electron acceptors (e.g., fumarate or ferric iron) did not inhibit PCE dechlorination and were consumed concomitantly. The putative fumarate, PCE, and ferric iron reductases were induced by their respective substrates and were not constitutively present. Sulfide was required for growth. Both strains tolerated high concentrations of PCE, and dechlorination occurred in the presence of free-phase PCE (dense non-aqueous-phase liquids). Repeated growth with acetate and fumarate as substrates yielded a BB1 variant that had lost the ability to dechlorinate PCE. Due to the 16S rRNA gene sequence differences with the closest relatives and the unique phenotypic characteristics, we propose that the new isolates are members of a new species, Desulfuromonas michiganensis, within the Desulfuromonas cluster of the Geobacteraceae.  相似文献   

9.
Desulfomonile tiedjei, a strict anaerobe capable of reductively dechlorinating 3-chlorobenzoate, also dechlorinates tetrachloroethene and trichloroethene. It is not known, however, if the aryl and aliphatic dechlorination activities are catalyzed by the same enzymatic system. Cultures induced for 3-chlorobenzoate activity dechlorinated tetrachloroethene and trichloroethene to lower chlorinated products while uninduced parallel cultures did not dechlorinate either substrate. The observed rate of PCE dechlorination in induced cultures was 22 µmol h–1 g protein–1, which is considerably faster than previous rates obtained with defined cultures of this organism. These results show that both dechlorination activities are co-induced and therefore, that the dechlorination mechanisms may share at least some components.Abbreviations PCE tetrachloroethene - TCE trichloroethene - cis-DCE cis-dichloroethene - trans-DCE trans-dichloroethene - 3FBz 3-fluorobenzoate - 3ClBz 3-chlorobenzoate  相似文献   

10.
The halogenated compound tetrachloroethene (perchloroethene, PCE) is a persistent contaminant of aquifers, soils and sediments. Although a number of microorganisms are known to reductively dechlorinate PCE by dehalorespiration, their diversity and community structure especially in pristine environments remain elusive. In this study, we report on the detection of a novel group of dehalorespiring bacteria that reductively dechlorinate PCE to cis -dichloroethene by RNA-based stable isotope probing. Pristine river sediment was incubated at 15°C with PCE at low aqueous concentration. Upon formation of dechlorination products, the microbial community was probed with 13C-labelled acetate as electron donor and carbon source. Terminal restriction fragment length polymorphism (T-RFLP) analysis of density-separated 16S rRNA revealed a predominantly 13C-labelled bacterial population only in the microcosm with PCE in high-density gradient fractions, whereas in the control without PCE Bacteria-specific rRNA was restricted to light gradient fractions. By cloning and sequence analysis of 16S rRNA, the predominant population was identified as a novel group of bacteria within the phylum Chloroflexi . These microorganisms, designated Lahn Cluster (LC), were only distantly related to cultivated dehalorespiring Dehalococcoides spp. (92–94% sequence identity). Minor clone groups detected 13C-labelled and thus, potentially involved in PCE dehalorespiration, were related to β-proteobacterial Dechloromonas spp., and δ- Proteobacteria ( Geobacteraceae , Desulfobacteraceae , Desulfobulbaceae ). In contrast, clones from an ethene-producing microcosm incubated at 20°C grouped with known Dehalococcoides spp. Our results show that stable isotope probing allows targeting dehalorespiring bacteria as functional guild, and to identify novel PCE-respiring populations previously not recognized.  相似文献   

11.
Dehalococcoides ethenogenes” 195 can reductively dechlorinate tetrachloroethene (PCE) completely to ethene (ETH). When PCE-grown strain 195 was transferred (2% [vol/vol] inoculum) into growth medium amended with trichloroethene (TCE), cis-dichloroethene (DCE), 1,1-DCE, or 1,2-dichloroethane (DCA) as an electron acceptor, these chlorinated compounds were consumed at increasing rates over time, which indicated that growth occurred. Moreover, the number of cells increased when TCE, 1,1-DCE, or DCA was present. PCE, TCE, 1,1-DCE, and cis-DCE were converted mainly to vinyl chloride (VC) and then to ETH, while DCA was converted to ca. 99% ETH and 1% VC. cis-DCE was used at lower rates than PCE, TCE, 1,1-DCE, or DCA was used. When PCE-grown cultures were transferred to media containing VC or trans-DCE, products accumulated slowly, and there was no increase in the rate, which indicated that these two compounds did not support growth. When the intermediates in PCE dechlorination by strain 195 were monitored, TCE was detected first, followed by cis-DCE. After a lag, VC, 1,1-DCE, and trans-DCE accumulated, which is consistent with the hypothesis that cis-DCE is the precursor of these compounds. Both cis-DCE and 1,1-DCE were eventually consumed, and both of these compounds could be considered intermediates in PCE dechlorination, whereas the small amount of trans-DCE that was produced persisted. Cultures grown on TCE, 1,1-DCE, or DCA could immediately dechlorinate PCE, which indicated that PCE reductive dehalogenase activity was constitutive when these electron acceptors were used.  相似文献   

12.
Tetrachloroethylene (PCE) is a toxic compound essentially used as a degreasing and dry-cleaning solvent. A methanogenic and sulfate-reducing consortium that dechlorinates and mineralizes high concentrations of PCE was derived from anaerobically digested sludge obtained from a waste water treatment plant (Bourg-en-Bresse, France). A methanogenic bacterium, strain FR, was isolated from this acclimated consortium. On the basis of morphological and physiological characteristics, strain FR was classified in the genus of Methanosarcina. Phylogeny analysis with the 16S rRNA gene sequence revealed that strain FR is highly related to Methanosarcina mazei and Methanosarcina frisia (99.6 and 99.5% identity, respectively). High concentrations (50-87 microM) of PCE were completely dechlorinated by strain FR cultures at the rate of 76 nM-mg protein(-1).day(-1). PCE dechlorination produced a nonidentified compound. The tracer experiments with [13C]PCE revealed that the product was nonchlorinated. Dechlorination of PCE to trichloroethylene was still active in the presence of boiled cell extract of the strain FR. However, no further dechlorination was observed. This result suggests that a cofactor rather than an enzymatic system is responsible for the first dechlorination of PCE. Dechlorination-active fractions purified from cell extracts on a XAD-4 column revealed the presence of F(420), F(430), and cobamides cofactors. This is the first report of the isolation of a methanogenic bacterium with the ability to dechlorinate high concentrations of PCE to a nonchlorinated product.  相似文献   

13.
The ability of activated sludge obtained from a local wastewater treatment plant to dechlorinate hexachloro-1,3-butadiene (HCBD) in the presence of either acetate or lactate and cyanocobalamin was investigated. Results from headspace analysis indicated complete dechlorination of HCBD by the accumulation of fully dechlorinated C4 gases (1-buten-3-yne, 1,3-butadiene, and 1,3-butadiyne). Dechlorination products were not observed in the control cultures without cyanocobalamin. Examination of control cultures revealed that the disappearance of HCBD from the headspace was partly due to adsorption into the biomass. However, the key for dechlorination was the shuttle (cyanocobalamin) rather than specific microbial enzymatic activity. The hypothesis that the bacteria reduced cyanocobalamin, which in turn reductively dechlorinated HCBD, was supported by the finding that cyanocobalamin reduced by zero-valent zinc resulted in complete dechlorination. The significance of the findings is that, in contrast to prior work where specific anaerobic bacteria (enrichments or pure cultures) were believed to be necessary for dechlorination resulting in only partly dechlorinated products, the currect data show that nonspecific aerobic activated sludge bacteria can be employed for complete HCBD dechlorination at rates sufficiently high to be considered for bioremediation projects.  相似文献   

14.
A strain of Dehalosprillum multivorans, designated strain N, was isolated from the same source as the formerly described tetrachloroethene (PCE)-dechlorinating D. multivorans, herein after referred to as strain K. Neither growing cells nor cell extracts of strain N were able to dechlorinate PCE. The pceA and pceB genes encoding for the PCE-reductive dehalogenase were detected in cells of strain N; and they were 100% homologous to the corresponding genes of strain K. Since the PCE dehalogenase of D. multivorans strain K contains a corrinoid cofactor, the corrinoids of strain N cells were extracted. Analysis of the corrinoids revealed the absence of the specific corrinoid, which is the cofactor of the PCE dehalogenase of strain K cells. RT-PCR of mRNA indicated that the pceA gene was transcribed in strain N cells to a far lower extent than the pceA gene of strain K under the same experimental conditions. Western blot analysis of crude extracts of strain N showed that, if at all, an insignificant amount of the apoprotein of the PCE dehalogenase was present. The results indicate that the inability of strain N to dechlorinate is due to the absence of the corrinoid cofactor of the enzyme mediating PCE dechlorination.  相似文献   

15.
Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 microm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35 degrees C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H(2), formate, L-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H(2)) are oxidized to acetate and CO(2). When L-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 micromol of chloride released. min(-1). mg of protein(-1)). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate.  相似文献   

16.
17.
The ability of granular methanogenic sludge to dechlorinate chloroethenes was investigated with unadapted sludge from an upflow anaerobic sludge blanket (UASB) reactor fed with methanol. The sludge degraded chlorinated ethenes, but the degradation rates were low. The addition of primary substrate was necessary to sustain dechlorination. The dechlorinating activity seemed to be constitutively present in the anaerobic bacteria. Usually, one chlorine atom was removed via reductive hydrogenolysis. Only trichloroethene (TCE) was converted to substantial amounts of vinylchloride (VC). 1,1-Dichloroethene (1,1DCE) was observed to be an important intermediate in the dechlorination by unadapted granular sludge, although previously this compound had not been commonly observed. Furthermore, the dechlorination of 1,1DCE was faster than the dechlorination of the other chloroethenes.  相似文献   

18.
 Degradation of tetrachloroethene (perchloroethylene, PCE) was investigated by combining the metabolic abilities of anaerobic bacteria, capable of reductive dechlorination of PCE, with those of aerobic methanotrophic bacteria, capable of co-metabolic degradation of the less-chlorinated ethenes formed by reductive dechlorination of PCE. Anaerobic communities reductively dechlorinating PCE, trichloroethene (TCE) and dichloroethenes were enriched from various sources. The maximum rates of dechlorination observed for various chloroethenes in these batch enrichments were: PCE to TCE (341 μmol l-1 day-1), TCE to cis-dichloroethene (159 μmol l-1 day-1), cis-dichloroethene to chloroethene (99 μmol l-1 day-1) and trans-dichloroethene to chloroethene (22 μmol l-1 day-1). A mixture of these enrichments was inoculated into an anoxic fixed-bed upflow column. In this column PCE was converted mainly into cis-1, 2-dichloroethene, small amounts of TCE and chloroethene, and chloride. Enrichments of aerobic methanotrophic bacteria were grown in an oxic fixed-bed downflow column. Less-chlorinated ethenes, formed in the anoxic column, were further metabolized in this oxic methanotrophic column. On the basis of analysis of chloride production and the disappearance of chlorinated ethenes it was demonstrated that complete degradation of PCE was possible by combining these two columns. Operation of the two-column system under various process conditions indicated that the sensitivity of the methanotrophic bacteria to chlorinated intermediates represented the bottle-neck in the sequential anoxic/oxic degradation process of PCE. Received: 24 October 1994 / Received revision: 20 January 1995 / Accepted: 23 January 1995  相似文献   

19.
Tetrachloroethene, also known as perchloroethylene (PCE), is a common groundwater contaminant throughout the United States. The incomplete reductive dechlorination of PCE--resulting in accumulations of trichloroethene, dichloroethene isomers, and/or vinyl chloride--has been observed by many investigators in a wide variety of methanogenic environments. Previous mixed-culture studies have demonstrated that complete dechlorination to ethene is possible, although the final dechlorination step from vinyl chloride to ethene is rate limiting, with significant levels of vinyl chloride typically persisting. In this study, anaerobic methanol-PCE enrichment cultures which proved capable of dechlorinating high concentrations PCE to ethene were developed. Added concentrations of PCE as high as 550 microM (91-mg/liter nominal concentration; approximately 55-mg/liter actual aqueous concentration) were routinely dechlorinated to 80% ethene and 20% vinyl chloride within 2 days at 35 degrees C. The methanol level used was approximately twice that needed for complete dechlorination of PCE to ethene. The observed transformations occurred in the absence of methanogenesis, which was apparently inhibited by the high concentrations of PCE. When incubation was allowed to proceed for as long as 4 days, virtually complete conversion of PCE to ethene resulted, with less than 1% persisting as vinyl chloride. An electron balance demonstrated that methanol consumption was completely accounted for by dechlorination (31%) and acetate production (69%). The high volumetric rates of PCE dechlorination (up to 275 mumol/liter/day) and the relatively large fraction (ca. one-third) of the supplied electron donor used for dechlorination suggest that reductive dechlorination could be exploited for bioremediation of PCE-contaminated sites.  相似文献   

20.
Laboratory-scale column experiments were performed to investigate the effects of membrane-supplied H2 on tetrachloroethene (PCE) dechlorination and microbial community composition. Columns were filled with aquifer material from one of two TCE-contaminated sites and fed a PCE-spiked anaerobic minimal medium for approximately 1 year. For each experiment, one or more experimental columns were supplied with H2 via gas-permeable hollow-fiber membranes with one control column not receiving any H2. After approximately 1 year of operation, aquifer material samples were collected along the length of the columns. Bacterial communities in the samples were analyzed by amplifying the highly variable V3 region of the 16S rRNA gene and separating amplicons using denaturing gradient gel electrophoresis. Microbial community profiles in H2-fed (continuous or pulsed delivery) columns were compared with those in untreated control columns and microbial community profiles were also compared with dechlorination profiles. Selected bands were sequenced for identification. Supply of the simple electron donor H2, changed the microbial community composition, but did not decrease overall diversity. Continuous H2 addition via hollow-fiber membranes enriched for Dehalococcoides-like species, whose relative abundance correlated with enhanced dechlorination activity. PCE was completely dechlorinated to ethene in columns packed with aquifer material from Cape Canaveral, Florida; PCE was dechlorinated to only cis-dichloroethene, however, in columns packed with aquifer material from a TCE-contaminated wetland near Minneapolis, Minnesota. Unexpectedly, Dehalococcoides-like populations were detected in samples from both sets of column experiments. These results suggest that the mere detection of Dehalococcoides-like species in a sample of aquifer material is not a sufficient indicator of the potential to dechlorinate PCE to ethene via biostimulation by H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号