首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Flowering plants produce floral meristems in response to intrinsic and extrinsic flowering inductive signals. In Arabidopsis, the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are activated to play a pivotal role in specifying floral meristems during floral transition. We show here that the emerging floral meristems require AP1 to partly specify their floral identities by directly repressing a group of flowering time genes, including SHORT VEGETATIVE PHASE (SVP), AGAMOUS-LIKE 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1). In wild-type plants, these flowering time genes are normally downregulated in emerging floral meristems. In the absence of AP1, these genes are ectopically expressed, transforming floral meristems into shoot meristems. By post-translational activation of an AP1-GR fusion protein and chromatin immunoprecipitation assays, we further demonstrate the repression of these flowering time genes by induced AP1 activity and in vivo AP1 binding to the cis-regulatory regions of these genes. These findings indicate that once AP1 is activated during the floral transition, it acts partly as a master repressor in floral meristems by directly suppressing the expression of flowering time genes, thus preventing the continuation of the shoot developmental program.  相似文献   

2.
Gibberellins and the floral transition in Sinapis alba   总被引:3,自引:0,他引:3  
The putative role of gibberellins in the transition to flowering was investigated in Sinapis alba , a caulescent long-day (LD) plant. It was observed that: (1) physiological doses of exogenous gibberellins (GA1, GA3, GA9) do not cause the floral shift of the meristem when applied to plants grown in short days but have some positive effect on the flowering response to a suboptimal LD; no inhibition was observed in any case; (2) GA-biosynthesis inhibitors (prohexadione-Ca and paclobutrazol) considerably inhibit stem growth but have some negative effect on flowering only when a suboptimal LD is given; and (3) the floral transition induced by one 22-h LD does not correlate with any detectable change in GA content of the apical bud, of the leaves, and of the phloem exudate reaching the apex. Taken together, these results suggest that GAs do not act as a major signal for photoperiodic flower induction in Sinapis .  相似文献   

3.
The number of plasmodesmata was calculated per 1 μm of cell wall length in the central and medullar zones of shoot apical meristems (SAM) in the course of floral transition in a long-day (LD) plant Rudbeckia bicolor Nutt. and a short-day plant Perilla nankinensis Lour. Under the day length unfavorable for flowering (control), the numbers of plasmodesmata differed in the central and medullar zones of SAM, which produce the reproductive organs and stems, respectively. Besides, the numbers of plasmodesmata in the central zone of perilla SAM considerably differed between the anticlinal and periclinal cell walls of the first and second cell layers. Following the photoperiodic induction (PI) with eight LD in rudbeckia and twelve SD in perilla favorable for floral transition, the numbers of plasmodesmata considerably increased in the anticlinal and periclinal cell walls of the first and second cell layers of the central zone; meanwhile in the medullar zone, the numbers of plasmodesmata dropped down following PI. These data show that floral transition presumably involves the activation of cell-to-cell interactions and enhances the signal transduction in SAM.  相似文献   

4.
5.
In plants of Sinapis alba induced to flower by exposure to a single long day (LD), previous work demonstrated that the movement of a shoot-to-root signal early during the photoextension period of the LD was essential for flowering. Interrupting this movement by bark ringing (girdling) of the stem inhibited the floral response of plants to the LD. In the present work we show that (a) the girdling treatment decreases the soluble sugar level in the roots of induced plants, and (b) the inhibitory effect on the floral response caused by girdling can be completely overcome by supplying the roots with sucrose directly at appropriate times. Thus, we demonstrate that sucrose moving in the phloem is the shoot-to-root signal essential for flowering. We have also found that one of the major effects of the extra-sucrose on the roots is to stimulate the root-to-shoot movement of [9R]Z, the predominant cytokinin of the xylem sap in Sinapis . The importance of this upward movement of [9R]Z for flowering is indicated by the observation that (a) the floral response to the LD is inhibited by growing plants in an atmosphere saturated with water (impairing upward movement of xylem sap) during the LD itself, and (b) the inhibitory effect on the floral response caused by girdling, which markedly reduces [9R]Z export from roots, is relieved by direct application of BA, a cytokinin, to the apex. Other possible effects of the shoot-derived sucrose on roots in relation to flowering are also discussed. Our results show that a shoot-to-root-to-shoot physiological loop is essential for flowering in intact Sinapis plants.  相似文献   

6.
7.
The shoot apical meristem (SAM) continuously produces lateral organs in plants.Based on the identity of the lateral organs,the life cycle of a plant can be divided into two phases:vegetative and reproductive.The SAM produces leaves during the vegetative phase,whereas it gives rise to flowers in the reproductive phase (reviewed in Poethig,2003).The floral transition,namely the switch from vegetative to reproductive growth,is controlled by diverse endogenous and exogenous cues such as age,hormones,photoperiod,and temperature (reviewed in B(a)urle and Dean,2006;Srikanth and Schmid,2011;Andres and Coupland,2012). The model annual Arabidopsis thaliana has been extensively used for the dissection of the molecular mechanism underlying the floral transition during the last two decades.The molecular and genetic analyses have revealed five flowering time pathways,including age,autonomous,gibberellins (GAs),photoperiod and vernalization (reviewed in Amasino and Michaels,2010).Growing lines of evidence indicate that there are extensive crosstalks,feedback or feed-forward loops between the components within these pathways,and that these multiple floral inductive cues are integrated into a set of floral promoting MADS-box genes including APETALA 1 (AP1),SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1),FRUITFULL (FUL) and LEAFY (LFY) (Amasino and Michaels,2010;Lee and Lee,2010;Srikanth and Schmid,2011).  相似文献   

8.
9.
10.
11.
12.
A physiological overview of the genetics of flowering time control   总被引:14,自引:1,他引:13  
Physiological studies on flowering time control have shown that plants integrate several environmental signals. Predictable factors, such as day length and vernalization, are regarded as 'primary', but clearly interfere with, or can even be substituted by, less predictable factors. All plant parts participate in the sensing of these interacting factors. In the case of floral induction by photoperiod, long-distance signalling is known to occur between the leaves and the shoot apical meristem (SAM) via the phloem. In the long-day plant, Sinapis alba, this long-distance signalling has also been shown to involve the root system and to include sucrose, nitrate, glutamine and cytokinins, but not gibberellins. In Arabidopsis thaliana, a number of genetic pathways controlling flowering time have been identified. Models now extend beyond 'primary' controlling factors and show an ever-increasing number of cross-talks between pathways triggered or influenced by various environmental factors and hormones (mainly gibberellins). Most of the genes involved are preferentially expressed in meristems (the SAM and the root tip), but, surprisingly, only a few are expressed preferentially or exclusively in leaves. However, long-distance signalling from leaves to SAM has been shown to occur in Arabidopsis during the induction of flowering by long days. In this review, we propose a model integrating physiological data and genes activated by the photoperiodic pathway controlling flowering time in early-flowering accessions of Arabidopsis. This model involves metabolites, hormones and gene products interacting as long- or short-distance signalling molecules.  相似文献   

13.
Arabidopsis plants flower in response to long days (LDs). Exposure of leaves to inductive day lengths activates expression of FLOWERING LOCUS T (FT) protein which moves to the shoot apical meristem (SAM) to induce developmental reprogramming. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) are induced by FT at the apex. We previously screened the SAM for mRNAs of genes required to promote the floral transition in response to photoperiod, and conducted detailed expression and functional analyses on several putative candidates. Here, we show that expression of AGAMOUS-LIKE 24 (AGL24) is detected at the SAM under SD conditions and increases upon exposure to LDs. Mutations in AGL24 further delay flowering of a soc1 ful double mutant, suggesting that flowering is controlled by AGL24 partly independently of SOC1 and FUL.  相似文献   

14.
15.
The switch from vegetative to reproductive growth is marked by the termination of vegetative development and the adoption of floral identity by the shoot apical meristem (SAM). This process is called the floral transition. To elucidate the molecular determinants involved in this process, we performed genome-wide RNA expression profiling on maize (Zea mays) shoot apices at vegetative and early reproductive stages using massively parallel signature sequencing technology. Profiling revealed significant up-regulation of two maize MADS-box (ZMM) genes, ZMM4 and ZMM15, after the floral transition. ZMM4 and ZMM15 map to duplicated regions on chromosomes 1 and 5 and are linked to neighboring MADS-box genes ZMM24 and ZMM31, respectively. This gene order is syntenic with the vernalization1 locus responsible for floral induction in winter wheat (Triticum monococcum) and similar loci in other cereals. Analyses of temporal and spatial expression patterns indicated that the duplicated pairs ZMM4-ZMM24 and ZMM15-ZMM31 are coordinately activated after the floral transition in early developing inflorescences. More detailed analyses revealed ZMM4 expression initiates in leaf primordia of vegetative shoot apices and later increases within elongating meristems acquiring inflorescence identity. Expression analysis in late flowering mutants positioned all four genes downstream of the floral activators indeterminate1 (id1) and delayed flowering1 (dlf1). Overexpression of ZMM4 leads to early flowering in transgenic maize and suppresses the late flowering phenotype of both the id1 and dlf1 mutations. Our results suggest ZMM4 may play roles in both floral induction and inflorescence development.  相似文献   

16.
Changes in polyamine concentration in the long day (LD) plant Rudbeckia hirta were examined over the course of floral initiation and development. Plants of R. hirta were grown to maturity under 9h, non-floral-inductive photoperiods. At maturity, half the plants were placed in ambient day length plus a 4- h night interruption. Plants were sampled at 0, 4, 8, 12 or 16 days for polyamine content and floral initiation. Polyamines were extracted from fully expanded leaves and the meristems were examined histologically. In another experiment, polyamines were extracted from the meristems under paired LD and short day (SD) conditions every 2 days from 0 to 22 days. A rise in free polyamines was linked to important cytological events during floral initiation. Free putrescine and spermidine levels increased after 4 LD and continued until 14 to 16 LD when the levels in the meristem began to decline. Events of floral initiation began between 4 and 8 LD with cell proliferation and the start of stem elongation. Initiation was irreversible after 14 to 16 LD, the period when putrescine and spermidine began to decline. After 4 LD, the polyamine level was consistently higher in the photoinduced plants. Our results from this study, using direct histological comparisons of meristematic development and polyamine concentration, clearly demonstrate a correlation of polyamines and flowering.  相似文献   

17.
茎顶端分生组织在植物发育过程中的保持、转变和逆转   总被引:1,自引:0,他引:1  
顶端分生组织(shoot apical meristems,SAM)为产生新的器官和组织而不断提供新的细胞,它的活性依赖于平衡分生组织细胞的增殖和器官发生之间关系的调控基因.来自不具备光合能力的顶端分生组织的细胞可形成具有光合能力的营养器官.在从营养生长到生殖发育的转变过程中,茎顶端分生组织,转变为花序分生组织,最终形成花分生组织.在进入开花决定状态以前,SAM的状态很大程度上受到环境信号和转录调控因子的影响.以模式植物拟南芥为主,对在顶端分生组织的保持和转变中复杂同时又有差异的基因调控网络进行讨论.在花和花序分生组织逆转过程中,SAM中的细胞也受到相关基因的调控,且表达方式存在明显的时空差异.因此,具有决定性的和未决定性双重特性的分生组织之间的转变和相互协调,对于器官发生和形态建成起到至关重要的作用.  相似文献   

18.
19.
20.
Lilium longiflorum (Easter lily) vegetative propagation occurs through production of underground bulbs containing apical and axillary meristems. In addition, sexual reproduction is achieved by flowering of elongated shoots above the bulb. It is generally accepted that L. longiflorum has an obligatory requirement for vernalisation and that long day (LD) regime hastens flowering. However, the effect of bulb size and origin, with respect to axillary or apical meristems on flowering, as well as the interactions between these meristems are largely unknown. The aim of this study was to explore the effect of bulb size, vernalisation and photoperiod on L. longiflorum flowering. To this end, we applied vernalisation and photoperiod treatments to the different bulb sizes and used a system of constant ambient temperature of 25 °C, above vernalisation spectrum, to avoid cold‐dependent floral induction during plant growth. Vernalisation and LD hasten flowering in all bulbs. Large, non‐vernalised bulbs invariably remained at a vegetative stage. However, small non‐vernalised bulbs flowered under LD conditions. These results demonstrate for the first time that cold exposure is not an obligatory prerequisite for L. longiflorum flowering, and that an alternative flowering pathway can bypass vernalisation in small bulbs. We suggest that apical dominance interactions determine the distinct flowering pathways of the apical and axillary meristems. Similar floral induction is achieved in propagated bulblets from scaling. These innovative findings in the field of geophyte floral induction represent valuable applicative knowledge for lily production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号