首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic manipulation of gibberellin metabolism in transgenic rice   总被引:16,自引:0,他引:16  
The 'green revolution' was fueled by the introduction of the semi-dwarf trait into cereal crop cultivars. The semi-dwarf cultivars--which respond abnormally to the plant growth hormone gibberellin (GA)--are more resistant to wind and rain damage and thus yield more grain when fertilized. To generate dwarf rice plants using a biotechnological approach, we modified the level of GA by overproduction of a GA catabolic enzyme, GA 2-oxidase. When the gene encoding GA 2-oxidase, OsGA2ox1, was constitutively expressed by the actin promoter, transgenic rice showed severe dwarfism but failed to set grain because GA is involved in both shoot elongation and reproductive development. In contrast, OsGA2ox1 ectopic expression at the site of bioactive GA synthesis in shoots under the control of the promoter of a GA biosynthesis gene, OsGA3ox2 (D18), resulted in a semi-dwarf phenotype that is normal in flowering and grain development. The stability and inheritance of these traits shows the feasibility of genetic improvement of cereal crops by modulation of GA catabolism and bioactive GA content.  相似文献   

2.
To identify where gibberellin (GA) biosynthesis and signaling occur, we analyzed the expression of four genes involved in GA biosynthesis, GA 20-oxidase1 and GA 20-oxidase2 (OsGA20ox1 and OsGA20ox2), and GA 3-oxidase1 and GA 3-oxidase2 (OsGA3ox1 and OsGA3ox2), and two genes involved in GA signaling, namely, the gene encoding the alpha-subunit of the heterotrimeric GTP-binding protein (Galpha), and SLENDER RICE1 (SLR1), which encodes a repressor of GA signaling. At the vegetative stage, the expression of OsGA20ox2, OsGA3ox2, Galpha, and SLR1 was observed in rapidly elongating or dividing organs and tissues, whereas the expression of OsGA20ox1 or OsGA3ox1 could not be detected. At the inflorescence or floral stage, the expression of OsGA20ox2, OsGA3ox2, Galpha, and SLR1 was also observed in the shoot meristems and stamen primordia. The overlapping expression of genes for GA biosynthesis and signaling indicates that in these tissues and organs, active GA biosynthesis occurs at the same site as does GA signaling. In contrast, no GA-biosynthesis genes were expressed in the aleurone cells of the endosperm; however, the two GA-signaling genes were actively expressed, indicating that the aleurone does not produce bioactive GAs, but can perceive GAs. The expression of OsGA20ox1 and OsGA3ox1 was observed only in the epithelium of the embryo and the tapetum of the anther. Based on the specific expression pattern of OsGA20ox1 and OsGA3ox1 in these tissues, we discuss the unique nature of the epithelium and the tapetum in terms of GA biosynthesis. The epithelium and the tapetum are considered to be an important source of bioactive GAs for aleurone and other organs of the flower, respectively.  相似文献   

3.
Gibberellin (GA) 2-oxidases play an important role in the GA catabolic pathway through 2β-hydroxylation. There are two classes of GA2oxs, i.e., a larger class of C19-GA2oxs and a smaller class of C20-GA2oxs. In this study, the gene encoding a GA 2-oxidase of rice, Oryza sativa GA 2-oxidase 5 (OsGA2ox5), was cloned and characterized. BLASTP analysis showed that OsGA2ox5 belongs to the C20-GA2oxs subfamily, a subfamily of GA2oxs acting on C20-GAs (GA12, GA53). Subcellular localization of OsGA2ox5-YFP in transiently transformed onion epidermal cells revealed the presence of this protein in both of the nucleus and cytoplasm. Real-time PCR analysis, along with GUS staining, revealed that OsGA2ox5 is expressed in the roots, culms, leaves, sheaths and panicles of rice. Rice plants overexpressing OsGA2ox5 exhibited dominant dwarf and GA-deficient phenotypes, with shorter stems and later development of reproductive organs than the wild type. The dwarfism phenotype was partially rescued by the application of exogenous GA3 at a concentration of 10 µM. Ectopic expression of OsGA2ox5 cDNA in Arabidopsis resulted in a similar phenotype. Real-time PCR assays revealed that both GA synthesis-related genes and GA signaling genes were expressed at higher levels in transgenic rice plants than in wild-type rice; OsGA3ox1, which encodes a key enzyme in the last step of the bioactive GAs synthesis pathway, was highly expressed in transgenic rice. The roots of OsGA2ox5-ox plants exhibited increased starch granule accumulation and gravity responses, revealing a role for GA in root starch granule development and gravity responses. Furthermore, rice and Arabidopsis plants overexpressing OsGA2ox5 were more resistant to high-salinity stress than wild-type plants. These results suggest that OsGA2ox5 plays important roles in GAs homeostasis, development, gravity responses and stress tolerance in rice.  相似文献   

4.
We recently isolated two genes (OsGA3ox1 and OsGA3ox2) from rice (Oryza sativa) encoding 3beta-hydroxylase, which catalyzes the final step of active gibberellin (GA) biosynthesis (H. Itoh, M. Ueguchi-Tanaka, N. Sentoku, H. Kitano, M. Matsuoka, M. Kobayashi [2001] Proc Natl Acad Sci USA 98: 8909-8914). Using these cloned cDNAs, we analyzed the temporal and spatial expression patterns of the 3beta-hydroxylase genes and also an alpha-amylase gene (RAmy1A) during rice seed germination to investigate the relationship between GA biosynthesis and alpha-amylase expression. Northern-blot analyses revealed that RAmy1A expression in the embryo occurs before the induction of 3beta-hydroxylase expression, whereas in the endosperm, a high level of RAmy1A expression occurs 1 to 2 d after the peak of OsGA3ox2 expression and only in the absence of uniconazol. Based on the analysis of an OsGA3ox2 null mutant (d18-Akibare dwarf), we determined that 3beta-hydroxylase produced by OsGA3ox2 is important for the induction of RAmy1A expression and that the OsGA3ox1 product is not essential for alpha-amylase induction. The expression of OsGA3ox2 was localized to the shoot region and epithelium of the embryo, strongly suggesting that active GA biosynthesis occurs in these two regions. The synthesis of active GA in the epithelium is important for alpha-amylase expression in the endosperm, because an embryonic mutant defective in shoot formation, but which developed epithelium cells, induced alpha-amylase expression in the endosperm, whereas a mutant defective in epithelium development did not.  相似文献   

5.
We have cloned two genes for gibberellin (GA) 2-oxidase from rice (Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA1 to GA8 and GA20 to GA29-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice. Electronic Publication  相似文献   

6.
Flowering of Nicotiana tabacum cv Xhanti depends on gibberellins because gibberellin-deficient plants, due to overexpression of a gibberellin 2-oxidase gene (35S:NoGA2ox3) or to treatment with the gibberellin biosynthesis inhibitor paclobutrazol, flowered later than wild type. These plants also showed inhibition of the expression of molecular markers related to floral transition (NtMADS-4 and NtMADS-11). To investigate further the role of gibberellin in flowering, we quantified its content in tobacco plants during development. We found a progressive reduction in the levels of GA1 and GA4 in the apical shoot during vegetative growth, reaching very low levels at floral transition and beyond. This excludes these two gibberellins as flowering-promoting factors in the apex. The evolution of active gibberellin content in apical shoots agrees with the expression patterns of gibberellin metabolism genes: two encoding gibberellin 20-oxidases (NtGA20ox1 = Ntc12, NtGA20ox2 = Ntc16), one encoding a gibberellin 3-oxidase (NtGA3ox1 = Nty) and one encoding a gibberellin 2-oxidase (NtGA2ox1), suggesting that active gibberellins are locally synthesized. In young apical leaves, GA1 and GA4 content and the expression of gibberellin metabolism genes were rather constant. Our results support that floral transition in tobacco, in contrast to that in Arabidopsis, is not regulated by the levels of GA1 and GA4 in apical shoots, although reaching a threshold in gibberellin levels may be necessary to allow meristem competence for flowering.  相似文献   

7.
Gibberellin (GA) 20-oxidase (GA20ox) is a key enzyme that normally catalyzes the penultimate steps in GA biosynthesis. One of the GA20ox genes in rice (Oryza sativaL.), OsGA20ox2 (SD1), is well known as the Green Revolution gene, and loss-of function mutation in this locus causes semi-dwarfism. Another GA20ox gene, OsGA20ox1, has also been identified, but its contribution to plant stature has remained unclear because no suitable mutants have been available. We isolated a mutant, B142, tagged with a T-DNA containing three CaMV 35S promoters, which showed a tall, GA-overproduction phenotype. The final stature of the B142 mutant reflects internode overgrowth and is approximately twice that of its wild-type parent. This mutant responds to application of both GA3 and a GA biosynthesis inhibitor, indicating that it is a novel tall mutant of rice distinct from GA signaling mutants such as slr1. The integrated T-DNAs, which contain three CaMV 35S promoters, are located upstream of the OsGA20ox1 open reading frame (ORF) in the B142 mutant genome. Analysis of mRNA and the endogenous GAs reveal that biologically active GA level is increased by up-regulation of the OsGA20ox1 gene in B142. Introduction of OsGA20ox1 cDNA driven by 35S promoter into the wild type phenocopies the morphological characteristics of B142. These results indicate that the elongated phenotype of the B142 mutant is caused by up-regulation of the OsGA20ox1 gene. Moreover, the final stature of rice was reduced by specific suppression of the OsGA20ox1 gene expression. This result indicates that not only OsGA20ox2 but also OsGA20ox1 affects plant stature.  相似文献   

8.
In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4-OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants.  相似文献   

9.
Isolation and characterization of a rice homebox gene, OSH15   总被引:4,自引:0,他引:4  
In many eukaryotic organisms including plants, homeobox genes are thought to be master regulators that establish the cellular or regional identities and specify the fundamental body plan. We isolated and characterized a cDNA designated OSH15 (Oryza sativa homeobox 15) that encodes a KNOTTED-type homeodomain protein. Transgenic tobacco plants overexpressing the OSH15 cDNA showed a dramatically altered morphological phenotype caused by disturbance of specific aspects of tobacco development, thereby indicating the involvement of OSH15 in plant development. We analyzed the in situ mRNA localization of OSH15 through the whole plant life cycle, comparing the expression pattern with that of another rice homeobox gene, OSH1. In early embryogenesis, both genes were expressed as the same pattern at a region where the shoot apical meristem would develop later. In late embryogenesis, the expression pattern of the two genes became different. Whereas the expression of OSH1 continued within the shoot apical meristem, OSH15 expression within the shoot apical meristem ceased but became observable in a ring shaped pattern at the boundaries of some embryonic organs. This pattern of expression was similar to that observed around vegetative or reproductive shoots, or the floral meristem in mature plants. RNA in situ localization data suggest that OSH15 may play roles in the shoot organization during early embryogenesis and thereafter, OSH15 may be involved in morphogenetic events around the shoot apical meristem.  相似文献   

10.
To enhance our understanding of GA metabolism in rice (Oryza sativa), we intensively screened and identified 29 candidate genes encoding the following GA metabolic enzymes using all available rice DNA databases: ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox). In contrast to the Arabidopsis genome, multiple CPS-like, KS-like, and KO-like genes were identified in the rice genome, most of which are contiguously arranged. We also identified 18 GA-deficient rice mutants at six different loci from rice mutant collections. Based on the mutant and expression analyses, we demonstrated that the enzymes catalyzing the early steps in the GA biosynthetic pathway (i.e. CPS, KS, KO, and KAO) are mainly encoded by single genes, while those for later steps (i.e. GA20ox, GA3ox, and GA2ox) are encoded by gene families. The remaining CPS-like, KS-like, and KO-like genes were likely to be involved in the biosynthesis of diterpene phytoalexins rather than GAs because the expression of two CPS-like and three KS-like genes (OsCPS2, OsCPS4, OsKS4, OsKS7, and OsKS8) were increased by UV irradiation, and four of these genes (OsCPS2, OsCPS4, OsKS4, and OsKS7) were also induced by an elicitor treatment.  相似文献   

11.
Gibberellin (GA) 20-oxidase catalyses consecutive steps late in GA biosynthesis in plants. In Arabidopsis, the enzyme is encoded by a gene family of at least three members (AtGA20ox1, AtGA20ox2 and AtGA20ox3) with differential patterns of expression. The genes are regulated by feedback from bioactive GAs, suggesting that the enzymes may be involved in regulating GA biosynthesis. To investigate this, we produced transgenic Arabidopsis expressing sense or antisense copies of each of the GA 20-oxidase cDNAs. Over-expression of any of the cDNAs gave rise to seedlings with elongated hypocotyls; the plants flowered earlier than controls in both long and short days and were 25% taller at maturity. GA analysis of the vegetative rosettes showed a two- to threefold increase in the level of GA4, indicating that GA 20-oxidase normally limits bioactive GA levels. Plants expressing antisense copies of AtGA20ox1 had short hypocotyls and reduced rates of stem elongation. This was reflected in reduced levels of GA4 in both rosettes and shoot tips. In short days, flowering was delayed and the reduction in the rate of stem elongation was greater. Antisense expression of AtGA20ox2 had no apparent effects in long days, but stem growth in one transgenic line grown in short days was reduced by 20%. Expression of antisense copies of AtGA20ox3 had no visible effect, except for one transgenic line that had short hypocotyls. These results demonstrate that GA levels and, hence, plant growth and development can be modified by manipulation of GA 20-oxidase expression in transgenic plants.  相似文献   

12.
GA 20-oxidase is a key enzyme involved in gibberellin (GA) biosynthesis. In tomato, the GA 20-oxidase gene family consists of three members: GA20ox1, GA20ox2, and GA20ox3. To investigate the roles of these three genes in regulating plant growth and development, we used RNA interference technology to generate three kinds of transgenic tomato plants with suppressed expression of each three individual genes. Suppression of GA20ox1 or GA20ox2 resulted in shorter stems, a decreased length of internodes, and small dark green leaves while plants with decreased expression of GA20ox3 had no visible changes on stems and leaves. The plants of the three transgenic lines can flower and set fruits normally, but the seeds from these plants germinated slower than that from the normal plants. Decreased levels of endogenous GAs were detected in the apex of the three transgenic lines. These results demonstrate that the three GA 20-oxidase genes play different roles in the control of plan vegetative growth, but show no effects on flower and fruit development.Equal contribution authors: J. Xiao and H. Li.  相似文献   

13.
14.
We have isolated a cDNA clone encoding a homeobox sequence from rice. DNA sequence analysis of this clone, which was designated as Oryza sativa homeobox 1 (OSH1), and a genomic clone encoding the OSH1 sequence have shown that the OSH1 gene consists of five exons and encodes a polypeptide of 361 amino acid residues. Restriction fragment length polymorphism analysis has shown that OSH1 is a single-copy gene located near the phytochrome gene on chromosome 3. Introduction of the cloned OSH1 gene into rice resulted in altered leaf morphology, which was similar to that of the maize morphological mutant Knotted-1 (Kn1), indicating that OSH1 is a rice gene homologous to the maize Kn1 gene. RNA gel blot analysis has shown that the gene is primarily expressed in the shoot apices of young rice seedlings. This finding is supported by results of transformation experiments in which the 5' flanking region of the gene directed expression of a reporter gene in the shoot apex, particularly in stipules, of transgenic Arabidopsis. To elucidate the biological function of the OSH1 gene product, the coding region was introduced into Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. Almost all transformants showed abnormal morphology. The typical phenotype was the formation of clumps of abundant vegetative and reproductive shoot apices containing meristems and leaf primordia, which did not form elongated shoots. Some transformants with a less severe phenotype formed elongated shoots but had abnormally shaped leaves and flowers with stunted sepals, petals, and stamens. The abnormal phenotypes were inherited, and the level of expression of the introduced OSH1 correlates with the severity of the phenotype. These findings indicate that the abnormal morphologies of the transgenic plants are caused by the expression of the OSH1 gene product and, therefore, that OSH1 is related to the plant development process.  相似文献   

15.
Gibberellin (GA) 2-oxidase plays a key role in the GA catabolic pathway through 2β-hydroxylation.In the present study,we isolated a CaMV 35S-enhancer activation tagged mutant,H032.This mutant exhibited a dominant dwarf and GA-deficient phenotype,with a final stature that was less than half of its wild-type counterpart.The endogenous bioactive GAs are markedly decreased in the H032 mutant,and application of bioactive GAs (GA3 or GA4) can reverse the dwarf phenotype.The integrated T-DNA was detected 12.8 kb upstream of the OsGA2ox6 in the H032 genome by TAIL-PCR.An increased level of OsGA2ox6 mRNA was detected at a high level in the H032 mutant,which might be due to the enhancer role of the CaMV 35S promoter.RNAi and ectopic expression analysis of OsGA2ox6 indicated that the dwarf trait and the decreased levels of bioactive GAs in the H032 mutant were a result of the up-regulation of the OsGA2ox6 gene.BLASTP analysis revealed that OsGA2ox6 belongs to the class III of GA 2-oxidases,which is a novel type of GA2ox that uses C20-GAs (GA12 and/or GA53) as the substrates.Interestingly,we found that a GA biosynthesis inhibitor,paclobutrazol,positively regulated the OsGA2ox6 gene.Unlike the over-expression of OsGA2ox1,which led to a high rate of seed abortion,the H032 mutant retained normal flowering and seed production.These results indicate that OsGA2ox6 mainly affects plant stature,and the dominant dwarf trait of the H032 mutant can be used as an efficient dwarf resource in rice breeding.  相似文献   

16.
Seedling vigor is among the major determinants of stable stand establishment in direct-seeded rice (Oryza sativa L.) in temperate regions. Quantitative trait loci (QTL) for seedling vigor were identified using 250 recombinant inbred lines (RILs) derived from a cross between two japonica rice cultivars Kakehashi and Dunghan Shali. Seedling heights measured at 14 days after sowing were 20.3 and 29.4 cm for Kakehashi and Dunghan Shali, respectively. For the RILs, the height ranged from 14.1 to 31.7 cm. Four putative QTLs associated with seedling height were detected. qPHS3-2, the major QTL that was located on the long arm of chromosome 3, accounted for 26.2 % of the phenotypic variance. Using progeny of the near isogenic lines (NILs) produced by the backcross introduction of a chromosome segment carrying this major QTL into an elite cultivar Iwatekko, we fine-mapped qPHS3-2 to a 81-kb interval between two markers, ID_CAPS_01 and RM16227. Within this mapped region, we identified the gene OsGA20ox1, which is related to gibberellin (GA) biosynthesis. The relative expression levels of GA20ox1 in seedlings of Dunghan Shali and NILs were higher than that of Iwatekko. Concomitantly, the amount of endogenous active GA was higher in Dunghan Shali and the NILs compared to the level detected in Iwatekko. These results indicate that OsGA20ox1 is a strong candidate gene for major QTL controlling seedling vigor in rice.  相似文献   

17.
18.
Male sterility is a prerequisite for hybrid seed production. The phytohormone gibberellin (GA) is involved in regulating male reproductive development, but the mechanism underlying GA homeostasis in anther development remains less understood. Here, we report the isolation and characterization of a new positive regulator of GA homeostasis, swollen anther wall 1 (SAW1), for anther development in rice (Oryza sativa L.). Rice plants carrying the recessive mutant allele saw1 produces abnormal anthers with swollen anther wall and aborted pollen. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRIPSR‐associated protein 9‐mediated knockout of SAW1 in rice generated similar male sterile plants. SAW1 encodes a novel nucleus‐localizing CCCH‐tandem zinc finger protein, and this protein could directly bind to the promoter region of the GA synthesis gene OsGA20ox3 to induce its anther‐specific expression. In the saw1 anther, the significantly decreased OsGA20ox3 expression resulted in lower bioactive GA content, which in turn caused the lower expression of the GA‐inducible anther‐regulator gene OsGAMYB. Thus, our results disclose the mechanism of the SAW1GA20ox3‐GAMYB pathway in controlling rice anther development, and provide a new target gene for the rapid generation of male sterile lines by genome editing for hybrid breeding.  相似文献   

19.
Water channel proteins facilitate water flux across cell membranes and play important roles in plant growth and development. By GUS histochemical assay in RWC3 promoter-GUS transgenic rice (Oryza sativa L. cv. Shenxiangjin 4), one of the members of water channel proteins in rice, RWC3, was found to distribute widely in variety of organs, from vegetative and reproductive organs. Further studies showed that gibberellin (GA) enhanced the GUS activity in the transgenic calli, suspension cells and leaves, whereas ancymidol (anc), an inhibitor of GA synthesis, reduced the GUS activity. Sucrose was found to inhibit the effects induced by addition of GA, suggesting a possible cross-talk between GA and sucrose signaling on regulation of the RWC3 gene expression.  相似文献   

20.
水扎蛋白能介导水分的跨膜运输,在植物的生长发育过程中起重要作用.对RWC3启动子-GUS转基因水稻的组织化学染色表明,水稻(Oryza sativa L.)水孔蛋白RWC3可能在包括营养和生殖器官在内的各部位中广泛表达.同是发现,赤霉素(GA)能提高转基因植物的愈伤组织、悬俘细胞和叶片中的GUS活必性,而GA合成的抑制ancymidol降低了GUS活性.进一步研究发现,蔗糖能抑制GA对GUS活性的提高,说明GA和蔗糖在对RWC3表达调控的信号传递过程中可能存在着相互作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号