首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Here, we show that endothelin-1 (ET-1) dose-dependently inhibits the hypoosmotic swelling of Müller cells in freshly isolated retinal slices of control and diabetic rats, with a maximal inhibition at 100 nM. Osmotic Müller cell swelling was also inhibited by ET-2. The effect of ET-1 was mediated by activation of ETA and ETB receptors resulting in transactivation of metabotropic glutamate receptors, purinergic P2Y1, and adenosine A1 receptors. ET-1 (but not ET-2) also inhibited the osmotic swelling of bipolar cells in retinal slices, but failed to inhibit the swelling of freshly isolated bipolar cells. The inhibitory effect of ET-1 on the bipolar cell swelling in retinal slices was abrogated by inhibitors of the FGF receptor kinase (PD173074) and of TGF-β1 superfamily activin receptor-like kinase receptors (SB431542), respectively. Both Müller and bipolar cells displayed immunoreactivities of ETA and ETB receptor proteins. The data may suggest that neuroprotective effects of ETs in the retina are in part mediated by prevention of the cytotoxic swelling of retinal glial and bipolar cells. ET-1 acts directly on Müller cells, while the inhibitory effect of ET-1 on bipolar cell swelling is indirectly mediated, via stimulation of the release of growth factors like bFGF and TGF-β1 from Müller cells.  相似文献   

4.
5.
6.
Osmotic swelling of neurons and glial cells contributes to the development of retinal edema and neurodegeneration. We show that nerve growth factor (NGF) inhibits the swelling of glial (Müller) and bipolar cells in rat retinal slices induced by barium‐containing hypoosmotic solution. NGF also reduced Müller and bipolar cell swelling in the post‐ischemic retina. On the other hand, NGF prevented the swelling of freshly isolated Müller cells, but not of isolated bipolar cells, suggesting that NGF induces a release of factors from Müller cells that inhibit bipolar cell swelling in retinal slices. The inhibitory effect of NGF on Müller cell swelling was mediated by activation of TrkA (the receptor tyrosine kinase A), but not p75NTR, and was prevented by blockers of metabotropic glutamate, P2Y1, adenosine A1, and fibroblast growth factor receptors. Basic fibroblast growth factor fully inhibited the swelling of freshly isolated Müller cells, but only partially the swelling of isolated bipolar cells. In addition, glial cell line‐derived neurotrophic factor and transforming growth factor‐β1, but not epidermal growth factor and platelet‐derived growth factor, reduced the swelling of bipolar cells. Both Müller and bipolar cells displayed TrkA immunoreactivity, while Müller cells were also immunostained for p75NTR and NGF. The data suggest that the neuroprotective effect of NGF in the retina is in part mediated by prevention of the cytotoxic glial and bipolar cell swelling.

  相似文献   


7.
8.
9.
Glaucoma is one of the leading eye diseases due to the death of retinal ganglion cells. Increasing evidence suggests that retinal Müller cells exhibit the characteristics of retinal progenitor cells and can differentiate to neurons in injured retinas under certain conditions. However, the number of ganglion cells differentiated from retinal Müller cells falls far short of therapeutic needs. This study aimed to promote the differentiation of retinal Müller cells into ganglion cells by introducing Atoh7 into the stem cells dedifferentiated from retinal Müller cells. Rat retinal Müller cells were isolated and dedifferentiated into stem cells, which were transfected with PEGFP-N1 or PEGFP-N1-Atoh7 vector, and then further induced to differentiate into ganglion cells. The proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of control transfected or untransfected cells. In summary, Atoh7 promotes the differentiation of retinal Müller cells into retinal ganglion cells. This may open a new avenue for gene therapy of glaucoma by promoting optic nerve regeneration.  相似文献   

10.
Retinal Müller glial cells have the potential of neurogenic retinal progenitor cells, and could reprogram into retinal‐specific cell types such as photoreceptor cells. How to promote the differentiation of Müller cells into photoreceptor cells represents a promising therapy strategy for retinal degeneration diseases. This study aimed to enhance the transdifferentiation of rat Müller cells‐derived retinal stem cells (MC‐RSCs) into photoreceptor‐like cells and explore the signalling mechanism. We dedifferentiated rat Müller cells into MC‐RSCs which were infected with Otx2 overexpression lentivirus or control. The positive rate of photoreceptor‐like cells among MC‐RSCs treated with Otx2 overexpression lentivirus was significantly higher compared to control. Furthermore, pre‐treatment with Crx siRNA, Nrl siRNA, or GSK‐3 inhibitor SB‐216763 reduced the positive rate of photoreceptor‐like cells among MC‐RSCs treated with Otx2 overexpression lentivirus. Finally, Otx2 induced photoreceptor precursor cells were injected into subretinal space of N‐methyl‐N‐nitrosourea induced rat model of retinal degeneration and partially recovered retinal degeneration in the rats. In conclusion, Otx2 enhances transdifferentiation of MC‐RSCs into photoreceptor‐like cells and this is associated with the inhibition of Wnt signalling. Otx2 is a potential target for gene therapy of retinal degenerative diseases.  相似文献   

11.
Müller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Müller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Müller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Müller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Müller glia-derived cells. Together, these results provide evidences that Müller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.  相似文献   

12.
The development of photoreceptors in the mammalian retina is thought to be controlled by extrinsic signals. We have shown previously that ciliary neurotrophic factor (CNTF) potently inhibits photoreceptor differentiation in cultures of rat retina. The present study analyzes which developmental processes are affected by CNTF. Rod differentiation as determined by opsin and recoverin immunocytochemistry was effectively blocked by CNTF and leukemia inhibitory factor, but not by other neurotrophic agents tested. CNTF did not influence proliferation, cell death, or survival, and had no effect on the downregulation of nestin immunoreactivity in progenitor cells. Opsin-positive rods could be reverted to an opsin-negative state initially, but became unresponsive to CNTF later. No compensatory increase in the number of other cell types was observed. Application of neutralizing antibodies against CNTF revealed that rod development was partially blocked by an endogenous CNTF-like molecule in control cultures. Our results suggest that CNTF can act as a specific negative regulator of rod differentiation. Its action on photoreceptor precursor cells could serve to synchronize the maturation of photoreceptors, which are born over an extended period of time. Together with other stimulatory signals, CNTF may thus control the temporally and numerically correct integration of photoreceptors into the retinal network.  相似文献   

13.
NOV/CCN3 is one of the founding members of the CCN (Cyr61 CTGF NOV) family. In the avian retina, CCN3 expression is mostly located within the central region of the inner nuclear layer. As retinal development progresses and this retinal layer differentiates and matures, CCN3 expression forms a dorsal–ventral and a central–peripheral gradient. CCN3 is produced by two glial cell types, peripapillary cells and Müller cells, as well as by horizontal, amacrine, and bipolar interneurons. In retinal neurons and Müller cell cultures, CCN3 expression is induced by activated BMP signaling, whereas Notch signaling decreases CCN3 mRNA and protein levels in Müller cells and has no effect in retinal neurons. In Müller cells, the CCN3 expression detected may thus result from a balance between the Notch and BMP signaling pathways. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

14.
Regulation of cellular volume is of great importance to avoid changes in neuronal excitability resulting from a decrease in the extracellular space volume. We compared the volume regulation of retinal glial (Müller) and neuronal (bipolar) cells under hypoosmotic and glutamate‐stimulated conditions. Freshly isolated slices of the rat retina were superfused with a hypoosmotic solution (60% osmolarity; 4 min) or with a glutamate (1 mM)‐containing isoosmotic solution (15 min), and the size changes of Müller and bipolar cell somata were recorded. Bipolar cell somata, but not Müller cell somata, swelled under hypoosmotic conditions and in the presence of glutamate. The hypoosmotic swelling of bipolar cell somata might be mediated by sodium flux into the cells, because it was not observed under extracellular sodium‐free conditions, and was induced by activation of metabotropic glutamate receptors and sodium‐dependent glutamate transporters. The glutamate‐induced swelling of bipolar cell somata was mediated by sodium chloride flux into the cells induced by activation of NMDA‐ and non‐NMDA glutamate receptors, glutamate transporters, and voltage‐gated sodium channels. The glutamate‐induced swelling of bipolar cell somata was abrogated by adenosine and γ‐aminobutyric acid, but not by vascular endothelial growth factor and ATP. The data may suggest that Müller cells, in contrast to bipolar cells, possess endogenous mechanisms which tightly regulate the cellular volume in response to hypoosmolarity and prolonged glutamate exposure. Inhibitory retinal transmission may regulate the volume of bipolar cells, likely by inhibition of the excitatory action of glutamate.  相似文献   

15.
The sequence of morphological differentiation of Müller cells in the chick retina was investigated in relation to the differentiation of the retinal neurons using the Golgi method. From the beginning of differentiation, the Müller cell develops spurs and lateral processes. Some of these glial processes become transformed into accessory prolongations of the Müller cell. From the 17th or 18th day of incubation, the morphology of the Müller cells is similar to that of the adult retina. On the basis of their inner prolongation, two types of Müller cells were identified. The first type, with diffuse and abundant descending processes, is identical to that described classically. The second type is a cell characterized by sparse and scanty inner ramifications. This report also describes electron microscopic observations of Müller cells and their enwrapping relationship with the axons of the optic nerve fiber layer.  相似文献   

16.
Glial cells are thought to protect neurons from various neurological insults. When there is injury to retina, Müller cells, which are the predominant glial element in the retina, undergo significant morphological, cellular and molecular changes. Some of these changes reflect Müller cell involvement in protecting the retina from further damage. Müller cells express growth factors, neurotransmitter transporters and antioxidant agents that could have an important role in preventing excitotoxic damage to retinal neurons. Moreover, Müller cells contact to endothelial cells to facilitate the neovascularization process during hypoxic conditions. Finally, recent studies have pointed to a role of Müller cells in retina regeneration after damage, dedifferentiating to progenitor cells and then giving rise to different neuronal cell types. In this article we will review the role of Müller glia in neuroprotection and regeneration after damage in the retina.  相似文献   

17.
Natural cell death is critical for normal development of the nervous system, but the extracellular regulators of developmental cell death remain poorly characterized. Here, we studied the role of the CNTF/LIF signaling pathway during mouse retinal development in vivo. We show that exposure to CNTF during neonatal retinal development in vivo retards rhodopsin expression and results in an important and specific deficit in photoreceptor cells. Detailed analysis revealed that exposure to CNTF during retinal development causes a sharp increase in cell death of postmitotic rod precursor cells. Importantly, we show that blocking the CNTF/LIF signaling pathway during mouse retinal development in vivo results in a significant reduction of naturally occurring cell death. Using retroviral lineage analysis, we demonstrate that exposure to CNTF causes a specific reduction of clones containing only rods without affecting other clone types, whereas blocking the CNTF/LIF receptor complex causes a specific increase of clones containing only rods. In addition, we show that stimulation of the CNTF/LIF pathway positively regulates the expression of the neuronal and endothelial nitric oxide synthase (NOS) genes, and blocking nitric oxide production by pre-treatment with a NOS inhibitor abolishes CNTF-induced cell death. Taken together, these results indicate that the CNTF/LIF signaling pathway acts via regulation of nitric oxide production to modulate developmental programmed cell death of postmitotic rod precursor cells.  相似文献   

18.
The cyclin-dependent kinase inhibitor protein, p27(Kip1), is necessary for the timing of cell cycle withdrawal that precedes terminal differentiation in oligodendrocytes of the optic nerve. Although p27(Kip1) is widely expressed in the developing central nervous system, it is not known whether this protein has a similar role in neuronal differentiation. To address this issue, we have examined the expression and function of p27(Kip1) in the developing retina, a well-characterized part of the central nervous system. p27(Kip1) is expressed in a pattern coincident with the onset of differentiation of most retinal cell types. In vitro analyses show that p27(Kip1) accumulation in retinal cells correlates with cell cycle withdrawal and differentiation, and when overexpressed, p27(Kip1) inhibits proliferation of the progenitor cells. Furthermore, the histogenesis of photoreceptors and Müller glia is extended in the retina of p27(Kip1)-deficient mice. Finally, we examined the adult retinal dysplasia in p27(Kip1)-deficient mice with cell-type-specific markers. Contrary to previous suggestions that the dysplasia is caused by excess production of photoreceptors, we suggest that the dysplasia is due to the displacement of reactive Müller glia into the layer of photoreceptor outer segments. These results demonstrate that p27(Kip1) is part of the molecular mechanism that controls the decision of multipotent central nervous system progenitors to withdraw from the cell cycle. Second, postmitotic Müller glia have a novel and intrinsic requirement for p27(Kip1) in maintaining their differentiated state.  相似文献   

19.
Diabetic retinopathy (DR) is the most common complication of diabetes and remains one of the major causes of blindness in the world; infants born to diabetic mothers have higher risk of developing retinopathy of prematurity (ROP). While hyperglycemia is a major risk factor, the molecular and cellular mechanisms underlying DR and diabetic ROP are poorly understood. To explore the consequences of retinal cells under high glucose, we cultured wild type or E2f1?/? mouse retinal explants from postnatal day 8 with normal glucose, high osmotic or high glucose media. Explants were also incubated with cobalt chloride (CoCl2) to mimic the hypoxic condition. We showed that, at 7 days post exposure to high glucose, retinal explants displayed elevated cell death, ectopic cell division and intact retinal vascular plexus. Cell death mainly occurred in excitatory neurons, such as ganglion and bipolar cells, which were also ectopically dividing. Many Müller glial cells reentered the cell cycle; some had irregular morphology or migrated to other layers. High glucose inhibited the hyperoxia-induced blood vessel regression of retinal explants. Moreover, inactivation of E2f1 rescued high glucose-induced ectopic division and cell death of retinal neurons, but not ectopic cell division of Müller glial cells and vascular phenotypes. This suggests that high glucose has direct but distinct effects on retinal neurons, glial cells and blood vessels, and that E2f1 mediates its effects on retinal neurons. These findings shed new light onto mechanisms of DR and the fetal retinal abnormalities associated with maternal diabetes, and suggest possible new therapeutic strategies.  相似文献   

20.
To generate monoclonal antibodies, immunogen fractions were purified from embryonic chick retinae by temperature-induced detergent-phase separation employing Triton X-114. Under reducing conditions, the monoclonal antibody (mAb) 2M6 identifies a protein doublet at 40 and 46 x 10(3) Mr, which appears to form disulfide-coupled multimers. The 2M6 antigen is regulated developmentally during retinal histogenesis and its expression correlates with Müller glial cell differentiation. Isolated glial endfeet and retinal glial cells in vitro were found to be 2M6-positive, identified with the aid of the general glia marker mAb R5. mAb 2M6 does not bind to any other glial cell type in the CNS as judged from immunohistochemical data. Cell-type specificity was further substantiated by employing retinal explant and single cell cultures on laminin in conjunction with two novel neuron-specific monoclonal antibodies. MAb 2M6 does not bind either to neurites or to neuronal cell bodies. Incubation of retinal cells in vitro with bromodeoxyuridine (BrdU) and subsequent immunodouble labelling with mAb 2M6 and anti-BrdU reveal that mitotic Müller cells can also express the 2M6 antigen. To investigate whether Müller cell differentiation depends on interactions with earlier differentiating ganglion cells, transections of early embryonic optic nerves in vivo were performed. This operation eliminates ganglion cells. Müller cell development and 2M6 antigen expression were not affected, suggesting a ganglion-cell-independent differentiation process. If, however, the optic nerve of juvenile chicken was crushed to induce a transient degeneration/regeneration process in the retina, a significant increase of 2M6 immunoreactivity became evident. These data are in line with the hypothesis that Müller glial cells, in contrast to other distinct glial cell types, might facilitate neural regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号