首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two new zincophosphites [C6H14N2]0.5[Zn(H2PO3)2] 1 and [C4H12N2]0.5[(CH3)2NH2][Zn2(HPO3)3] 2 have been solvothermally synthesized in mixed solvents of N,N-dimethylformamide (DMF) and 1,4-dioxane (DOA), respectively. Single-crystal X-ray diffraction analysis reveals that compound 1 exhibits a neutral inorganic chain formed by ZnO4 and HPO2(OH) units. Interestingly, the left- and right-handed hydrogen-bonded helical chains are alternately formed via the hydrogen-bonds between two adjacent chains. Compound 2 exhibits a layer structure with 4- and 12-MRs formed by ZnO4 and HPO3 units, in which two kinds of organic amine molecules both act as countercations to compensate the overall negative electrostatic charge of the anionic network.  相似文献   

2.
The title compounds were made by reacting bis(diphenylphosphino)methane (dppm) with reduced solutions of OsCl64? and Ru2OCl104?. The crystal and molecular structures of these compounds have been determined form three-dimensional X-ray study. The cis-isomers crystallize with one CHCl3 per molecule of the complex. All three compounds crystallize in the monoclinic space group P21/n with unit cell dimensions as follows: Cis-OsCl2(dppm)2·CHCl3: a = 13.415(4) Å, b = 22.859(4) Å, c = 16.693(3) Å, β = 105.77(3)°, V = 4926(3) Å3, Z = 4. cis-RuCl2(dppm)2·CHCl3: a = 13.442(3) Å, b = 22.833(7) Å, c = 16.750(4) Å, β = 105.53(2)°, V = 4953(3) Å3, Z = 4. trans-RuCl2(dppm)2: a = 11.368(7) Å, b = 10.656(6) Å, c = 18.832(12) Å; β = 103.90(6)°, V = 2213(7) Å3; Z = 2. The structures were refined to R = 0.044 (Rw = 0.055) for cis-OsCl2(dppm)2·CHCl3; R = 0.065 (Rw = 0.079) for cis-RuCl2(dppm)2·CHCl3 and R = 0.028 (Rw = 0.038) for trans-RuCl2(dppm)2. The complexes are six coordinate with stable four-membered chelate rings. The PMP angle in the chelate rings is ca. 71° in each case.  相似文献   

3.
4.
The molecular structure of an o-phenylenediamine unit-containing oligophenylene (1), Ph-Ph′-Ph′(2,3-NH2)-Ph′-Ph (Ph = phenyl; Ph′ = p-phenylene; Ph′(2,3-NH2) = 2,3-diamino-p-phenylene), was determined by X-ray crystallography. 1 has a twisted structure, and forms an intermolecular C-H?π interaction network. The -NH2 group of 1 was air-oxidized to an imine, NH, group in the presence of [RuCl2(bpy)2] (bpy = 2,2′-bipyridyl) and gave a ruthenium(II)-benzoquinone diimine complex [Ru(2)(bpy)2](PF6)2 (2: Ph-Ph′-Ph′(2,3-imine)-Ph′-Ph). The molecular structure of [Ru(2)(bpy)2](PF6)2 was confirmed by X-ray crystallography. [Ru(2)(bpy)2](PF6)2 underwent two-step electrochemical reduction with E1/2 = −0.889 V and −1.531 V versus Fc+/Fc. The E1/2’s were located at higher potentials by 91 mV and 117 mV, respectively, than those of reported [Ru(bqdi)(bpy)2](PF6)2 (bqdi = benzoquinone diimine). Electrochemical oxidation of [Ru(2)(bpy)2](PF6)2 occurred at a lower potential by 180 mV than that of [Ru(bqdi)(bpy)2](PF6)2. Occurrence of the easier reduction and oxidation of [Ru(2)(bpy)2](PF6)2 than those of [Ru(bqdi)(bpy)2](PF6)2 is ascribed to the presence of a large π-conjugation system in 2.  相似文献   

5.
The reaction of α-MgCl2 with boiling ethyl acetate affords MgCI2(CH3COOC2H5)2· (CH3COOC2H5), which is obtained as crystals suitable for X-ray analysis only from the mother liquor. M=315.5, orthorhombic, space group P21221 (No. 18), a=25.077(3), b=8.616(1), c=7.345(1) Å, V=1587.0(3) Å3, Z=4, Dx=1.32 g cm−3,λ A(Mo Kα)=0.71069 Å, μ=4.17 cm−1, F(000)=664, T=298 K, observed reflections: 1667, R=0.059 and Rw=0.069. The structure is composed of polymeric chains of MgCl2(CH3COOC2H5)2 and the ethyl acetate molecules occupy a mutually trans position.  相似文献   

6.
Several niobium and tantalum compounds were prepared that contain either the diamidoamine ligand, [(3,4,5-F3C6H2NCH2CH2)2NMe]2− ([F3N2NMe]2−), or the triamidoamine ligand, [(3,5-Cl2C6H3NCH2CH2)3N]3− ([Cl2N2NMe]3−). The former include [F3N2NMe]TaCl3, [F3N2NMe]NbCl3, [F3N2NMe]TaMe3, [F3N2NMe]NbMe3, [(F3N2NMe)TaMe2][MeB(C6F5)3], [F3N2NMe]Ta(CHSiMe3)(CH2SiMe3), [F3N2NMe]Ta(CH2-t-Bu)Cl2, [F3N2NMe]Ta(CH-t-Bu)(CH3), and [F3N2NMe]Ta(η2-C2H4)(CH2CH3). The latter include [Cl2N2NMe]TaCl2, [Cl2N2NMe]TaMe2, [Cl2N2NMe]Ta(η2-C2H4), and [Cl2N2NMe]Ta(η2-C2H2).X-ray diffraction studies were carried out on [F3N2NMe]Ta(CHSiMe3)(CH2SiMe3), [F3N2NMe]Ta(η2-C2H4)(CH2CH3), and [Cl2N2NMe]TaMe2..  相似文献   

7.
Reaction of [Mo2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 or metallic Mo under hydrothermal conditions (140 °C, 4 M HCl) gives oxido-sulfido cluster aqua complex [Mo33-S)(μ-O)2(μ-S)(H2O)9]4+ (1). Similarly, [W33-S)(μ-O)2(μ-S)(H2O)9]4+ (2) is obtained from [W2O2(μ-S)2(H2O)6]2+ and W(CO)6. While reaction of [Mo2O2(μ-S)2(H2O)6]2+ with W(CO)6 mainly proceeds as simple reduction to give 1, [W2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 produces new mixed-metal cluster [W2Mo(μ3-S)(μ-O)2(μ-S)(H2O)9]4+ (3) as main product. From solutions of 1 in HCl supramolecular adduct with cucurbit[6]uril (CB[6]) {[Mo3O2S2(H2O)6Cl3]2CB[6]}Cl2⋅18H2O (4) was isolated and structurally characterized. The aqua complexes were converted into acetylacetonates [M3O2S2(acac)3(py)3]PF6 (M3 = Mo3, W3, W2Mo; 5a-c), which were characterized by X-ray single crystal analysis, electrospray ionization mass spectrometry and 1H NMR spectroscopy. Crystal structure of (H5O2)(Me4N)4[W33-S)(μ2-S)(μ2-O)2(NCS)9] (6), obtained from 2, is also reported.  相似文献   

8.
The hydrothermal reaction of cobalt(II)oxalate di-hydrate, zinc oxide, and triethyl-orthophosphate, using 1,2-diaminoethane as structure directing template in water, produced two major crystal phases in almost equal amount: the purple crystals of [NH3-CH2CH2NH3][Co0.7Zn1.3(PO4)2] (1) and the red burgundy crystals of Co6.2(OH)4(PO4)4Zn1.80 (2), a new adamite type phase. The structure of [NH3-CH2CH2NH3] [Co0.7Zn1.3(PO4)2] (1) exhibits a 3D open framework built from PO4 and (Co/Zn)O4 tetrahedra, and (Co/Zn)O5 trigonal bipyramids, forming two major channels, an 8-membered ring channel and a 16-membered ring channel, that host the ethanediammonium ions. The Co6.2(OH)4(PO4)4Zn1.80 (2) is isomorphous with adamite-type M2(OH)XO4 structure, with a condensed vertex and edge sharing network of (Co/Zn)O5, and distorted CoO6, and PO4 subunits. The cobalt preference for higher coordination numbers is displayed in this structure, where the octahedral sites are wholly occupied by cobalt. Thermal analysis confirmed that these compounds display high thermal stability.  相似文献   

9.
Hydrothermal methods were used to prepare [Cu(O3PC10H6CO2H)] (1) and [Cu(bpy)(HO3PC10H6CO2)]·2H2O (2·2H2O), where H2O3PC10H6CO2H is 2,6-carboxynaphthalene phosphonic acid (H3cnp). The two-dimensional structure of 1 consists of layers of edge-sharing {CuO6} octahedra, producing an AlCl3- type structure of fused hexagonal rings of copper octahedra, enclosing voids of hexagonal profile. The layer composition is CuO3 or CuO6/2 as each oxygen bridges two copper sites. The Hcnp ligands project from either face of the copper “oxide” layer. Adjacent layers interact through hydrogen bonding interactions between the pendant -CO2H groups of the ligand. Coordination of the bipyridine ligand in [Cu(HO3PC10H6CO2)] (2) obstructs expansion in two-dimensions, and the material exhibits a chain structure. The chain is constructed of binuclear units of edge-sharing ‘4+1’ {CuO3N2} square pyramids linked through the dipodal {HO3PC10H6CO2}2− ligands.  相似文献   

10.
Adding one equivalent of H2O2 to compounds of stoichiometry MoCl2(O)2(OPR3)2, OPR3 = OPMePh2 or OPPh3, leads to the formation of oxo-peroxo compounds MoCl2(O)(O2)(OPR3)2. The compound MoCl2(O)(O2)(OPMePh2)2 crystallized with an unequal disorder, 63%:37%, between the oxo and peroxo ligands, as verified by single-crystal X-ray diffractometry, and can be isolated in reasonable yields. MoCl2(O)(O2)(OPPh3)2, was not isolated in pure form, co-crystallized with MoCl2(O)2(OPPh3)2 in two ratios, 18%:82% and 12%:88%, respectively, and did not contain any disorder in the arrangement of the oxo and peroxo groups. These complexes accomplish the isomerization of various allylic alcohols. A mechanism of this reaction has been constructed based on 18O isotopic studies and involves exchange between the alcohol and metal bonded O atoms.  相似文献   

11.
The reaction of lead(II) nitrate with trisodium citrate Na3(C6H5O7) in a 1:22.5 ratio at pH 4.8 provides crystals of {Na(H2O)3}[Pb5(H2O)3(C6H5O7)3(C6H6O7)]·9.5H2O (1). The structure of 1 is two-dimensional and exhibits five distinct Pb(II) sites and four different modes of citrate bonding. The five lead sites all display hemidirected coordination geometries, that is, irregular distribution of neighboring oxygen atoms resulting in obvious gaps in the coordination spheres. Consequently, the lead coordination geometries exhibit proximal bonding to a number of oxygen donors, as well as distal interactions with nearest neighbors. The coordination numbers vary from 8 to 10, with ‘5+3’, ‘5+4’, ‘6+4’ and ‘7+3’ coordination modes where the first number refers to the proximal ligands and the second to the distal set. The four crystallographically distinct citrate groups include three with deprotonated carboxylate groups (C6H5O7)3− and one with a single protonated carboxyl group (C6H6O7)2. The citrate ligands bridge 3, 5, 7 and 7 lead sites. Three of the citrate groups exhibit tridentate chelation coordination to a lead site through two carboxylate oxygen donors and the hydroxyl groups. One citrate group projects an uncoordinated -OH group and a pendant protonated carboxyl group into the interlamellar domain. This latter carboxyl group coordinates to a sodium cation, which exhibits five coordinate geometry defined by three aqua ligands and the carbonyl oxygen of the -CO2H groups in the basal plane and a citrate -OH donor in the apical position.  相似文献   

12.
The advantages and disadvantages of using the Xα scattered-wave molecular orbital method with quasi-relativistic corrections for the calculation of the electronic structure of organo-f-element compounds is discussed. Application of the method in organouranium chemistry is discussed via comparative calculations on UCl4, (η5-C5H5)4U, and (η5-C5H5)2UCl2. It is found that the η5-C5H5? ligand is a better donor to U than is Cl? and that the valence orbitals of (η5-C5H5)2UCl2 are energetically closer to those of (η5-C5H5)4U than UCl4. The calculational results are in excellent accord with experimental photoelectron spectroscopic studies.  相似文献   

13.
14.
15.
Cu(C6H9N3O2)2Cl2对小麦的生态毒理效应   总被引:1,自引:0,他引:1  
陈怡平  刘永军 《生态学报》2005,25(11):3107-3111
以冬小麦为实验材料,比较研究了(1)不同浓度配合物对小麦生长的影响;(2)相同浓度的CuC l2、配体C6H9N3O2和配合物Cu(C6H9N3O2)2C l2对冬小麦种子萌发、苗期生长及其保护酶活性的影响。结果表明:与对照相比,(1)不同浓度新配合物对小麦生长具有不同程度的抑制作用,随着浓度的增高抑制作用逐渐增大;(2)CuC l2、配合物Cu(C6H9N3O2)2C l2对小麦种子总淀粉酶活性、蛋白酶活性、萌发率、生长势、根长、株高、总生物量均具有显著的抑制作用,配合物Cu(C6H9N3O2)2C l2的抑制作用小于CuC l2,而配体C6H9N3O2对上述生物学参数具有促进作用;(3)CuC l2、配合物Cu(C6H9N3O2)2C l2处理引起膜脂过氧化,显著的提高了幼苗的M DA浓度,导致SOD、POD、CAT活性降低,CuC l2的抑制作用大于配合物Cu(C6H9N3O2)2C l2,而配体C6H9N3O2处理对SOD、POD、CAT活性的提高有促进作用。上述结果说明C6H9N3O2对CuC l2生理胁迫具有保护作用,结合态的Cu2 (配合物Cu(C6H9N3O2)2C l2)的毒性显著的降低。在此基础上探讨了配合物抑制小麦生长发育的生物学机制。  相似文献   

16.
The photophysical properties (absorption, emission, and excitation spectra; luminescence quantum yields; luminescence decay lifetimes ) of K13[Eu(SiW11O39)2] and K15[Eu(BW11O39)2] in aqueous solution and in the solid state are reported. Both complexes exhibit broad and very intense O → W charge transfer bands in the U.V. region and weak and narrow f → f Eu3+ bands in the visible. At 77 K the luminescence emission of both complexes, which consists of 5DO7FJ bands split by the local crystal field, can be pumped very efficiently via both the O → W CT and the f → f Eu3+ levels, whereas at 298 K only pumping via the f → f Eu3+ is efficient. The values of the luminescence decay lifetimes in H2O and D2O solution are quite similar, showing that no water molecule is coordinated to the central Eu3+ ion. The high resolution emission spectra are discussed in an attempt to define the coordination symmetry of Eu3+.  相似文献   

17.
A new ruthenium nitric oxide complex with the bidentate phosphine, 1,2-bis(diethylphosphino)ethane (depe), has been synthesized and characterized by UV-Vis, infrared, EPR, NMR, electrochemical techniques and X-ray structure determination. The electronic spectrum showed a typical band of dπ→pπ* charge-transfer (CT) transition, assigned to Ru(II)NO transition, and the vibrational spectrum exhibited a peak of nitrosyl ligand at (νNO=1851 cm−1). A model structure for this complex has been proposed based on 1H, 1H{31P}, 31P{1H}, 13C{1H}, COSY 1H1H{31P}, J-Resolved, HSQC, HMBC, HSQC 1H13C{31P} and 1H13C HSQC/1H1H TOCSY spectral data, and confirmed by X-ray diffraction. The nitrosonium character for the NO ligand become evident through both electron paramagnetic resonance and X-ray data (angle RuNO=177.4(3)°). The reversible monoeletronic process at E1/2=0.040 V versus SHE was assigned to the ligand NO+/NO redox couple. Under treatment with Cd(Hg) solutions containing the [Ru(NO)(depe)2Cl](PF6)2 yields a signal in the EPR spectrum (g=1.99 and g//=1.88) which fitted quite well with the simulated spectra of coordinated NO species.  相似文献   

18.
19.
Several clusters complexes of composition [Pt42-CO)5L4] have been synthesized and characterized, using 31P and 195Pt NMR. L = PEt3, PMe2Ph, PMePh2, PEt2But. The molecular structure of a new monoclinic modification of the PMe2Ph derivative has been determined: space group P21/n with a = 19.698(4), b = 10.9440(20), and c = 21.360(6) Å, β = 112.432(18)°, Z = 4. Using 4751 reflections measured at 290 ± 1 K on a four-circle diffractometer the structure has been refined to R = 0.0846. The molecule has no imposed symmetry, but the central Pt4(CO)5P4 core has the approximate C2v architecture established for the previously known orthorhombic modification. The Pt4 unit is thus a highly distorted, edge-opened (3.3347 Å) tetrahedron, with five edge-bridging carbonyl and four terminal phosphine ligands. In contrast to the crystallographic results 31P and 195Pt NMR spectra reveal equivalent 31P and 195Pt spins, which can be interpreted in terms of a tetrahedral arrangement of platinum atoms. It is suggested that this equivalence arises from time-averaging of all possible isomeric edge-opened tetrahedra.  相似文献   

20.
The synthesis of CH2-CH2-NH and NH-CH2-CH2 internucleoside linkages are described. Antisense oligonucleosides containing these dimer modifications hybridized to the sense sequence. Furthermore incorporation of these backbone modifications enhanced the nuclease resistance of the antisense strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号