首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas in vitro technique was used to study the effects of six types of chitosans, each having different molecular weights and acetylation degrees, on rumen microbial fermentation. In a first trial, a separate concentration of 750 mg/l of culture fluid for each of the six chitosans (CHI1, CHI2, CHI3, CHI4, CHI5, and CHI6) was incubated for 24 h in diluted ruminal fluid with maize silage as the substrate. The ionophore antibiotic monensin (MON) was used as a positive control, and a negative control with no chitosan (CTR) was also included. Each treatment was tested in triplicate for three different periods. At the end of the trial, samples were collected to determine volatile fatty acid (VFA) and ammonia N concentrations, and pH and gas production values were recorded. Methane concentration was estimated stoichiometrically. In vitro true organic matter digestibility (IVOMD) and partitioning factor (PF, mg OM truly degraded/ml gas produced) were also calculated. In a second trial, a separate concentration of 750 mg/l of each of the six chitosans was incubated for 144 h in diluted ruminal fluid with maize silage as the substrate, to study the effects of these compounds on fermentation kinetics.All six chitosans decreased the IVOMD and PF values. Chitosan inclusion did not affect the fermentation of the substrate's soluble fraction, but did reduce the fermentation kinetics of the insoluble but fermentable fraction. However, only CHI5 and CHI6 decreased total VFA concentration. CHI3 and CHI6 decreased the molar proportion of acetate and increased the molar proportion of propionate, thus increasing the propionate-to-acetate ratio. Chitosan inclusion did not affect molar proportions of butyrate. With the exception of CHI2, the molar proportion of branch-chained VFA was lowered by all of the chitosan treatments. Most of the treatments also decreased methane production, also with the exception of CHI2.In conclusion, chitosan extracts may enable the manipulation of rumen microbial fermentation, but further research is required to elucidate the effect of chitosans on ruminal fermentation parameters in commercial diets as well as the adaptability of rumen microflora to these additives.  相似文献   

2.
The objectives of this study were to investigate the effects of rare earth elements (REEs) on in vitro rumen fermentation, gas production, microbial protein synthesis and nutrient digestion using in vitro batch culture and continuous culture technique. A mixture of REE containing (g/kg) 380 g of LaCI3·6H2O, 521 g of CeCI3·6H2O, 30 g of PrCI3·6H2O and 69 g chlorides of other light REEs. The experimental diet consisted of 885 g/kg barley grain, 84 g/kg barley silage and 31 g/kg supplement (dry matter (DM) basis). Diet supplemented with different dosages of REE (control, no additional REE; low, 400 mg/kg REE; and high, 800 mg/kg REE, DM basis) were incubated for 4, 8, 14 and 24 h in diluted rumen fluid. At the end of 24 h of incubation, gas production and concentration of volatile fatty acid (VFA) linearly increased with increasing REE supplementation; whereas, influence of REE supplementation on VFA profile was marginal. Dry matter disappearance was not affected (P>0.10). Six dual-flow continuous culture fermenters were used in a replicated 3 × 3 Latin square with same treatments and same diet used in the batch culture. Mean ruminal pH (5.71) and total VFA (93.6 mM) concentration were not affected by supplementation of REE. The molar proportion (mol/100 mol) of acetate (39.1) and propionate (50.5) was similar among the treatments. However, the proportion (mol/100 mol) of butyrate was higher with the high REE (6.6) than with low REE (5.3) or the control (5.8). Ruminal true digestibilities of organic matter (OM) (0.785, 0.811 and 0.828), acid detergent fibre (0.360, 0.431 and 0.432) and crude protein (0.496, 0.590 and 0.589) for control, low and high REE, respectively, linearly increased with increasing REE supplementation, whereas, the increase in ruminal digestibility from low to high dosage of REE was minimal. Microbial nitrogen (N) production (g/day) and microbial efficiency (g N/kg of truly fermented OM) were not affected by treatments. Improvement of ruminal digestibility of OM due to REE supplementation was attributed to the increase in digestibility of fibre and degradability of protein. The results suggest that REE supplementation improved ruminal fibrolytic and proteolytic activities.  相似文献   

3.
Whole crop third cut alfalfa, brown mid-rib (bmr) corn, and corn were chopped and inoculated with one of four microbial inoculants used. Uninoculated silage was the control treatment. Each crop was ensiled in four mini-silos (1 L glass jars) per treatment. All silos were fermented for 60 days at room temperature (22 °C), and then they were opened and analyzed for fermentation products, fiber constituents and N fractions. A fraction of wet silage was ground with a blender for 30 s. In vitro gas production was measured in 160 ml sealed serum vials at 3, 6, 9, 24, and 48 h using the wet ground silage. At 9 and 48 h, rumen fluid was analyzed for volatile fatty acids (VFA) and microbial biomass yield (MBY). In all the three crops, the four inoculants produced only minor changes in pH and fermentation products during ensiling. Of the variables measured, soluble nonprotein N fractions were the characteristics most often affected by some inoculants. At 9 h incubation, in vitro gas production and VFA did not differ between control and inoculated silages, but MBY did. Among crops, alfalfa and corn silages had higher MBY than did bmr corn silage. Among inoculants, three of the four inoculated silages produced more MBY than did control. At 48 h, alfalfa silage produced higher MBY than did corn or bmr silage, and two of the inoculated silages had more MBY than did the control. There was no inoculant by crop interaction. Results suggest that some silage inoculants are capable of altering rumen fermentation, even in cases where effects on silage fermentation are small, and that this effect may be linked to better preservation of crop protein during ensiling.  相似文献   

4.
Essential oils can be used as natural additives in animal feeds. The present study evaluated the effects of three different doses and different adaptation times of a specific blend of essential oils (BEO) on rumen microbial fermentation. Eight dual flow continuous culture fermenters (1320 ml) were used in two periods of 9 days each to study the effects of increasing doses of BEO. Treatments were: CTR (no BEO), D5 (5 mg/l of BEO), D50 (50 mg/l of BEO) and D500 (500 mg/l of BEO). During the last 3 days, samples were taken at 0, 2, 4 and 6 h after the morning feeding and analyzed for large peptide (LPep), small peptides plus amino acid (SPep + AA) and ammonia N concentrations, and at 2 h after feeding for volatile fatty acids (VFA) concentration and profile. The D5 increased total VFA concentration, acetate proportion and acetate to propionate ratio, and decreased propionate and valerate proportion, compared with CTR. The concentration of LPep N tended (P=0.08) to be lower for D5 compared with CTR. In the second experiment, eight sheep were used to study the effects of long-term adaptation of rumen fluid to BEO on ruminal fermentation. Four sheep were assigned at random to the CTR treatment (no BEO) and four sheep were adapted to BEO (110 mg/day of BEO) for 4 weeks (ADBEO). After 4 weeks samples of ruminal fluid were obtained at 0 and 3 h after the morning feeding and in 2 consecutive days using an oro-ruminal probe. Samples were analyzed for LPep, SPep + AA and ammonia N concentrations, total and individual VFA, and pH. Treatment ADBEO tended (P<0.10) to increase acetate proportion and decrease valerate proportion, compared with CTR. Ruminal fluid collected from each of CTR and ADBEO sheep was used to study in vitro fermentation profile of soybean meal, corn meal, alfalfa hay and ryegrass hay. Treatments were: Control fluid (CTR without BEO), CTR fluid plus a single dose of BEO (11 mg/l; CTR + BEO) and ADBEO fluid plus a single dose of BEO (11 mg/l; ADBEO + BEO). Acetate proportion and acetate to propionate ratio was higher, and propionate and isovalerate proportion, and BCVFA and ammonia N concentration were lower in ADBEO + BEO fluid compared with CTR fluid. The addition of essential oils can shift the microbial fermentation in the rumen by increasing the acetate to propionate ratio and inhibiting deamination.  相似文献   

5.
Buckwheat is of high value in crop rotations and overall agricultural ecology because of strong rooting and intensive flowering properties, but it is rarely cultivated and information on its nutritional value to ruminants is scarce. The contents of net energy for lactation (NEL), as estimated with the Hohenheim Gas Test (n = 3), were 4.3, 4.9 and 7.5 MJ NEL/kg dry matter (DM) for fresh and ensiled whole buckwheat plants and buckwheat grain, respectively. In two experiments with the Rumen Simulation Technique (Rusitec), ruminal fermentation characteristics of buckwheat forages and buckwheat grain (n = 4/diet) were evaluated. In the first experiment, 0, 300 or 600 g/kg of a pure hay diet were replaced by either fresh or ensiled buckwheat to create five diets. Neither form of buckwheat forages had effects on in vitro ruminal degradability and short chain fatty acid (SCFA) concentrations and composition. The use of fresh buckwheat reduced ruminal ammonia concentrations and enhanced estimated microbial N growth efficiency. These differences did not occur with silage, indicating a change in nutritional value by ensiling. Fresh buckwheat reduced the number of bacteria in the incubated fluid, while ensiled buckwheat reduced that of holotrich protozoa. Methane formation was not influenced by the buckwheat forages. In the second experiment, wheat meal (400 g/kg dietary DM), was replaced stepwise (0.5 and 1.0) by buckwheat grain meal. This did not cause differences in parameters of nutrient degradability, relative N efficiency and total amount and composition of SCFA. Holotrich protozoa counts increased, but total gas formation decreased with increasing dietary level of buckwheat grain. In a final experiment, cows yielding about 40 kg milk/day were fed mixed silage-concentrate diets (n = 4). A control diet contained no buckwheat. In a second diet, maize silage was partly substituted by buckwheat silage (98 g/kg dietary DM). In a third group, part of the energy concentrate was substituted by buckwheat grain meal (94 g/kg). There were no effects on feed intake, milk yield and milk composition. Buckwheat proved to be a plant that offers different feeds of a quality sufficient to be considered suitable in ruminant nutrition.  相似文献   

6.
Sheep rumen contents were used as inoculum for an in vitro semi-continuous incubation system to study whether preservation method affects microbial fermentation pattern. Rumen fluid was filtered and either used immediately as inoculum (CTL) or dispensed into 110 mm × 16 mm tubes, that were stored refrigerated at 6 °C for 4 h (REF) or frozen at ?20 °C (FRZ), frozen in liquid N (FLN) or added with 0.04 glycerol and frozen in liquid N (FGL) for 48 h. Frozen inocula were thawed at 39 °C for 2 min before use (16 ml per bottle). Two 24 h incubations with four bottles per treatment were completed. The microbial utilisation of added glycerol after thawing in FGL increased total gas production (P<0.05) and 24 h volatile fatty acid (VFA) production (P<0.05), and also increased propionate and butyrate proportions at the expense of acetate. The other freezing inocula (i.e., FLN and FRZ) reduced the rate of gas production (as ml/g dry matter per hour), compared with CTL in the first 2 and 4 h of incubation (P<0.05), but this was compensated by increased fermentation at 8 and 12 h, respectively. Differences in gas production did not manifest a different VFA pattern at either 6 or 24 h incubation. Bacterial diversity was slightly affected by the preservation process, and the similarity index between untreated inocula and the 24 h incubated CTL samples was 0.690–0.724. Similarity between bacterial communities in FRZ and FLN with that in CTL after incubation was 0.678. The freezing preservation method of rumen inocula for subsequent in vitro gas production studies does not affect microbial fermentation pattern or bacterial biodiversity, provided that processing is rapid enough by using a high surface to volume ratio. Freezing in liquid N is more appropriate than at ?20 °C.  相似文献   

7.
《Small Ruminant Research》2009,82(2-3):119-125
This study was conducted to test the hypothesis that the supplementation of a high-concentrate diet with lipids, reportedly a good strategy for improving the nutritional value of ruminant-derived products, may not necessarily be associated with detrimental effects on ruminal fermentation in sheep. Four ruminally cannulated adult ewes were fed a high-concentrate diet, with no oil (Control diet), for a 14-day adaptation period. Afterwards, they were fed the same basal diet but supplemented with sunflower oil [20 g/kg fresh matter (FM)] and fish oil (10 g/kg FM) (SOFO diet) for a further 11 days, to investigate the impact of the addition of oils on the ruminal fermentation of the diet. On days 0 (Control), 3 and 10 of the experimental period rumen fluid was sampled at 0, 1.5, 3, 6 and 9 h after the morning feeding, for analysis of pH, and ammonia, lactate and total volatile fatty acid (VFA) concentrations. Alfalfa hay was incubated in situ, using the nylon bag technique, for 12 and 24 h to examine the effect of oil supplementation on ruminal disappearance of dry matter (DM), crude protein (CP) and neutral-detergent fibre (NDF). On days 0 and 11, rumen fluid was collected just before the morning feeding and used to incubate alfalfa hay and the Control and SOFO diets by means of the in vitro gas production technique. The mean concentrations of acetate (87.8 mmol/L vs. 73.7 mmol/L) and butyrate (21.2 mmol/L vs. 17.7 mmol/L) were reduced by oil supplementation (P < 0.05) and the total VFA showed a tendency (P = 0.098) to be lower with the SOFO diet (139.0 mmol/L vs. 122.1 mmol/L). However, none of the other in vivo ruminal fermentation parameters were affected by the treatment (P > 0.10). The oil supplementation affected neither in situ rumen disappearance of DM, CP and NDF of alfalfa hay, nor rates of gas production (P > 0.10). On the other hand, a little, but significant reduction in cumulative gas production was observed when the experimental diets were incubated with rumen fluid derived from animals fed the oil-rich diet (P < 0.05).Overall, the results suggest that the supplementation of high-concentrate diets with sunflower oil (20 g/kg FM) plus fish oil (10 g/kg FM) had little effect on ruminal fermentation and therefore its use to improve the nutritional value of ruminant-derived products cannot be precluded.  相似文献   

8.
This study was carried out to evaluate intake, digestibility, ruminal fermentation, nitrogen (N) retention and ruminal microbial protein synthesis in lambs fed dwarf elephant grass (Pennisetum purpureum Schum. cv. Mott) hay or hay supplemented with urea and 0, 5, 10 or 15 g/kg of live weight (LW) of cracked corn grain. Ten lambs (mean LW of 28 ± 0.9 kg), housed in metabolic cages, were used in a double 5 × 5 Latin Square experiment. Except fibre intake and digestibility, which was higher, the intake and digestibility of the others feed components, as well as ruminal microbial protein synthesis and N retention were lower in non-supplemented lambs. Corn supplementation increased total dry matter (DM) (P<0.05), organic matter (OM), non-structural carbohydrate (NSC) and energy intake (P<0.01) but decreased total neutral detergent fibre (aNDFom) (P<0.01) intake, as well as OM and aNDFom intake from the hay (P<0.01). Apparent DM, OM and energy digestibility, as well as OM true digestibility (OMTD) increased (P<0.01), and aNDFom digestibility decreased linearly (P<0.01) as corn supplementation increased. Total N intake was not influenced but, apparent and true N digestibility, as well as urinary N excretion decreased (P<0.01), and ruminal microbial N entering the small intestine increased linearly (P<0.01) as corn supplementation increased. However, the efficiency of ruminal microbial protein synthesis was similar for all treatments. Mean ruminal pH values and ammonia N concentrations decreased linearly (P<0.01) with level of corn supplementation. Ammonia N and amino acid, as well as peptide concentrations in ruminal fluid were quadratically related (P<0.01) with the time after feeding. Corn supplementation had a linear additive effect on total dry matter and digestible energy intake, as well as on N retention, but a linear negative effect on hay intake and on fibre digestibility. However, decreased forage digestibility by animals was probably neither related to lower ruminal pH, which values were always higher than 7.0, nor related to ruminal sugar concentrations, which were similar for all treatments.  相似文献   

9.
Six non-lactating dairy cows fitted with ruminal cannulas were used in a cross-over design, to investigate the effects of supplemental yeast culture (Saccharomyces cerevisiae) (YC) and interaction of YC by sampling time on ruminal fermentation and in situ fibre degradation. Cows were fed twice daily with a diet composed of 67% corn silage, 32% concentrate and 1% vitamin and mineral mixture, on a dry matter (DM) basis. Concentrates were not mixed with silage. YC (0.5% DM) significantly decreased rumen ammonia from 148.5 mg l−1 to 103.1 mg l−1 3 h post-feeding, and significantly increased by about 20% the concentration of total volatile fatty acids before and 1 h after feeding. YC significantly increased molar percentage of propionate and decreased the acetate : propionate ratio before feeding. No significant effect was observed on ruminal pH and molar percentages of acetate or butyrate. Pattern of degradation of DM, neutral and acid detergent fibre from hay was affected, with a cubic effect of interaction of YC by incubation time. However, magnitude of degradation was not significantly different at any time. These results show that modifications of ruminal fermentation due to YC addition are time dependent when the diet is fed twice daily.  相似文献   

10.
A dual-flow continuous culture fermenter system was used to investigate ruminal fermentation in response to increased by-product gypsum application rate of three forages. The treatments included 0, 22, 45, and 90 tonnes/ha by-product gypsum applied to grass plots and 0, 22, and 45 tonnes/ha by-product gypsum applied to corn plots. Forage was harvested to represent grass pasture (GP), grass hay (GH), and corn silage (CS), dried, ground, and fed to fermenters at a rate of 60 g dry matter (DM)/day. Organic matter (OM) and neutral detergent fiber (aNDF) digestibilities, rumen pH, total volatile fatty acid (VFA) production, and N metabolism were not affected by gypsum application rate for all forage types. The GH had greater sulfur content than recommended as the maximum tolerable level by the National Research Council (NRC). The results of this study indicate that ruminal fermentation was not compromised when by-product gypsum was applied to GP, GH, or CS at rates up to 90 tonnes/ha. By-product gypsum application to pastures and crops shows promise as an economical soil amendment to reduce dissolved phosphorus loss in runoff, although potential animal health issues should be further evaluated.  相似文献   

11.
Eight dual-flow continuous culture vessels (700 ml) were used to compare in vitro effects of toxic, endophyte-infected (E+), endophyte-free (E−), and non-toxic, endophyte-infected (EN) Jesup tall fescue (vegetative stage) on ruminal fermentation at 4 levels (0, 150, 300, and 450 g kg−1 DM) of concentrate supplementation (ground corn) for a total of 12 experimental diets in a randomized incomplete block design with 2 replicates. Each culture vessel was offered a total of 15 g DM d−1. Forage was fed in four equal portions (fed at 03:00, 09:00, 15:00, and 21:00 h); and corn was fed in two equal portions (fed at 09:00 and 21:00 h). Headspace gas and liquid samples were analyzed for methane, ruminal culture pH, ammonia–N, and volatile fatty acid production. Ammonia–N output (g d−1) varied by grass; EN had lower values compared to those of E+ and E−. Increasing the level of grain linearly decreased ruminal culture pH, ammonia–N, acetate production, and the acetate-to-propionate ratio, whereas propionate and butyrate production increased with higher grain supplementation. Ruminal fermentation was minimally altered by the presence of the endophyte; however, for the highest level of grain fed (450 g kg−1 DM fed) the methane production pattern for all three grasses was altered. In addition to having the lowest ruminal ammonia–N accumulation, the non-toxic, endophyte-infected fescue resulted in the lowest methane production measured.  相似文献   

12.
《Process Biochemistry》2010,45(8):1319-1324
To obtain microorganisms for the microbial conversion of ginsenosides in red ginseng powder (RGP), Lactobacillus species (M1–M4 and P1–P4) were isolated from commercial ginseng products. Strain M1 was determined to be L. plantarum by 16S rRNA sequencing. Red ginseng powder (RGP) fermented by L. plantarum M1 had a high total content of ginsenosides (142.4 mg/g) as compared to the control (121.8 mg/g). In particular, the ginsenoside metabolites Rg3, Rg5, Rk1, Compound K (CK), Rh1, and Rg2 showed a high level in the fermented RGP (65.5 mg/g) compared to the control (32.7 mg/g). During fermentation for 7 days, total sugar content decreased from 8.55 mg/g to 4 mg/g, uronic acid content reached its maximum (53.43 μg/g) at 3 days, and total ginsenoside content increased to 176.8 mg/g at 4 days. In addition, ginsenoside metabolites increased from 38.0 mg/g to 83.4 mg/g at 4 days of fermentation. Using everted instestinal sacs of rats, the fermented red ginseng showed a high transport level (10.3 mg of polyphenols/g sac) compared to non-fermented red ginseng (6.67 mg of polyphenols/g sac) after 1 h. These results confirm that fermentation with L. plantarum M1 is very useful for preparing minor ginsenoside metabolites while being safe for foods.  相似文献   

13.
Effects of ionophore type and carrier on in vitro ruminal digestion and fermentation patterns of a concentrate substrate were evaluated at various incubation times. Treatments were: control (no ionophore); lasalocid sodium commercial premix (Bov); lasalocid sodium mycelium cake (LasBio); laidlomycin sodium salt (LaidNa); laidlomycin propionate commercial premix (LaidPro); monensin sodium salt (Mon); and monensin sodium commercial premix (Rum). The Bov, LasBio, Mon, and Rum treatments supplied 4 μg of ionophore/mL of culture volume, whereas the LaidNa and LaidPro treatments supplied 1.33 μg of ionophore/mL. Total gas and methane production did not differ among treatments at any of the incubation times (P>0.09). Similarly, in vitro dry matter disappearance (IVDMD) was not affected by treatment (P>0.28) at 6, 18, and 24 h of incubation; however, IVDMD (P=0.03) was greater for ionophores than for the control at 12 h of incubation. Molar proportions of acetate (P<0.01), acetate:propionate (P<0.01), and total volatile fatty acid (VFA) concentrations (P<0.01) were decreased and propionate was increased (P<0.001) for the average of all ionophore-containing substrates compared with the control. Total VFA were decreased by Bov, LaidNa, and Rum, contrasted with their specific counterparts (LasBio, LaidPro, and Mon, respectively; P<0.05). Differences were detected among ionophore types for acetate (lasalocid vs. laidlomycin; P<0.05), propionate (lasalocid vs. monensin; P<0.05), and butyrate (monensin vs. lasalocid or laidlomycin; P<0.05). Capture of metabolic hydrogen in end products of fermentation was greater for ionophore-containing treatments (P<0.01) than for the control. These data suggest limited unique effects of ionophore type or carrier on IVDMD, total gas production, and methane; however, VFA proportions varied among ionophore types and carriers, which deserves further study.  相似文献   

14.
This study examined the effect of substituting dry wormwood (Artemisia sp.) for rice straw in sheep diets on intake and apparent digestibility in vivo, nitrogen (N) balance and ruminal fermentation characteristics. Four Corriedale×Polwarth sheep (51.7 ± 1.3 kg) were individually housed in metabolism cages and fed diets (ad. libitum) with a 70:30 forage to concentrate ratio (DM basis), in which the basal rice straw was substituted with 0 (Control), 30 (LW), 50 (MW) or 100 (HW) g/kg of dry wormwood. The experimental design was a 4×4 latin square design in which 10 days of dietary adaptation was followed by 6 days of total feces and urine collection in each period. Rumen fluid was collected from a stomach tube at −0.5, 0.5, 1, 2, 4, and 8 h after the morning feed on day 6 of each collection period and analyzed for volatile fatty acids (VFA). The intakes of dry matter (DM), organic matter intake (OM), crude protein (CP), ether extract (EE), neutral detergent fibre (NDF) and acid detergent fibre (ADF) were higher (P<0.05) in sheep fed diets containing wormwood, than those fed the Control diet. Compared to the Control diet, CP digestibility was higher (P<0.05) in sheep fed MW and N intake, retained N, EE digestibility, urinary purine derivatives and microbial N yield were higher (P<0.05) in sheep fed diets, containing wormwood. Rumen pH was unaffected by treatment. Rumen NH3-N and VFA concentrations were similar across treatments except that most values for diets containing wormwood were higher (P<0.05) than those for the control diet within the first 2 h of feeding. The non-glucogenic acid ratio was also similar across Control, LW and MW treatments, but it was generally lower in MW versus the Control treatment. In conclusion, substituting wormwood for rice straw in the sheep diets increased feed intake, rumen fermentation, in vivo digestibility, N retention and microbial N yield, particularly at the medium and high levels of wormwood inclusion.  相似文献   

15.
A continuous culture system, inoculated with rumen liquor from goats or sheep, was used to study fermentation characteristics of olive leaves (OL). The effects of adding polyethylene glycol (PEG 4000 MW; 0, 2 or 20 g/100 g OL) and/or supplementing with urea (U) or sunflower meal (SM) (1.0 g N/100 g OM) were also studied. Olive leaf fermentation promoted low VFA production (35.2 mmol/d), predominantly of acetic acid, and low efficiency of VFA production (4.91 mol/kg digestible carbohydrates, DCHO). Both values increased with N supplementation, but effects of PEG were variable. No differences ascribed to the rumen inoculum origin were observed. The ammonia N concentration was increased only by supplementation with U. Total and amino acid N output was low and increased with N addition, but it was not affected by PEG treatment. No differences ascribed to the inoculum origin were observed concerning microbial N production rate or efficiency (g N/kg DCHO). There was no clear difference between sources of supplementary N regarding bacterial protein synthesis. On the basis of PEG results, the effect of tannins on OL fermentation was not important.  相似文献   

16.
《Small Ruminant Research》2001,39(3):269-276
Four cannulated sheep were used to study ruminal fermentation of a diet consisting of 60% sugar cane tops (Saccharum officinarum), 30% corn stubble (Zea mays), 10% King grass (Pennisetum purpureum) and 0% (control), 10, 20 or 30% controlled-release urea supplement (CRUS) (diets 1, 2, 3 and 4, respectively). Average ruminal pH did not differ among diets (P>0.05), but during the first 6 h of sampling tended to be higher for CRUS diets. Ammonia concentrations were higher (P<0.01) in all treatments over controls, indicating microbial protein generation. Acetic acid production (mM/1) decreased (P<0.05), propionic acid increased (P<0.05), while butyric acid production did not differ among CRUS diets and controls (P>0.05). Total amounts of ruminal VFA were lowest (P<0.01) in controls, while CRUS diets produced more of these energy sources. Supplementation of the high fiber diets with 10, 20 or 30% CRUS increasingly improved rumen fermentation, ammonia supply and VFA production. The results show that low quality forages (up to 70% DMI) can be used efficiently by sheep when conditions for ruminal microorganism are improved with a controlled-release urea supplement.  相似文献   

17.
This experiment was conducted to investigate effects of wilting and additives on the fatty acid (FA) composition of grass silage. The crop used was timothy (Phelum pratense L., cv. Grindstad), and the additives were Proens? (formic acid and propionic acid, 60–66 g/100 g and 25–30 g/100 g, respectively), the bacterial inoculant Siloferm® Plus (Pediococcus acidilactici and Lactobacillus plantarum) and water (control). The wilted material reached a dry matter (DM) content of 336 g/kg at the first cut and 350 g/kg at the second cut. Neither wilting nor the additives had any major effect on the FA proportions, with the only differences in the concentrations of C16:0 and C18:3. Silage treated with bacterial inoculant contained a higher proportion of C16:0 (P<0.05) than silage treated with acid, and a lower (P<0.05) concentration of C18:3 than silage treated with either of the other two additives. In the silages, there were lower (P<0.05) proportions of C16:0, C18:0, C18:1 and C18:3, and higher (P<0.05) proportions of C16:1, C18:2 and other identified FAs, than in the fresh material. A wilting process shorter than 24 h, to a DM content of 330–350 g/kg, did not have any effect on the proportions of FAs in P. pratense L., cv. Grindstad. Since the different additives and wilting strategies tested in this study did not affect the proportions of FAs in silage to a major extent, the results indicate that such a process offers a robust means to avoid losses of FAs that can occur during wilting, while retaining the positive effects of wilting, such as reduced losses of nutrients through effluents.  相似文献   

18.
The objective of this experiment was to study the effect of elemental nano-selenium (NS) on feed digestibility, rumen fermentation, and urinary purine derivatives in sheep. Eight male ruminally cannulated sheep (42.5 ± 3.2 kg of body weight, BW) were used in a replicated 4×4 Latin square experiment in four 20 day periods. Depending on treatment designation, sheep were fed the basal diet supplemented with 0 (control), 0.3, 3 and 6 g of nano-Se/kg dry matter (DM). Ruminal pH (range of 6.68–6.80) and ammonia N concentration (range of 9.95–12.49 mg/100 mL) was decreased (P<0.01), and total VFA concentration (range of 73.63–77.72 mM) was increased linearly (P<0.01) and quadratically (P<0.01) with increasing nano-Se supplementation. The ratio of acetate to propionate was linearly (P<0.01) and quadratically (P<0.01) decreased due to the increasing of propionate concentration. In situ ruminal neutral detergent fiber (aNDF) degradation of Leymus chinensis and crude protein (CP) of soybean meal were linearly (P<0.01) and quadratically (P<0.01) improved by feeding nano-Se. Similarly, nutrients digestibility in the total tract and urinary excretion of purine derivatives were also quadratically (P<0.01) changed by increasing nano-Se supplementation. The present results indicated that nano-Se supplementation in basal diet improved rumen fermentation and feed utilization. Nano-Se could also stimulate rumen microbial activity, digestive microorganisms or enzyme activity. The optimum dose of nano-Se was about 3.0 g/kg dietary DM in sheep.  相似文献   

19.
Passage, comminution and digestion rates of large and small particles were estimated using a rumen evacuation technique and total faecal collection with five lactating dairy cows in a 5 × 5 Latin square experiment. Two grass and two red clover silages harvested at early and late primary growth stages and a 1:1 mixture of late harvest grass and early harvest red clover were the dietary treatments. Cows received 9.0 kg supplementary concentrate per day. Ruminal contents and faeces were divided into large (>1.25 mm) and small (1.25–0.038 mm) particles by wet sieving. Indigestible neutral detergent fibre (iNDF) was determined by 12 days ruminal in situ incubation followed by neutral detergent extraction. Plant species did not affect ruminal particle size distribution, whereas advancing forage maturity decreased the proportion of large particles for both grass and red clover silage diets. Ruminal pool size of iNDF was higher (P<0.001) with red clover compared to grass silage diets. Ruminal passage rates of iNDF and potentially digestible NDF (pdNDF) increased with decreasing particle size (P<0.01). Passage rate of iNDF for small particles was slower (P<0.01) when red clover compared to grass silage diets were fed. Particle comminution rate in the rumen was slower (P<0.001) with red clover compared to grass silage diets and it increased (P<0.01) with advancing forage maturity. The contribution of particle comminution to ruminal mean retention time of iNDF in the ruminal large particle pool was smaller (P<0.01) in red clover compared to grass silage diets and it increased (P<0.05) with the mixed silage compared to the separate silages. Passage rate of pdNDF for both large and small particles was not affected by dietary treatments. Digestion rate of pdNDF for large particles was faster (P<0.001) with red clover compared to grass silage diets. Differences in ruminal passage and digestion rates of the large and small particles, in addition to differences in the passage and digestion rates of red clover compared to grass silage diets, emphasize the need to consider particle size and forage type in metabolic models predicting feed intake and fibre digestibility in ruminants.  相似文献   

20.
A study was conducted to evaluate the ensiling characteristics of chopped sugarbeets with dry feedstuffs and the corresponding change in the nutritive composition of the silages with the addition of dry substrates. Pre-calculated amounts of each feedstuff were weighed individually to achieve desired proportions of each silage product and thoroughly mixed for 5 min. After mixing, the silage was distributed evenly into three 19-L buckets and sealed to provide an anaerobic environment. The treatments for this study were arranged in a 4 × 4 + 1 factorial design to determine the effects of DM level and source of dry feedstuff on the ensiling properties of sugarbeets following a 42-d fermentation period. Treatments were ensiled sugarbeets alone (250 g/kg) or based on (1) formulated silage DM concentrations of 275, 350, 425, and 500 g/kg and (2) the inclusion of dry feedstuffs (alfalfa hay, dry-rolled corn, wheat middlings, and wheat straw). Fermentation and nutritive characteristics of ensiled sugarbeets were influenced with the addition of dry substrates. A linear increase (P<0.001) in silage pH was observed with the addition of alfalfa, dry-rolled corn, wheat middlings, and wheat straw to ensiled sugarbeets. Lactic acid increased (P<0.001) with the addition of wheat middlings. Alfalfa addition to sugarbeet silage did not alter (P<0.001) lactate concentration. Concentration of lactate decreased (P=0.01) when corn was added, while wheat straw addition did not influence (P=0.37) lactate. A contrast was used to compare ensiling characteristics of sugarbeets alone (250 g/kg DM) to 350 g/kg DM (sugarbeets with dry substrates). Results indicated fermentative parameters were altered; pH increased (P<0.001) for all dry substrates while lactate was lower (P=0.003) for the sugarbeets ensiled with dry-rolled corn compared with sugarbeets ensiled alone. Alfalfa, wheat straw, and wheat middlings decreased (P<0.001) while dry-rolled corn did not affect (P=0.54) in vitro DM digestion. These results indicate the inclusion of dry feedstuffs with sugarbeets altered fermentation and with the exception of corn, decreased in vitro DM digestion. Nutrient composition and DM content of ensiled sugarbeets was altered with the addition of dry substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号