首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transfer of the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids pEMT1 and pJP4 from an introduced donor strain, Pseudomonas putida UWC3, to the indigenous bacteria of two different horizons (A horizon, depth of 0 to 30 cm; B horizon, depth of 30 to 60 cm) of a 2,4-D-contaminated soil was investigated as a means of bioaugmentation. When the soil was amended with nutrients, plasmid transfer and enhanced degradation of 2,4-D were observed. These findings were most striking in the B horizon, where the indigenous bacteria were unable to degrade any of the 2,4-D (100 mg/kg of soil) during at least 22 days but where inoculation with either of the two plasmid donors resulted in complete 2,4-D degradation within 14 days. In contrast, in soils not amended with nutrients, inoculation of donors in the A horizon and subsequent formation of transconjugants (105 CFU/g of soil) could not increase the 2,4-D degradation rate compared to that of the noninoculated soil. However, donor inoculation in the nonamended B-horizon soil resulted in complete degradation of 2,4-D within 19 days, while no degradation at all was observed in noninoculated soil during 89 days. With plasmid pEMT1, this enhanced degradation seemed to be due only to transconjugants (105 CFU/g of soil), since the donor was already undetectable when degradation started. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes showed that inoculation of the donors was followed by a shift in the microbial community structure of the nonamended B-horizon soils. The new 16S rRNA gene fragments in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D-degrading transconjugant colonies isolated on agar plates. This result indicates that the observed change in the community was due to proliferation of transconjugants formed in soil. Overall, this work clearly demonstrates that bioaugmentation can constitute an effective strategy for cleanup of soils which are poor in nutrients and microbial activity, such as those of the B horizon.  相似文献   

2.
Transfer of the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids pEMT1 and pJP4 from an introduced donor strain, Pseudomonas putida UWC3, to the indigenous bacteria of two different horizons (A horizon, depth of 0 to 30 cm; B horizon, depth of 30 to 60 cm) of a 2,4-D-contaminated soil was investigated as a means of bioaugmentation. When the soil was amended with nutrients, plasmid transfer and enhanced degradation of 2,4-D were observed. These findings were most striking in the B horizon, where the indigenous bacteria were unable to degrade any of the 2,4-D (100 mg/kg of soil) during at least 22 days but where inoculation with either of the two plasmid donors resulted in complete 2,4-D degradation within 14 days. In contrast, in soils not amended with nutrients, inoculation of donors in the A horizon and subsequent formation of transconjugants (10(5) CFU/g of soil) could not increase the 2,4-D degradation rate compared to that of the noninoculated soil. However, donor inoculation in the nonamended B-horizon soil resulted in complete degradation of 2,4-D within 19 days, while no degradation at all was observed in noninoculated soil during 89 days. With plasmid pEMT1, this enhanced degradation seemed to be due only to transconjugants (10(5) CFU/g of soil), since the donor was already undetectable when degradation started. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes showed that inoculation of the donors was followed by a shift in the microbial community structure of the nonamended B-horizon soils. The new 16S rRNA gene fragments in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D-degrading transconjugant colonies isolated on agar plates. This result indicates that the observed change in the community was due to proliferation of transconjugants formed in soil. Overall, this work clearly demonstrates that bioaugmentation can constitute an effective strategy for cleanup of soils which are poor in nutrients and microbial activity, such as those of the B horizon.  相似文献   

3.
The taxonomic status of five root nodule isolates from tropical legumes was determined using a polyphasic taxonomic approach. Two isolates were identified as B. caribensis, an organism originally isolated from soil in Martinique (the French West Indies). One isolate was identified as Burkholderia cepacia genomovar VI, a B. cepacia complex genomovar thus far only isolated from sputum of cystic fibrosis patients. The remaining two isolates were identified as novel Burkholderia species for which we propose the names Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov. The type strains are LMG 21444T and LMG 21445T, respectively.  相似文献   

4.
The diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative plasmids in the microbial community of an agricultural soil was examined by complementation. This technique involved mixing a suitable Alcaligenes eutrophus (Rifr) recipient strain with the indigenous microbial populations extracted from soil. After incubation of this mixture, Rifr recipient strains which grow with 2,4-D as the only C source were selected. Two A. eutrophus strains were used as recipients: JMP228 (2,4-D-), which was previously derived from A. eutrophus JMP134 by curing of the 2,4-D-degradative plasmid pJP4, and JMP228 carrying pBH501aE (a plasmid derived from pJP4 by deletion of a large part of the tfdA gene which encodes the first step in the mineralization of 2,4-D). By using agricultural soil that had been treated with 2,4-D for several years, transconjugants were obtained with both recipients. However, when untreated control soil was used, no transconjugants were isolated. The various transconjugants had plasmids with seven different EcoRI restriction patterns. The corresponding plasmids are designated pEMT1 to pEMT7. Unlike pJP4, pEMT1 appeared not to be an IncP1 plasmid, but all the others (pEMT2 to pEMT7) belong to the IncP1 group. Hybridization with individual probes for the tfdA to tfdF genes of pJP4 demonstrated that all plasmids showed high degrees of homology to the tfdA gene. Only pEMT1 showed a high degree of homology to tfdB, tfdC, tfdD, tfdE, and tfdF, while the others showed only moderate degrees of homology to tfdB and low degrees of homology to tfdC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The modular pathway for the metabolism of 2,4-dichlorophenoxyacetic acid (2,4-D) encoded on plasmid pJP4 of Alcaligenes eutrophus JMP134 appears to be an example in which two genes, tfdA and tfdB, have been recruited during the evolution of a catabolic pathway. The products of these genes act to convert 2,4-D to a chloro-substituted catechol that can be further metabolized by enzymes of a modified ortho-cleavage pathway encoded by tfdCDEF. Given that modified ortho-cleavage pathways are comparatively common and widely distributed among bacteria, we sought to determine if microbial populations in soil carry tfdA on plasmid vectors that lack tfdCDEF or tfdB. To capture such plasmids from soil populations, we used a recipient strain of A. eutrophus that was rifampin resistant and carried a derivative of plasmid pJP4 (called pBH501aE) in which the tfdA had been deleted. Upon mating with mixed bacterial populations from soil treated with 2,4-D, transconjugants that were resistant to rifampin yet able to grow on 2,4-D were obtained. Among the transconjugants obtained were clones that contained a ca. 75-kb plasmid, pEMT8. Bacterial hosts that carried this plasmid in addition to pBH501aE metabolized 2,4-D, whereas strains with only pEMT8 did not. Southern hybridization showed that pEMT8 encoded a gene with a low level of similarity to the tfdA gene from plasmid pJP4. Using oligonucleotide primers based on known tfdA sequences, we amplified a 330-bp fragment of the gene and determined that it was 77% similar to the tfdA gene of plasmid pJP4 and 94% similar to tfdA from Burkholderia sp. strain RASC. Plasmid pEMT8 lacked genes that exhibited significant levels of homology to tfdB and tfdCDEF. Moreover, cell extracts from A. eutrophus(pEMT8) cultures did not exhibit TfdB, TfdC, TfdD, and TfdE activities, whereas cell extracts from A. eutrophus(pEMT8)(pBH501aE) cultures did. These data suggest that pEMT8 encodes only tfdA and that this gene can effectively complement the tfdA deletion mutation of pBH501aE.  相似文献   

6.
Large numbers of strains selectively isolated from soil, water and deteriorating vulcanised natural rubber pipe rings were provisionally assigned to the genus Nocardia. Twenty-eight representative isolates were found to have chemical and morphological properties typical of nocardiae. These organisms formed a monophyletic clade in the 16S rDNA tree together with Nocardia salmonicida. Three of the strains, isolates S1, W30 and R89, were distinguished from one another and from representatives of the validly described species of Nocardia using genotypic and phenotypic data. These organisms were considered to merit species status and were named Nocardia cummidelens sp. nov., Nocardia fluminea sp. nov. and Nocardia soli sp. nov. respectively. Additional comparative studies are needed to resolve the finer taxonomic relationships of the remaining isolates assigned to the Nocardia salmonicida clade and to further unravel the extent of nocardial diversity in artificial and natural ecosystems.  相似文献   

7.
Prior to gene transfer experiments performed with nonsterile soil, plasmid pJP4 was introduced into a donor microorganism, Escherichia coli ATCC 15224, by plate mating with Ralstonia eutropha JMP134. Genes on this plasmid encode mercury resistance and partial 2, 4-dichlorophenoxyacetic acid (2,4-D) degradation. The E. coli donor lacks the chromosomal genes necessary for mineralization of 2,4-D, and this fact allows presumptive transconjugants obtained in gene transfer studies to be selected by plating on media containing 2,4-D as the carbon source. Use of this donor counterselection approach enabled detection of plasmid pJP4 transfer to indigenous populations in soils and under conditions where it had previously not been detected. In Madera Canyon soil, the sizes of the populations of presumptive indigenous transconjugants were 10(7) and 10(8) transconjugants g of dry soil(-1) for samples supplemented with 500 and 1,000 microg of 2,4-D g of dry soil(-1), respectively. Enterobacterial repetitive intergenic consensus PCR analysis of transconjugants resulted in diverse molecular fingerprints. Biolog analysis showed that all of the transconjugants were members of the genus Burkholderia or the genus Pseudomonas. No mercury-resistant, 2, 4-D-degrading microorganisms containing large plasmids or the tfdB gene were found in 2,4-D-amended uninoculated control microcosms. Thus, all of the 2,4-D-degrading isolates that contained a plasmid whose size was similar to the size of pJP4, contained the tfdB gene, and exhibited mercury resistance were considered transconjugants. In addition, slightly enhanced rates of 2,4-D degradation were observed at distinct times in soil that supported transconjugant populations compared to controls in which no gene transfer was detected.  相似文献   

8.
A polar multitrichous gram-negative motile rod, EY 3383, originally identified as Burkholderia thailandensis, revealed a DNA-DNA reassociation rate of 36.7%, under stringent conditions, with the type strain of B. thailandensis, despite the 16S rDNA homology value between two type strains being as high as 97.9%. The strain was clearly differentiated from the type strain of B. thailandensis by physiological, bio-chemical, and nutritional characteristics, without significant difference in cellular fatty acid and lipid composition. Based on the results of 16S rDNA sequence analysis, DNA-DNA hybridization and phenotypic characterization, Burkholderia uboniae sp. nov. is herein proposed. The type strain is NCTC 13147=EY 3383, isolated on 8 December 1989 from surface soil along the roadside in Ubon Ratchathani, Thailand. Major respiratory quinone is ubiquinone-8(Q8). G+C content of DNA is 69.71%.  相似文献   

9.
Nineteen Burkholderia cepacia-like isolates of human and environmental origin could not be assigned to one of the seven currently established genomovars using recently developed molecular diagnostic tools for B. cepacia complex bacteria. Various genotypic and phenotypic characteristics were examined. The results of this polyphasic study allowed classification of the 19 isolates as an eighth B. cepacia complex genomovar (Burkholderia anthina sp. nov.) and to design tools for its identification in the diagnostic laboratory. In addition, new and published data for Burkholderia pyrrocinia indicated that this soil bacterium is also a member of the B. cepacia complex. This highlights another potential source for diagnostic problems with B. cepacia-like bacteria.  相似文献   

10.
Few studies have been done to evaluate the transfer of catabolic plasmids from an introduced donor strain to indigenous microbial populations as a means to remediate contaminated soils. In this work we determined the effect of the conjugative transfer of two 2,4-D degradative plasmids to indigenous soil bacterial populations on the rate of 2,4-D degradation in soil. We also assessed the influence of the presence of 2,4-D on the number of transconjugants formed. The two plasmids used, pEMT1k and pEMT3k, encode 2,4-D degradative genes (tfd) that differ in DNA sequence as well as gene organisation, and confer different growth rates to Ralstonia eutropha JMP228 when grown with 2,4-D as a sole carbon source. In an agricultural soil (Ardoyen) treated with 2,4-D (100 ppm) there were ca. 107CFU of transconjugants per gram bearing pEMT1k as well as a high number of pEMT3k bearing transconjugants (ca. 106 CFU/g). In this soil the formation of a high number of 2,4-D degrading transconjugants resulted in faster degradation of 2,4-D as compared to the uninoculated control soil. In contrast, only transconjugants with pEMT1k were detected (at a level of ca. 103 CFU/g soil) in the untreated Ardoyen soil. High numbers of transconjugants that carried pEMT1k were also found in a second experiment done using forest soil (Lembeke) treated with 100 ppm 2,4-D. However, unlike in the Ardoyen soil, no transconjugants with pEMT3k were detected and the transfer of plasmid pEMT1k to indigenous bacteria did not result in a higher rate of decrease of 2,4-D. This may be because 2,4-D was readily metabolised by indigenous bacteria in this soil. The results indicate that bioaugmentation with catabolic plasmids may be a viable means to enhance the bioremediation of soils which lack an adequate intrinsic ability to degrade a given xenobiotic.  相似文献   

11.
The taxonomic affiliation was determined for four Xenorhabdus strains isolated from four Steinernema hosts from different countries. As compared to the five validly described Xenorhabdus species, i.e., X. nematophila, X. japonica, X. beddingii, X. bovienii and X. poinarii, these isolates represented novel species on the basis of 16S rRNA gene sequences and riboprint patterns, as well as by physiological and metabolic properties. They were named Xenorhabdus budapestensis sp. nov., type strain DSM 16342T, isolated from Steinernema bicornutum; Xenorhabdus ehlersii sp. nov., type strain DSM 16337T, isolated from Steinernema serratum; Xenorhabdus innexi sp. nov., type strain DSM 16336T isolated from Steinernema scapterisci; and Xenorhabdus szentirmaii sp. nov., type strain DSM 16338T, isolated from Steinernema rarum.  相似文献   

12.
A soil suspension was used as a source to initiate the development of microbial communities in flow cells irrigated with 2,4-dichlorophenoxyacetic acid (2,4-D) (25 microg ml(-1)). Culturable bacterial members of the community were identified by 16S rRNA gene sequencing and found to be members of the genera Pseudomonas, Burkholderia, Collimonas and Rhodococcus. A 2,4-D degrading donor strain, Pseudomonas putida SM1443 (pJP4::gfp), was inoculated into flow cell chambers containing 2-day old biofilm communities. Transfer of pJP4::gfp from the donor to the bacterial community was detectable as GFP fluorescing cells and images were captured using confocal scanning laser microscopy (GFP fluorescence was repressed in the donor due to the presence of a chromosomally located lacI(q) repressor gene). Approximately 5-10 transconjugant microcolonies, 20-40 microm in diameter, could be seen to develop in each chamber. A 2,4-D degrading transconjugant strain was isolated from the flow cell system belonging to the genus Burkholderia.  相似文献   

13.
Five strains of bifidobacteria were isolated from faeces of a common marmoset (Callithrix jacchus) and a red-handed tamarin (Saguinus midas). The five isolates clustered inside the phylogenetic group of the genus Bifidobacterium but did not show high sequence similarities between the isolates and to known species in the genus by phylogenetic analysis based on 16S rRNA gene sequences. Sequence analyses of dnaJ1 and hsp60 also indicated their independent phylogenetic positions to each other in the Bifidobacterium cluster. DNA G+C contents of the species ranged from 57.3 to 66.3 mol%, which is within the values recorded for Bifidobacterium species. All isolates showed fructose-6-phosphate phosphoketolase activity. Based on the data provided, the five isolates represent five novel species, for which the names Bifidobacterium reuteri sp. nov. (type strain: AFB22-1(T) = JCM 17295(T) = DSM 23975(T)), Bifidobacterium callitrichos sp. nov. (type strain: AFB22-5(T) = JCM 17296(T) = DSM 23973(T)), Bifidobacterium saguini sp. nov. (type strain: AFB23-1(T) = JCM 17297(T) = DSM 23967(T)), Bifidobacterium stellenboschense sp. nov. (type strain: AFB23-3(T) = JCM 17298(T) = DSM 23968(T)) and Bifidobacterium biavatii sp. nov. (type strain: AFB23-4(T) = JCM 17299(T) = DSM 23969(T)) are proposed.  相似文献   

14.
We characterized the gene required to initiate the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by the soil bacterium Burkholderia sp. strain TFD6, which hybridized to the tfdA gene of the canonical 2,4-D catabolic plasmid pJP4 under low-stringency conditions. Cleavage of the ether bond of 2,4-D by cell extracts of TFD6 proceeded by an (alpha)-ketoglutarate-dependent reaction, characteristic of TfdA (F. Fukumori and R. P. Hausinger, J. Bacteriol. 175:2083-2086, 1993). The TFD6 tfdA gene was identified in a recombinant plasmid which complemented a tfdA transposon mutant of TFD6 created by chromosomal insertion of Tn5. The plasmid also expressed TfdA activity in Escherichia coli DH5(alpha), as evidenced by enzyme assays with cell extracts. Sequence analysis of the tfdA gene and flanking regions from strain TFD6 showed 99.5% similarity to a tfdA gene cloned from the chromosome of a different Burkholderia species (strain RASC) isolated from a widely separated geographical area. This chromosomal gene has 77.2% sequence identity to tfdA from plasmid pJP4 (Y. Suwa, W. E. Holben, and L. J. Forney, abstr. Q-403, in Abstracts of the 94th General Meeting of the American Society for Microbiology 1994.). The tfdA homologs cloned from strains TFD6 and RASC are the first chromosomally encoded 2,4-D catabolic genes to be reported. The occurrence of highly similar tfdA genes in different bacterial species suggests that this chromosomal gene can be horizontally transferred.  相似文献   

15.
In a previous study, 50 of 132 soil samples collected throughout Japan were found to be Leptospira‐positive. In the present study, three strains identified in the collected specimens, three, E8, E18 and YH101, were found to be divergent from previously described Leptospira species according to 16S ribosomal RNA gene sequence analysis. These three strains have a helical shape similar to that of typical Leptospira and were not re‐isolated from experimental mice inoculated with the cultured strains. Upon 16S ribosomal RNA gene sequence analysis, E8 was found to belong to the intermediate Leptospira species clade and E18 and YH101 to belong to the saprophytic Leptospira species clade. Based on analyses of genome‐to‐genome distances and average nucleotide identity in silico using whole genome sequences and DNA–DNA hybridization in vitro, these isolates were found to be distinct from previously described Leptospira species. Therefore, these three isolates represent novel species of the genus Leptospira for which the names Leptospira johnsonii sp. nov., (type strain E8 T, = JCM 32515 T = CIP111620 T), Leptospira ellinghausenii sp. nov., (type strain E18 T, = JCM 32516 T = CIP111618 T) and Leptospira ryugenii sp. nov., (type strain YH101 T, = JCM 32518 T = CIP111617 T) are proposed.  相似文献   

16.
Burkholderia species are ubiquitous in soil environments. Many Burkholderia species isolated from various environments have the potential to biodegrade man-made chemicals. Burkholderia sp. strain YI23 was isolated from a golf course soil and identified as a fenitrothion-degrading bacterium. In this study, we report the complete genome sequence of Burkholderia sp. strain YI23.  相似文献   

17.
Nitroaromatic compounds are toxic and potential carcinogens. In this study, a drop assay was used to detect chemotaxis toward nitroaromatic compounds for wild-type Burkholderia cepacia R34, wild-type Burkholderia sp. strain DNT, and a 2,4-dinitrotoluene (2,4-DNT) dioxygenase mutant strain (S5). The three strains are chemotactic toward 2,4,6-trinitrotoluene (TNT), 2,3-DNT, 2,4-DNT, 2,5-DNT, 2-nitrotoluene (NT), 4NT, and 4-methyl-5-nitrocatechol (4M5NC), but not toward 2,6-DNT. Of these, only 2,4-DNT is a carbon and energy source for B. cepacia R34 and Burkholderia sp. strain DNT, and 4M5NC is an intermediate in the 2,4-DNT degradation pathway. It was determined that the 2,4-DNT dioxygenase genes are not required for the chemotaxis for these nitroaromatic compounds because the DNT DDO mutant S5 has a chemotactic response toward 2,4-DNT although 2,4-DNT is not metabolized by S5; hence, 2,4-DNT itself is the chemoattractant. This is the first report of chemotaxis toward TNT, 2,3-DNT, 2,4-DNT, 2,5-DNT, 2NT, 4NT, and 4M5NC.  相似文献   

18.
Spectra of five isolates (LMG 28358T, LMG 29879T, LMG 29880T, LMG 28359T and R-53705) obtained from gut samples of wild bumblebees of Bombus pascuorum, Bombus lapidarius and Bombus terrestris were grouped into four MALDI-TOF MS clusters. RAPD analysis revealed an identical DNA fingerprint for LMG 28359T and R-53705 which also grouped in the same MALDI-TOF MS cluster, while different DNA fingerprints were obtained for the other isolates.Comparative 16S rRNA gene sequence analysis of the four different strains identified Gilliamella apicola NCIMB 14804T as nearest neighbour species. Average nucleotide identity values of draft genome sequences of the four isolates and of G. apicola NCIMB 14804T were below the 96% threshold value for species delineation and all four strains and G. apicola NCIMB 14804T were phenotypically distinct. Together, the draft genome sequences and phylogenetic and phenotypic data indicate that the four strains represent four novel Gilliamella species for which we propose the names Gilliamella intestini sp. nov., with LMG 28358T as the type strain, Gilliamella bombicola sp. nov., with LMG 28359T as the type strain, Gilliamella bombi sp. nov., with LMG 29879T as the type strain and Gilliamella mensalis sp. nov., with LMG 29880T as the type strain.  相似文献   

19.
A previous phylogenetic study on type strains of the genus Micromonospora and Micromonospora species bearing non-validly published names has pointed towards the species status of several of latter strains. Subsequent studies on morphological, cultural, chemotaxonomic, metabolic, and genomic properties, and on whole cell mass spectrometric analyses by matrix adsorbed laser desorption/ionization time-of-flight (MALDI-TOF) confirmed the species status, leading to the proposal of eight new Micromonospora species: Micromonospora citrea sp. nov., type strain DSM 43903T, Micromonospora echinaurantiaca sp. nov., type strain DSM 43904T, Micromonospora echinofusca sp. nov., type strain DSM 43913T, Micromonospora fulviviridis sp. nov., type strain DSM 43906T, Micromonospora inyonensis sp. nov., type strain DSM 46123T, Micromonospora peucetia sp. nov., type strain DSM 43363T, Micromonospora sagamiensis sp. nov., type strain DSM 43912T and Micromonospora viridifaciens sp. nov., type strain DSM 43909T.  相似文献   

20.
Two new polyaromatic hydrocarbon-degrading marine bacteria have been isolated from burrow wall sediments of benthic macrofauna by using enrichments on phenanthrene. Strain LC8 (from a polychaete) and strain M4-6 (from a mollusc) are aerobic and gram negative and require sodium chloride (>1%) for growth. Both strains can use 2- and 3-ring polycyclic aromatic hydrocarbons as their sole carbon and energy sources, but they are nutritionally versatile. Physiological and phylogenetic analyses based on 16S ribosomal DNA sequences suggest that strain M4-6 belongs to the genus Cycloclasticus and represents a new species, Cycloclasticus spirillensus sp. nov. Strain LC8 appears to represent a new genus and species, Lutibacterium anuloederans gen. nov., sp. nov., within the Sphingomonadaceae. However, when inoculated into sediment slurries with or without exogenous phenanthrene, only L. anuloederans appeared to sustain a significant phenanthrene uptake potential throughout a 35-day incubation. In addition, only L. anuloederans appeared to enhance phenanthrene degradation in heavily contaminated sediment from Little Mystic Cove, Boston Harbor, Boston, Mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号