首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
The homogeneity of DNA complementary to the 35S RNA subunit of avian myeloblastosis virus (AMV) has been demonstrated by single or multistep hybridization. For multistep hybridizations, 35S AMV RNA was preselected for its ability to hybridize either to unfractionated leukemic DNA or to leukemic DNA enriched for unique or for reiterated sequences. These experiments indicate that the viral genome is complementary to DNA sequences with a low reiteration frequency. Competition experiments confirm the absence of fast-hybridizing sequences in viral DNA. Computer analyses of the data reveal that there are two to four copies of viral DNA in infected cells.  相似文献   

2.
The presence of polyriboadenylic acid sequences in calf lens messenger RNA   总被引:3,自引:0,他引:3  
The presence of poly(rA) sequences in lens RNA has been demonstrated by the isolation of RNase A and T1-resistant fragments of approximately 50 nucleotide residues. These poly(rA)-rich sequences, obtained from lenses incubated for six hours in organ culture with [3H]adenosine, are located at the 3′ termini of mRNA as determined by 3′ exoribonuclease digestion. Limited digestion of the [3H]adenosine-labeled mRNA with the enzyme led to the abolition of binding to poly(rU)-filters and a concomitant loss of template activity with avian myeloblastosis virus RNA-dependent DNA polymerase. Furthermore, after incubation of lenses in organ culture with 3′-deoxyadenosine, the isolated polysomal RNA was unable to function as a template in an avian myeloblastosis virus RNA-dependent DNA polymerase-catalyzed reaction system.  相似文献   

3.
(3)H-labeled 35S RNA from purified avian myeloblastosis virus (AMV) was exhaustively hybridized with an excess of normal chicken DNA to remove all viral RNA sequences which are complementary to DNA from uninfected cells. The [(3)H]RNA which failed to hybridize was isolated by hydroxylapatite column chromatography which separates DNA-RNA hybrids from single-stranded [(3)H]RNA. The residual RNA hybridized to leukemic chicken DNA but did not rehybridize with normal chicken DNA. This demonstrates conclusively that DNA from AMV-induced leukemic cells contain viral-specific sequences which are absent in DNA from normal cells.  相似文献   

4.
Myeloblastosis-associated virus (MAV)-2(0), a virus which was derived from avian myeloblastosis virus and induced a high incidence of osteopetrosis, was compared with avian lymphomatosis virus 5938, a recent field isolate which induced a high incidence of lymphomatosis. The following information was obtained. (i) MAV-2(0) induced osteopetrosis, nephroblastoma, and a very low incidence of hepatocellular carcinoma. No difference was seen in the oncogenic spectrum of end point and plaque-purified MAV-2(0). (ii) 125I-labeled RNA sequences from MAV-2(0) formed hybrids with DNA extracted from osteopetrotic bone at a rate suggesting five proviral copies per haploid cell genome. The extent of hybridization of MAV-2(0) RNA with DNA from osteopetrotic tissue was more extensive (87%) than was observed in reactions with DNA from uninfected chicken embryos (52%). (iii) Competition of unlabeled viral RNA in hybridization reactions between the radioactive RNA from the two viruses and their respective proviral sequences present in tumor tissues showed that 15 to 20% of the viral sequences detected in these reactions were unshared. In contrast, no differences were detected in competition analyses of RNA sequences from the two viruses detected in DNA of normal chicken cells. (iv) MAV-2(0) 35S RNA was indistinguishable in size from avian lymphomatosis virus 5938 35S RNA by polyacrylamide gel electrophoresis.  相似文献   

5.
The distribution of oncornavirus DNA sequences in various tissues of normal chickens and of chickens with leukemia or kidney tumors induced by avian myeloblastosis virus (AMV) was analyzed by DNA-RNA hybridization using 35S AMV RNA as a probe. All the tissues from normal chickens which were tested contained the same average cellular concentration of endogenous oncornavirus DNA. In contrast, different tissues from lekemic chickens and from chickens bearing kidney tumors contained different concentrations of AMV homologous DNA: in some tissues there was no increase whereas other tissues acquired additional AMV-specific DNA sequences. The increase was the greatest in tissues which can become neoplastic after infection, such as myeloblasts, erythrocytes, and kidney cells. It was directly demonstrated that DNA from AMV-induced kidney tumor contains AMV sequences which are absent in DNA from normal cells. A similar finding had been previously obtained with leukemic cells (15). 3H-labeled 35S RNA from purified AMV was exhaustively hybridized with an excess of normal chicken DNA to remove all the viral RNA sequences which are complementary to DNA from uninfected cells. The 3H-labeled RNA which failed to hybridize was isolated by hydroxylapatite column chromatography which separates DNA-RNA hybrids from single-stranded RNA. The residual RNA hybridized to chicken kidney tumor DNA but did not rehybridize with normal chicken DNA.  相似文献   

6.
7.
Caffeine was found to inhibit RNA-dependent DNA polymerase activity of Rauscher leukemia virus when endogenous viral RNA and poly(rA)·(dT)12–18 were used as templates. Similar results were also obtained with purified RNA-dependent DNA polymerase (deoxynucleoside triphosphate; DNA nucleotidyl transferase; EC 2.7.7.7) from avian myeloblastosis virus (AMV) utilizing 70S and 35S RNA of AMV, poly(rA)·(dT)12–18, globin mRNA and activated calf thymus DNA as templates. The “caffeine effect” was evident only when it was present during the initiation of polymerization reaction. Increasing the template concentration in the reaction mixture partly reversed the effect of caffeine. Of the analogs of caffeine tested, only theophylline inhibited AMV DNA polymerase, whereas aminophylline showed no effect.  相似文献   

8.
RNA sequence relatedness among avian RNA tumor virus genomes was analyzed by inhibition of DNA-RNA hybrid formation between 3H-labeled 35S viral RNA and an excess of leukemic or normal chicken cell DNA with increasing concentrations of unlabeled 35S viral RNA. The avian viruses tested were Rous associated virus (RAV)-3, avian myeloblastosis virus (AMV), RAV-60, RAV-61, and B-77 sarcoma virus. Hybridization of 3H-labeled 35S AMV RNA with DNA from normal chicken cells was inhibited by unlabeled 35S RAV-0 RNA as effeciently (100%) as by unlabeled AMV RNA. Hybridization between 3H-labeled 35S AMV RNA and DNA from leukemic chicken myeloblasts induced by AMV was suppressed 100 and 68% by unlabeled 35S RNA from AMV and RAV-0, respectively. Hybridization between 3H-labeled RAV-0 and leukemic chicken myeloblast DNA was inhibited 100 and 67% by unlabeled 35S RNA from RAV-0 and AMV, respectively. It appears therefore that the AMV and RAV-0 genomes are 67 to 70% homologous and that AMV hybridizes to RAV-0 like sequences in normal chicken DNA. Hybridization between AMV RNA and leukemic chicken DNA was inhibited 40% by RNA from RAV-60 or RAV-61 and 50% by B-77 RNA. Hybridization between RAV-0 RNA and leukemic chicken DNA was inhibited 80% by RAV-60 or RAV-61 and 70% by B-77 RNA. Hybridization between 3H-labeled 35S RNA from RAV-60 or RAV-61 and leukemic chicken myeloblast DNA was reduced equally by RNA from RAV-60, RAV-61, AMV or RAV-0; this suggests that RNA from RAV-60 and RAV-61 hybridizes with virus-specific sequences in leukemic DNA which are shared by AMV, RAV-0, RAV-60, and RAV-61 RNA'S. Hybridization between 3H-labeled 35S RNA from RAV-61 and normal pheasant DNA was inhibited 100% by homologous viral RNA, 22 TO 26% BY RNA from AMV or RAV-0, and 30 to 33% by RNA from RAV-60 or B-77. Nearly complete inhibition of hybricization between RAV-0 RNA and leukemic chicken DNA by a mixture of AMV and B-77 35S RNAs indicates that the RNA sequences shared by B-77 virus and RAV-0. It appears that different avian RNA tumor virus genomes have from 50 to 80% homology in nucleotide sequences and that the degree of hybridization between normal chicken cell DNA and a given viral RNA can be predicted from the homology that exists between the viral RNA tested and RAV-0 RNA.  相似文献   

9.
10.
Identification of several additional restriction endonuclease sites within the cellular substitution (amv) inserted into the avian myeloblastosis virus proviral genome has permitted us to isolate different regions of the amv sequence. These subsets of the avian myeloblastosis virus transforming gene have been cloned in the plasmid pBR322 and used as hybridization probes to investigate the topology of homologous (proto-amv) normal chicken DNA sequences. The results showed that the cellular proto-amv sequences in C/O chicken DNA are interrupted by at least one intervening sequence. A partial arrangement of the proto-amv sequences is presented.  相似文献   

11.
A sensitive and quantitative nucleic acid hybridization assay for the detection of radioactively labeled avian tumor virus-specific RNA in infected chicken cells has been developed. In our experiments we made use of the fact that DNA synthesized by virions of avian myeloblastosis virus in the presence of actinomycin D (AMV DNA) is complementary to at least 35% of the sequences of 70S RNA from the Schmidt-Ruppin strain (SRV) of Rous sarcoma virus. Annealing of radioactive RNA (either SRV RNA or RNA extensively purified from SRV-infected chicken cells) with AMV DNA followed by ribonuclease digestion and Sephadex chromatography yielded products which were characterized as avian tumor virus-specific RNA-DNA hybrids by hybridization competition with unlabeled 70S AMV RNA, equilibrium density-gradient centrifugation in Cs(2)SO(4) gradients, and by analysis of their ribonucleotide composition. The amount of viral RNA synthesized during pulse labeling with (3)H-uridine could be quantitated by the addition of an internal standard consisting of (32)P-labeled SRV RNA prior to purification and hybridization. This quantitative assay was used to determine that, in SRV-infected chicken cells labeled for increasing lengths of time with (3)H-uridine, labeled viral RNA appeared first in a nuclear fraction, then in a cytoplasmic fraction, and still later in mature virions. This observation is consistent with the hypothesis that RNA tumor virus RNA is synthesized in the nucleus of infected cells.  相似文献   

12.
A new method for the analysis and purification of the RNA-directed DNA polymerase of RNA tumor viruses has been developed. This nucleic acid affinity chromatography system utilizes an immobilized oligo (dT) moiety annealed with poly (A). The alpha and alphabeta DNA polymerases of avain myeloblastosis virus bound effectively to poly (A) oligo (dT)-cellulose. Alpha DNA polymerase did not bind effectively to poly (A) oligo (dT)-cellulose, poly (A)-cellulose, or to cellulose. Alphabeta bound to oligo (dT)-cellulose and cellulose at the same extent (approximately 30%), indicating that this enzyme did not bind specifically to the oligo (DT) moiety only. However, alphabeta bound to poly (A)-cellulose two to three times better than to cellulose itself, showing that alphabeta could bind to poly (A) without a primer. Alphabeta DNA polymerase also bound to poly (C)-cellulose, whereas alpha did not. These data show that the alpha DNA polymerase is defective in binding to nucleic acids if the beta subunit is not present. Data is presented which demonstrates that the alphabeta DNA polymerase bound tighter to poly (A). oligo (DT)-cellulose and to calf thymus DNA-cellulose than the alpha DNA polymerase, suggesting that the beta subunit or, at least part of it is responsible for this tighter binding. In addition, alphabeta DNA polymerase is able to reversibly transcribe avian myeloblastosis virus 70S RNA approximately fivefold faster than alpha DNA polymerase in the presence of Mg2+ and equally efficient in the presence of Mn2+. alpha DNA polymerase transcribed 9S globin m RNA slightly better than alphabeta with either metal ion.  相似文献   

13.
The role of ribonucleic acid (RNA) in deoxyribonucleic acid (DNA) synthesis with the purified DNA polymerase from the avian myeloblastosis virus has been studied. The polymerase catalyzes the synthesis of DNA in the presence of four deoxynucleoside triphosphates, Mg(2+), and a variety of RNA templates including those isolated from avian myeloblastosis, Rous sarcoma, and Rauscher leukemia viruses; phages f2, MS2, and Qbeta; and synthetic homopolymers such as polyadenylate.polyuridylic acid. The enzyme does not initiate the synthesis of new chains but incorporates deoxynucleotides at 3' hydroxyl ends of primer strands. The product is an RNA.DNA hybrid in which the two polynucleotide components are covalently linked. Free DNA has not been detected among the products formed with the purified enzyme in vitro. The DNA synthesized with avian myeloblastosis virus RNA after alkaline hydrolysis has a sedimentation coefficient of 6 to 7S.  相似文献   

14.
15.
Myeloblastosis-associated virus (MAV)-2(0), a virus which was derived from avian myeloblastosis virus and induced a high incidence of osteopetrosis, was compared with avian lymphomatosis virus 5938, a recent field isolate which induced a high incidence of lymphomatosis. The following information was obtained. (i) MAV-2(0) induced osteopetrosis, nephroblastoma, and a very low incidence of hepatocellular carcinoma. No difference was seen in the oncogenic spectrum of end point and plaque-purified MAV-2(0). (ii) 125I-labeled RNA sequences from MAV-2(0) formed hybrids with DNA extracted from osteopetrotic bone at a rate suggesting five proviral copies per haploid cell genome. The extent of hybridization of MAV-2(0) RNA with DNA from osteopetrotic tissue was more extensive (87%) than was observed in reactions with DNA from uninfected chicken embryos (52%). (iii) Competition of unlabeled viral RNA in hybridization reactions between the radioactive RNA from the two viruses and their respective proviral sequences present in tumor tissues showed that 15 to 20% of the viral sequences detected in these reactions were unshared. In contrast, no differences were detected in competition analyses of RNA sequences from the two viruses detected in DNA of normal chicken cells. (iv) MAV-2(0) 35S RNA was indistinguishable in size from avian lymphomatosis virus 5938 35S RNA by polyacrylamide gel electrophoresis.  相似文献   

16.
17.
The covalent linkage of oncornavirus-specific DNA to chicken DNA was investigated in normal chicken embryo fibroblasts (CEF) and in virus-producing leukemic cells transformed by avian myeloblastosis virus (AMV). The virus-specific sequences present in cellular DNA fractionated by different methods were detected by DNA-RNA hybridization by using 70S AMV RNA as a probe. In CEF and in leukemic cells, the viral DNA appeared to be present only in the nucleus. After cesium chloride-ethidium bromide density equilibrium sedimentation, the viral DNA was present as linear, double-stranded molecules not separable from linear chicken DNA. After extraction by the Hirt procedure, the viral DNA precipitated with the high-molecular-weight DNA. After alkaline sucrose velocity sedimentation, the viral DNA cosedimented with the high-molecular-weight cellular DNA. The results indicate that in both types of cells studied, the oncornavirus-specific DNA sequences were linked by alkali stable bonds to nuclear cellular DNA of high molecular weight and did not appear to be present in free form of any size.  相似文献   

18.
Density gradient sedimentation in alkaline cesium chloride of DNA from normal chicken embryos or leukemic myeloblasts fragmented to a size of 13S revealed that the DNA sequences complementary to 70S avian myeloblastosis virus RNA sedimented in the high guanine plus cytosine region ahead of the main peak of cellular DNA. When the DNA was fragmented into pieces of 6.6S there was a broader distribution of the DNA sequences complementary to the viral RNA. This technique could be employed as a step towards the isolation of DNA copies of the entire viral RNA genome from the mass of host cellular DNA.  相似文献   

19.
3H-labeled 35S RNA from avian myeloblastosis virus (AMV), Rous associated virus (RAV)-0, RAV-60, RAV-61, RAV-2, or B-77(w) was hybridized with an excess of cellular DNA from different avian species, i.e., normal or leukemic chickens, normal pheasants, turkeys, Japanese quails, or ducks. Approximately two to three copies of endogenous viral DNA were estimated to be present per diploid of normal chicken cell genome. In leukemic chicken myeloblasts induced by AMV, the number of viral sequences appeared to have doubled. The hybrids formed between viral RNA and DNA from leukemic chicken cells melted with a Tm 1 to 6 C higher than that of hybrids formed between viral RNA and normal chicken cell DNA. All of the viral RNAs tested, except RAV-61, hybridized the most with DNA from AMV-infected chicken cells, followed by DNA from normal chicken cells, and then pheasant DNA. RAV-61 RNA hybridized maximally (39%) with pheasant DNA, followed by DNA from leukemic (34%), and then normal (29%) chicken cells. All viral RNAs tested hybridized little with Japanese quail DNA (2 to 5%), turkey DNA (2 to 4%), or duck DNA (1%). DNA from normal chicken cells contained only 60 to 70% of the RAV-60 genetic information, and normal pheasant cells lacked some RAV-61 DNA sequences. RAV-60 and RAV-61 genomes were more homologous to the RAV-0 genome than to the genome of RAV-2, AMV, or B-77(s). RAV-60 and RAV-61 appear to be recombinants between endogenous and exogenous viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号