首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In mast cells, activation of GTP-binding proteins induces centripetal reorganization of actin filaments. This effect is due to disassembly, relocalization, and polymerization of F-actin and is dependent on two small GTPases, Rac and Rho. Activities of Rac and Rho are also essential for the secretory function of mast cells. In response to GTP-gamma-S and/or calcium, only a proportion of permeabilized mast cells is capable of secretory response. Here, we have compared actin organization of secreting and nonsecreting cell populations. We show that the cytoskeletal and secretory responses are strongly correlated, indicating a common upstream regulator of the two functions. The secreting cell population preferentially displays both relocalization and polymerization of actin. However, when actin relocalization or polymerization is inhibited by phalloidin or cytochalasin, respectively, secretion is unaffected. Moreover, the ability of the constitutively active mutants of Rac and Rho to enhance secretion is also unaffected in the presence of cytochalasin. Therefore, Rac and Rho control these two functions by divergent, parallel signaling pathways. Cortical actin disassembly occurs in both secreting and nonsecreting populations and does not, by itself, induce exocytosis. A model for the control of exocytosis is proposed that includes at least four GTP-binding proteins and suggests the presence of both shared and divergent signaling pathways from Rac and Rho.  相似文献   

2.
Actin-based motility is critical for nervous system development. Both the migration of neurons and the extension of neurites require organized actin polymerization to push the cell membrane forward. Numerous extracellular stimulants of motility and axon guidance cues regulate actin-based motility through the rho GTPases (rho, rac, and cdc42). The rho GTPases reorganize the actin cytoskeleton, leading to stress fiber, filopodium, or lamellipodium formation. The activity of the rho GTPases is regulated by a variety of proteins that either stimulate GTP uptake (activation) or hydrolysis (inactivation). These proteins potentially link extracellular signals to the activation state of rho GTPases. Effectors downstream of the rho GTPases that directly influence actin polymerization have been identified and are involved in neurite development. The Arp2/3 complex nucleates the formation of new actin branches that extend the membrane forward. Ena/VASP proteins can cause the formation of longer actin filaments, characteristic of growth cone actin morphology, by preventing the capping of barbed ends. Actin-depolymerizing factor (ADF)/cofilin depolymerizes and severs actin branches in older parts of the actin meshwork, freeing monomers to be re-incorporated into actively growing filaments. The signaling mechanisms by which extracellular cues that guide axons to their targets lead to direct effects on actin filament dynamics are becoming better understood.  相似文献   

3.
Increasing cellular G-actin, using latrunculin B, in either intact or permeabilized rat peritoneal mast cells, caused translocation of both actin and an actin regulatory protein, cofilin, into the nuclei. The effect was not associated with an increase in the proportion of apoptotic cells. The major part of the nuclear actin was not stained by rhodamine-phalloidin but could be visualized with an actin antibody, indicating its monomeric or a conformationally distinct state, e.g. cofilin-decorated filaments. Introduction of anti-cofilin into permeabilized cells inhibited nuclear actin accumulation, implying that an active, cofilin-dependent, import exists in this system. Nuclear actin was localized outside the ethidium bromide-stained region, in the extrachromosomal nuclear domain. In permeabilized cells, the appearance of nuclear actin and cofilin was not significantly affected by increasing [Ca(2+)] and/or adding guanosine 5'-O-(3-thiotriphosphate), but was greatly promoted when ATP was withdrawn. Similarly, ATP depletion in intact cells also induced nuclear actin accumulation. In contrast to the effects of latrunculin B, ATP depletion was associated with an increase in cortical F-actin. Our results suggest that the presence of actin in the nucleus may be required for certain stress-induced responses and that cofilin is essential for the nuclear import of actin.  相似文献   

4.
The function of rac, a ras-related GTP-binding protein, was investigated in fibroblasts by microinjection. In confluent serum-starved Swiss 3T3 cells, rac1 rapidly stimulated actin filament accumulation at the plasma membrane, forming membrane ruffles. Several growth factors and activated H-ras also induced membrane ruffling, and this response was prevented by a dominant inhibitory mutant rac protein, N17rac1. This suggests that endogenous rac proteins are required for growth factor-induced membrane ruffling. In addition to membrane ruffling, a later response to both rac1 microinjection and some growth factors was the formation of actin stress fibers, a process requiring endogenous rho proteins. Using N17rac1 we have shown that these growth factors act through rac to stimulate this rho-dependent response. We propose that rac and rho are essential components of signal transduction pathways linking growth factors to the organization of polymerized actin.  相似文献   

5.
《The Journal of cell biology》1995,131(6):1857-1865
Interaction of cells with extracellular matrix via integrin adhesion receptors plays an important role in a wide range of cellular: functions, for example cell growth, movement, and differentiation. Upon interaction with substrate, integrins cluster and associate with a variety of cytoplasmic proteins to form focal complexes and with the actin cytoskeleton. Although the intracellular signals induced by integrins are at present undefined, it is thought that they are mediated by proteins recruited to the focal complexes. It has been suggested, for example, that after recruitment to focal adhesions p125FAK can activate the ERK1/2 MAP kinase cascade. We have previously reported that members of the rho family of small GTPases can trigger the assembly of focal complexes when activated in cells. Using microinjection techniques, we have now examined the role of the extracellular matrix and of the two GTP-binding proteins, rac and rho, in the assembly of integrin complexes in both mouse and human fibroblasts. We find that the interaction of integrins with extracellular matrix alone is not sufficient to induce integrin clustering and focal complex formation. Similarly, activation of rho or rac by extracellular growth factors does not lead to focal complex formation in the absence of matrix. Focal complexes are only assembled in the presence of both matrix and functionally active members of the rho family. In agreement with this, the interaction of integrins with matrix in the absence of rho/rac activity is unable to activate the ERK1/2 kinases in Swiss 3T3 cells. In fact, ERK1/2 can be activated fully by growth factors in the absence of matrix and it seems unlikely, therefore, that the adhesion dependence of fibroblast growth is mediated through the ras/MAP kinase pathway. We conclude that extracellular matrix is not sufficient to trigger focal complex assembly and subsequent integrin-dependent signal transduction in the absence of functionally active members of the rho family of GTPases.  相似文献   

6.
Helicobacter pylori induces signaling cascades leading to changes in cytoskeleton and an inflammatory response. Information on the morphological changes and cytoskeletal rearrangements induced by attachment of the bacterium is contradictory and signal transduction pathways are not well known. Since rho family of small GTPases is known to mediate cytoskeletal response to various extracellular stimuli, and is also involved in several other important signal transduction pathways, we have investigated the role of rac and cdc42 in H. pylori-induced cytoskeletal changes in cultured carcinoma AGS cells. AGS cells grown with serum expressed actin filaments in the form of short stress fibers and thin network at the edges, which were depolymerized by removal of serum. In serum-starved cells both type I and type II strains of H. pylori induced formation of actin filaments and lamellipodia-like structures. Microinjection of active rac induced similar changes, but injection of inactive rac prevented the effects of H. pylori, while active or inactive cdc42 did not have any significant effect. Cytoskeletal effects of H. pylori were inhibited by actinomycin D, but not completely by cycloheximide. These results indicate that rac activation is involved in signal transduction cascade leading to cytoskeletal reorganization induced by H. pylori and that gene activation and synthesis of new proteins is necessary in this process.  相似文献   

7.
We have established an in vitro assay for assembly of the cortical actin cytoskeleton of budding yeast cells. After permeabilization of yeast by a novel procedure designed to maintain the spatial organization of cellular constituents, exogenously added fluorescently labeled actin monomers assemble into distinct structures in a pattern that is similar to the cortical actin distribution in vivo. Actin assembly in the bud of small-budded cells requires a nucleation activity provided by protein factors that appear to be distinct from the barbed ends of endogenous actin filaments. This nucleation activity is lost in cells that lack either Sla1 or Sla2, proteins previously implicated in cortical actin cytoskeleton function, suggesting a possible role for these proteins in the nucleation reaction. The rate and the extent of actin assembly in the bud are increased in permeabilized delta cap2 cells, providing evidence that capping protein regulates the ability of the barbed ends of actin filaments to grow in yeast cells. Actin incorporation in the bud can be stimulated by treating the permeabilized cells with GTP-gamma S, and, significantly, the stimulatory effect is eliminated by a mutation in CDC42, a gene that encodes a Rho-like GTP-binding protein required for bud formation. Furthermore, the lack of actin nucleation activity in the cdc42 mutant can be complemented in vitro by a constitutively active Cdc42 protein. These results suggest that Cdc42 is closely involved in regulating actin assembly during polarized cell growth.  相似文献   

8.
Secretion is dependent on a rise in cytosolic Ca(2+)concentration and is associated with dramatic changes in actin organization. The actin cortex may act as a barrier between secretory vesicles and plasma membrane. Thus, disassembly of this cortex should precede late steps of exocytosis. Here we investigate regulation of both the actin cytoskeleton and secretion by calmodulin. Ca(2+), together with ATP, induces cortical F-actin disassembly in permeabilized rat peritoneal mast cells. This effect is strongly inhibited by removing endogenous calmodulin (using calmodulin inhibitory peptides), and increased by exogenous calmodulin. Neither treatment, however, affects secretion. Low concentrations ( approximately 1 microM) of a specific inhibitor of myosin light chain kinase, ML-7, prevent F-actin disassembly, but not secretion. In contrast, a myosin inhibitor affecting both conventional and unconventional myosins, BDM, decreases cortical disassembly as well as secretion. Observations of fluorescein-calmodulin, introduced into permeabilized cells, confirmed a strong (Ca(2+)-independent) association of calmodulin with the actin cortex. In addition, fluorescein-calmodulin enters the nuclei in a Ca(2+)-dependent manner. In conclusion, calmodulin promotes myosin II-based contraction of the membrane cytoskeleton, which is a prerequisite for its disassembly. The late steps of exocytosis, however, require neither calmodulin nor cortical F-actin disassembly, but may be modulated by unconventional myosin(s).  相似文献   

9.
Localized disassembly of cortical F-actin has long been considered necessary for facilitation of exocytosis. Exposure of permeabilized mast cells to calcium/ATP induces cortical F-actin disassembly (calmodulin-dependent) and secretion (calmodulin-independent). The delay in the onset of secretion is characteristic for the calcium/ATP response and is abolished by GTP. Here we report that a constitutively active mutant of Rho (V14RhoA) enhanced both secretion and cortical F-actin disassembly. In addition, V14RhoA mimicked GTP by abolishing the delay in secretion. Inhibition of Rho by C3 transferase prevented both secretion ( approximately 80%) and F-actin disassembly (approximately 20%). Thus, both Rho GTPase and calcium/calmodulin contribute to the control of cortical F-actin disassembly. Stabilization of actin filaments by high concentrations of phalloidin or by a calmodulin-inhibitory peptide (based on the calmodulin-binding domain of myosin light chain kinase) did not affect the extent of secretion or the secretion-enhancing effects of V14RhoA. These results further support the existence of divergent, Rho-dependent, pathways regulating actin and exocytosis. Furthermore, compound Y-27632, a specific inhibitor of Rho-associated protein kinase (p160(ROCK)), attenuated the Rho-induced loss of cortical F-actin without affecting secretion. A model is presented in which Rho regulates secretion and cortical F-actin in a manner dependent on and/or synergistic with calcium.  相似文献   

10.
Hypo-osmotic stimulation of human Intestine 407 cells rapidly activated compensatory CL- and K+ conductances that limited excessive cell swelling and, finally, restored the original cell volume. Osmotic cell swelling was accompanied by a rapid and transient reorganization of the F-actin cytoskeleton, affecting both stress fibers as well as apical ruffles. In addition, an increase in total cellular F-actin was observed. Pretreatment of the cells with recombinant Clostridium botulinum C3 exoenzyme, but not with mutant enzyme (C3-E173Q) devoid of ADP-ribosyltransferase activity, greatly reduced the activation of the osmo-sensitive anion efflux, suggesting a role for the ras-related GTPase p21rho. In contrast, introducing dominant negative N17-p21rac into the cells did not affect the volume-sensitive efflux. Cell swelling-induced reorganization of F-actin coincided with a transient, C3 exoenzyme-sensitive tyrosine phosphorylation of p125 focal adhesion kinase (p125FAK) as well as with an increase in phosphatidylinositol-3-kinase (PtdIns-3-kinase) activity. Pretreatment of the cells with wortmannin, a specific inhibitor of PtdIns-3-kinase, largely inhibited the volume-sensitive ion efflux. Taken together, our results indicate the involvement of a p21rho signaling cascade and actin filaments in the activation of volume-sensitive chloride channels.  相似文献   

11.
Intracellular Ca2+ transients occur at fertilization in the eggs of all animal species and are thought to be critical for the initiation of several events in egg activation. The rho family of small GTPases are known to organize and maintain the actin filament-dependent cytoskeleton, and rho is involved in the control mechanism of cytokinesis. In the ascidian Ciona savignyi, the first step of ooplasmic segregation observed just after fertilization is cortical contraction with egg deformation, mediated by the cortical actin filaments. C3 exoenzyme, a rho-specific inhibitor, did not affect the pattern of [Ca2+]i transients in the ascidian egg, but inhibited ooplasmic segregation and cytokinesis at the first cleavage. Injection of inositol 1,4,5-trisphosphate or treatment of Ca2+ ionophore induced deformation of the egg and extrusion of the first polar body, but these phenomena did not occur in the C3 exoenzyme-injected egg. These results suggest that rho proteins are involved in egg deformation, ooplasmic segregation and cytokinesis downstream of the [Ca2+]i transients.  相似文献   

12.
Summary Changes in F-actin organization following mechanical isolation ofZinnia mesophyll cells were documented by rhodamine-phalloidin staining. Immediately after isolation, most cells contained irregular cortical actin fragments of varying lengths, and less than 5% of cells contained intact cortical filaments. During the first 8 h of culture, filament fragments were replaced by actin rings, stellate actin aggregates, and bundled filament fragments. Some of these aggregates had no association with organelles (free actin aggregates). Other aggregates were associated with chloroplasts, which changed in shape and location at the same time actin aggregates appeared. F-actin was concentrated within or around the nucleus in a small percentage of cells. After 12 h in culture, the percentage of cells with free actin rings and chloroplast-associated actin aggregates began to decline and the percentage of cells having intact cortical actin filaments increased greatly. Intermediate images were recorded that strongly indicate that free actin rings, chloroplast-associated actin rings, and other actin aggregates self-assemble by successive bundling of actin filament fragments. The fragmentation and bundling of F-actin observed in mechanically isolatedZinnia cells resembles changes in F-actin distribution reported after diverse forms of cell disturbance and appears to be an example of a generalized response of the actin cytoskeleton to cell stress.Abbreviations FITC fluorescein isothiocyanate - MBS m-maleimidobenzoic acid N-hydroxysuccinimide ester - RhPh tetramethylrhodamine isothiocyanate-phalloidin  相似文献   

13.
Calcium, initially considered as the universal link between receptor stimulation and the onset of exocytosis in secretory cells, is now recognised as only one of a number of intracellular activators. In cells of haematopoietic origin (including mast cells), the key activator is one or more GTPases. Cells of this class, stimulated with GTPgammaS can undergo exocytosis in the effective absence of Ca(2+). A number of GTP-binding proteins that mediate exocytosis (G(E)) have been proposed but the best evidence supports roles for members of the Rho family of monomeric GTPases and for betagamma-subunits derived from G(i3). While preactivated Rac and Cdc42 can induce secretion from permeabilised mast cells in the absence of a guanine nucleotide betagamma-subunits only act to enhance the secretion induced by other GTP-binding proteins (likely to be members of the Rho family of monomeric GTPases). Further work is required to identify downstream effectors activated by these GTP-binding proteins and to show how they interact with the SNAP and SNARE isoforms known to be present in these cells.  相似文献   

14.
Guanosine triphosphate (GTP) has been implicated in the regulation of Ca(2+)-mediated secretion from neutrophils. We further examined the role of GTP in neutrophil secretion using streptolysin O permeabilized cells. We found that, in the presence of GTP, 1.0 microM free Ca(2+) causes maximum secretion-equivalent to that achieved with 100 microM free Ca(2+)-whereas GTPgammaS inhibits Ca(2+)-stimulated secretion. Interestingly, GTP by itself stimulates secretion. These results indicate the existence of a GTP-regulated mechanism of secretion in neutrophils that requires GTP hydrolysis to stimulate secretion in the presence and absence of Ca(2+). The stimulatory effect of GTP is only observed when GTP is present during permeabilization. Addition of GTP after permeabilization, when the cytosolic contents have leaked out from cells, gives no stimulatory response, implying that the GTP-dependent secretory apparatus requires at least one cytosolic protein. GTP-dependent secretion can be reconstituted with crude HL-60 and bovine liver cytosol. The reconstituting activity binds to GTP-agarose, suggesting that the cytosolic factor is a GTP-binding protein or forms a complex with a GTP-binding protein. However, it is not a member of the rho or rac families of GTPases. By gel filtration chromatography, the secretion-reconstituting activity eluted at 870 and 200 kDa, but in the presence of GTP, eluted at 120 kDa, indicating that it is part of a high-molecular-weight complex that dissociates in the presence of GTP. Retention of adenosine diphosphate-ribosylation factor (ARF) in permeabilized cells and insensitivity of the cytosolic reconstituting activity to brefeldin A led to our speculation that ARF6 may be the GTPase involved in GTP-dependent secretion, and that activity from a BFA-insensitive ARF6 guanine nucleotide exchange factor reconstitutes secretion.  相似文献   

15.
16.
Mast cells permeabilized by treatment with streptolysin-O in the presence of Ca2+ and GTP-gamma-S can secrete almost 100% of their contained N-acetyl-beta-D-glucosaminidase. If these stimuli are provided to the permeabilized cells after a delay, the response is diminished and the ability of the cells to undergo secretion runs down progressively over a period of about 30 min. This is thought to be due to the loss of key proteins involved in the exocytotic mechanism. Using this effect as the basis of a biological assay, we have isolated a protein from bovine brain cytosol that retards the loss of responsiveness to stimulation by Ca2+ and GTP-gamma-S. Purification of this protein and peptide sequencing have enabled us to identify it as the small GTP-binding protein rac complexed to the guanine nucleotide exchange inhibitor rhoGDI. Both proteins are required to retard the loss of the secretory response, while purified rhoGDI applied alone accelerates the rundown.  相似文献   

17.
Concentric zones of active RhoA and Cdc42 around single cell wounds   总被引:5,自引:0,他引:5       下载免费PDF全文
Rho GTPases control many cytoskeleton-dependent processes, but how they regulate spatially distinct features of cytoskeletal function within a single cell is poorly understood. Here, we studied active RhoA and Cdc42 in wounded Xenopus oocytes, which assemble and close a dynamic ring of actin filaments (F-actin) and myosin-2 around wound sites. RhoA and Cdc42 are rapidly activated around wound sites in a calcium-dependent manner and segregate into distinct, concentric zones around the wound, with active Cdc42 in the approximate middle of the F-actin array and active RhoA on the interior of the array. These zones form before F-actin accumulation, and then move in concert with the closing array. Microtubules and F-actin are required for normal zone organization and dynamics, as is crosstalk between RhoA and Cdc42. Each of the zones makes distinct contributions to the organization and function of the actomyosin wound array. We propose that similar rho activity zones control related processes such as cytokinesis.  相似文献   

18.
rac1 and rac2 p21s are ras p21-like small GTP-binding proteins which are implicated in the NADPH oxidase-catalyzed superoxide generation in phagocytes. rac1 and rac2 p21s have a Cys-A-A-Leu (A = aliphatic amino acid) structure in their C-terminal region which may undergo post-translational processing including prenylation, proteolysis, and carboxyl methylation. We studied the function of this post-translational processing of rac p21s in their interaction with the stimulatory and inhibitory GDP/GTP exchange proteins for rac p21s, named smg GDS and rho GDI, and in their NADPH oxidase activation. We produced human recombinant rac1 and rac2 p21s in insect cells and purified them from the membrane and soluble fractions as the post-translationally processed and unprocessed forms, respectively. Post-translationally processed rac1 and rac2 p21s were sensitive to both smg GDS and rho GDI, but post-translationally unprocessed rac1 and rac2 p21s were insensitive to them. The GTP gamma S (guanosine 5'-(3-O-thio)triphosphate)-bound form of post-translationally processed rac1 and rac2 p21s stimulated the NADPH oxidase activity, but post-translationally unprocessed rac1 and rac2 p21s were far less effective. These results indicate that both rac1 and rac2 p21s stimulate the NADPH oxidase activity and that their post-translational processing is important not only for their interaction with smg GDS and rho GDI but also for their NADPH oxidase activation.  相似文献   

19.
rho family GTPases link extracellular signals to changes in the organization of cytoskeletal actin. Serum stimulation of quiescent Swiss 3T3 fibroblasts leads to rho-dependent actin stress fibre formation and focal adhesions, whilst several growth factors initiate signalling pathways leading to rac-dependent actin polymerization at the plasma membrane, and membrane ruffling. The product of the breakpoint cluster region gene bcr, rho GTPase accelerating protein (rhoGAP) and rasGAP-associated p190 share structurally related rho GAP domains, and possess GAP activity for rho family members in vitro. We have directly compared the activities of the isolated GAP domains of these three proteins in regulating different rho family GTPases, both by in vitro assays and by microinjection, to address their possible physiologic functions. We show that bcr accelerates the GTPase activity of rac, but not rho in vitro, and inhibits rac-mediated membrane ruffling, but not rho-mediated stress fibre formation, after microinjection into Swiss 3T3 fibroblasts. In vitro, rhoGAP has a striking preference for G25K as a substrate, whilst p190GAP has marked preferential activity for rho. Furthermore, p190 preferentially inhibits rho-mediated stress fibre formation in vivo. Our data suggest that p190, rhoGAP and bcr play distinct roles in signalling pathways mediated through different rho family GTPases.  相似文献   

20.
Gelsolin is a downstream effector of rac for fibroblast motility.   总被引:18,自引:1,他引:17       下载免费PDF全文
Rac, a member of the rho family of GTPases, when activated transmits signals leading to actin-based membrane ruffling in fibroblasts. Compared with wild-type fibroblasts, gelsolin null (Gsn-) dermal fibroblasts have a markedly reduced ruffling response to serum or EGF stimulation, which signal through rac. Bradykinin-induced filopodial formation, attributable to activation of cdc42, is similar in both cell types. Wild-type fibroblasts exhibit typical lamellipodial extension during translational locomotion, whereas Gsn- cells move 50% slower using structures resembling filopodia. Multiple Gsn- tissues as well as Gsn- fibroblasts overexpress rac, but not cdc42 or rho, 5-fold. Re-expression of gelsolin in Gsn- fibroblasts by stable transfection or adenovirus reverts the ruffling response, translational motility and rac expression to normal. Rac migrates to the cell membrane following EGF stimulation in both cell types. Gelsolin is an essential effector of rac-mediated actin dynamics, acting downstream of rac recruitment to the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号