首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The postnatal development of extrafusal fibers in the slow-twitch soleus muscle of genetically dystrophic C57BL/6J dy2J/dy2J mice and their normal age-matched controls was investigated by histochemical and quantitative methods at selected ages of 4, 8, 12, and 32 weeks. The majority of fibers in the soleus consisted of two kinds, fast-twitch oxidative-glycolytic (FOG) and slow-twitch oxidative (SO), according to reactions for alkaline-stable and acid-stable myosin ATPase and the oxidative enzyme, NADH-tetrazolium reductase. A minor population of fibers, stable for both alkaline- and acid-preincubated ATPase, but variable in staining intensity for NADH-TR, were designated "atypical" fibers. With age, the normal soleus exhibited a gradual increase in the number and proportion of SO fibers and a reciprocal, steady decline in the percentage of FOG fibers. Atypical fibers were numerous at 4 weeks, but were substantially diminished at later ages. Since total extrafusal fiber number remained relatively constant between the periods examined, this change in relative proportions reflects an adaptive transformation of fiber types characteristic of normal postnatal growth. A striking alteration in the number and distribution of fiber types was associated with the dystrophic soleus. At 4 weeks an 18% reduction in total fiber number was already noted. Subsequently, by 32 weeks a further 22% diminution in overall fiber number had occurred. With age, the absolute number and proportion of dystrophic SO fibers were drastically reduced. In contrast, the percentage of dystrophic FOG fibers increased significantly while their absolute numbers between 4 and 32 weeks remained relatively constant. Atypical fibers in the dystrophic solei were found in elevated numbers at all age groups, particularly at 12 weeks. They may, in part, represent attempts at regeneration or an intermediate stage in fiber-type transformation. Microscopically, both of the major fiber types appeared affected, albeit differently, by the dystrophic process. We suggest that a failure or retardation in the normal postnatal conversion of fiber types within the soleus muscle occurs in this murine model for muscular dystrophy.  相似文献   

2.
While it recently has been demonstrated that it is possible to modify the phenotypic expression of murine dystrophy (dy/dy) (i.e., prevent myofiber loss) by subjecting the extensor digitorum longus (EDL) muscle of 14-day-old dy/dy mice to transient neonatal denervation (Moschella and Ontell, 1987), the mechanism responsible for this phenomenon has not been determined. Since it has been suggested that the effects of dystrophy vary according to fiber type, the fiber type frequency in 100-day-old normal (+/+) and dy/dy EDL muscles subjected to transient neonatal denervation has been determined by immunohistochemical analysis of their myosin heavy chain (MHC) composition. This frequency has been compared with that found in the EDL muscles of 14- and 100-day-old unoperated +/+ and dy/dy mice, in order to determine whether the reinnervation of transiently denervated neonatal muscle results in a preponderance of fibers of the type that might be spared dystrophic deterioration. In unoperated dy/dy muscle there is a progressive decrease in the frequency and in the absolute number of fibers that express MHC2B, with 100-day-old dy/dy muscles having approximately 32% of the number of myofibers fibers containing MHC2B as is found in age-matched +/+ muscles. The number of fibers containing the other fast isoforms (MHC2A and MHC2X) is similar in +/+ and dy/dy muscles at this age, indicating that fibers with MHC2B are most affected by the dystrophic process. Reinnervation following transient neonatal denervation of both the +/+ and the dy/dy EDL muscles results in a similar decrease (approximately 62%) in the number of myofibers containing MHC2B and an increase in myofibers containing the other fast MHC isoforms (MHC2A and MHC2X). The selective effect of dy/dy on fibers containing MHC2B and the sparing of myofibers in transiently denervated dy/dy muscle (which contains a reduced frequency of fibers containing MHC2B) are consistent with, although not direct proof of, the hypothesis that alterations in the fiber type may play a role in the failure of myofibers in transiently denervated dy/dy muscles to undergo dystrophic deterioration. Evidence is presented suggesting that neurons that supply myofibers containing MHC2B may be at a selective disadvantage in their ability to reinnervate neonatally denervated muscles.  相似文献   

3.
While it recently has been demonstrated that it is possible to modify the phenotypic expression of murine dystrophy (dy/dy) (i.e., prevent myofiber loss) by subjecting the extensor digitorum longus (EDL) muscle of 14-day-old dy/dy mice to transient neonatal denervation (Moschella and Ontell, 1987), the mechanism responsible for this phenomenon has not been determined. Since it has been suggested that the effects of dystrophy vary according to fiber type, the fiber type frequency in 100-day-old normal (+/+) and dy/dy EDL muscles subjected to transient neonatal denervation has been determined by immunohistochemical analysis of their myosin heavy chain (MHC) composition. This frequency has been compared with that found in the EDL muscles of 14 -and 100-day-old unoperated +/+ and dy/dy mice, in order to determine whether the reinnervation of transiently denervated neonatal muscle results in a preponderance of fibers of the type that might be spared dystrophic deterioration. In unoperated dy/dy muscle there is a progressive decrease in the frequency and in the absolute number of fibers that express MHC2B, with 100-day-old dy/dy muscles having ~32% of the number of myofibers fibers containing MHC2B as is found in age-matched +/+ muscles. The number of fibers containing the other fast isoforms (MHC2A and MHC2X) is similar in +/+ and dy/dy muscles at this age, indicating that fibers with MHC2B are most affected by the dystrophic process. Reinnervation following transient neonatal denervation of both the +/+ and the dy/dy EDL muscles results in a similar decrease (~62%) in the number of myofibers containing MHC2B and an increase in myofibers containing the other fast MHC isoforms (MHC2A and MHC2X). The selective effect of dy/dy on fibers containing MHC2B and the sparing of myofibers in transiently denervated dy/dy muscle (which contains a reduced frequency of fibers containing MHC2B) are consistent with, although not direct proof of, the hypothesis that alterations in the fiber type may play a role in the failure of myofibers in transiently denervated dy/dy muscles to undergo dystrophic deterioration. Evidence is presented suggesting that neurons that supply myofibers containing MHC2B may be at a selective disadvantage in their ability to reinnervate neonatally denervated muscles. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
Alpha-sarcoglycan (Sgca) is a transmembrane glycoprotein of the dystrophin complex located at skeletal and cardiac muscle sarcolemma. Defects in the alpha-sarcoglycan gene (Sgca) cause the severe human-type 2D limb girdle muscular dystrophy. Because Sgca-null mice develop progressive muscular dystrophy similar to human disorder they are a valuable animal model for investigating the physiopathology of the disorder. In this study, biochemical and functional properties of fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of the Sgca-null mice were analyzed. EDL muscle of Sgca-null mice showed twitch and tetanic kinetics comparable with those of wild-type controls. In contrast, soleus muscle showed reduction of twitch half-relaxation time, prolongation of tetanic half-relaxation time, and increase of maximal rate of rise of tetanus. EDL muscle of Sgca-null mice demonstrated a marked reduction of specific twitch and tetanic tensions and a higher resistance to fatigue compared with controls, changes that were not evident in dystrophic soleus. Contrary to EDL fibers, soleus muscle fibers of Sgca-null mice distinctively showed right shift of the pCa-tension (pCa is the negative log of Ca2+ concentration) relationships and reduced sensitivity to caffeine of sarcoplasmic reticulum. Both EDL and soleus muscles showed striking changes in myosin heavy-chain (MHC) isoform composition, whereas EDL showed a larger number of hybrid fibers than soleus. In contrast to the EDL, soleus muscle of Sgca-null mice contained a higher number of regenerating fibers and thus higher levels of embryonic MHC. In conclusion, this study revealed profound distinctive biochemical and physiological modifications in fast- and slow-twitch muscles resulting from alpha-sarcoglycan deficiency.  相似文献   

5.
We describe the expression and distribution patterns of nestin, desmin and vimentin in intact and regenerating muscle spindles of the rat hind limb skeletal muscles. Regeneration was induced by intramuscular isotransplantation of extensor digitorum longus (EDL) or soleus muscles from 15-day-old rats into the EDL muscle of adult female inbred Lewis rats. The host muscles with grafts were excised after 7-, 16-, 21- and 29-day survival and immunohistochemically stained. Nestin expression in intact spindles in host muscles was restricted to Schwann cells of sensory and motor nerves. In transplanted muscles, however, nestin expression was also found in regenerating “spindle fibers”, 7 and 16 days after grafting. From the 21st day onwards, the regenerated spindle fibers were devoid of nestin immunoreactivity. Desmin was detected in spindle fibers at all developmental stages in regenerating as well as in intact spindles. Vimentin was expressed in cells of the outer and inner capsules of all muscle spindles and in newly formed myoblasts and myotubes of regenerating spindles 7 days after grafting. Our results show that the expression pattern of these intermediate filaments in regenerating spindle fibers corresponds to that found in regenerating extrafusal fibers, which supports our earlier suggestion that they resemble small-diameter extrafusal fibers.  相似文献   

6.
It has been previously shown that transiently denervated, neonatal dystrophic muscle fails to undergo the degeneration-regeneration cycle characteristic of murine dystrophy (Moschella and Ontell, 1987). Thus, the myosatellite cells (myogenic stem cells) in these muscles have been spared the mitotic challenge to which dystrophic myosatellite cells are normally subjected early in the time course of the disease. By in vitro evaluation of the proliferative capacity of myosatellite cells derived from extensor digitorum longus (EDL) muscles of 100-day-old genetically normal (+/+) and genetically dystrophic [dy/dy (129ReJdy/dy)] mice and from muscles of age-matched mice that had been neonatally denervated (by sciaticotomy) and allowed to reinnervate, it has been possible to directly determine whether the cessation of spontaneous regeneration in older dy/dy muscles in vivo, is due to an innate defect in the proliferative capacity of the myosatellite cells or exhaustion of the myosatellite cells' mitotic activity during the regenerative phase of the disease. This study demonstrates that transient neonatal denervation of dystrophic muscle (Den.dy/dy) increases the number of muscle colony-forming cells (MCFs) per milligram of wet weight muscle tissue, increases the plating efficiency, and significantly increases the in vitro mitotic activity of dystrophic myosatellite cells toward normal values. The increased mitotic capability of myosatellite cells derived from Den.dy/dy muscle as compared to unoperated dy/dy muscle suggests that there is no innate defect in the proliferative capacity of the myosatellite cells of dy/dy muscles and that the cessation of spontaneous regeneration in the dy/dy muscles is related to the exhaustion of their myosatellite cells' mitotic capability.  相似文献   

7.
Guinea pig soleus, medial gastrocnemius and vastus lateralis muscles were compared for spindle density and distribution, number of intrafusal fibers per spindle and histochemical appearance of the axial bundle. A total of 326 spindles was used in the comparisons. Spindle density was over four times greater in the soleus than in either the medial gastrocnemius or vastus lateralis. In the soleus the spindles were distributed at random, but in the other two muscles no spindles were found in those fascicles in which fast-twitch glycolytic extrafusal fibers predominated. The average number of intrafusal fibers per spindle varied by less than 5% between the three kinds of muscles. About 80% of all spindles located had four intrafusal fibers, two of the nuclear bag type and two of the nuclear chain type. The histochemical appearance of the axial bundle was the same in each kind of muscle. Based on intensities of the myofibrillar adenosine triphosphatase reaction product at polar regions nuclear bag fibers were separable into two histochemical groups; nuclear chain fibers were of only one histochemical type.  相似文献   

8.
The neuroanatomical organization of the dynamic (bag1) and static (bag2 and chain) intrafusal systems was compared by light and electron microscopy of serial sections among 71 poles of muscle spindle in soleus (SOL), extensor digitorum longus (EDL), and lumbrical (LUM) muscles in the rat. Eighty-four percent of 195 fusimotor (gamma) axons to the spindles innervated either the dynamic bag1 fiber or the static bag2 and/or chain fibers. Sixteen percent of the gamma axons coinnervated the dynamic and static intrafusal fibers. Some of these nonselective axons were branches of effernts that also gave rise to axons selective to either the dynamic or static types of intrafusal fibers in one or more spindles. Thus activation of individual stem gamma efferents might not have a purely dynamic or purely static effect on the integrated afferent outflow from spindles of a hindlimb muscles in the rat. In addition, primary afferents in all muscles had terminations that cross-innervated the dynamic bag1 and static bag1 and/or chain intrafusal fibers in individual spindles, an arrangement that may enhance the mixed dynamic/static behavior of afferents when different intrafusal fibers are activated concurrent. Spindles of the slow SOL and fast EDL muscles had similar features, whereas differences were observed in the organization of the proximal (SOL and EDL) and distal (LUM) muscles. Spindles in LUM muscles had fewer static intrafusal fibers, a higher ratio of dynamic to static gamma axons, and a higher incidence of skeletofusimotor (beta) innervation to intrafusal fibers than spindles in the SOL or EDL muscles. Thus, the relative contribution of dynamic and static systems to muscle afferent outflow may differ among spindles located in different segments of the rat hindlimb. However, the dynamic and static intrafusal systems of spindle were less sharply demarcated in each of the three hindlimb rat muscles than in the cat tenuissimus muscle.  相似文献   

9.
With the use of myosin adenosinetriphosphatase (ATPase) and immunofluorescence staining methods, the adaptive responses of intrafusal and extrafusal fibers to endurance swimming were studied in frozen sections of rat soleus (SOL) and extensor digitorum longus (EDL) muscles. Glycogen depletion confirmed muscle fatigue at the end of a standardized bout of exercise. No significant age-dependent changes in myosin isoforms were detected in any fibers. The 12-wk training increased type I fibers by 10.9% in the SOL and type IIa fibers in the EDL by 16.6%. In trained muscle sections, both staining methods identified a permuted chain fiber, expressed the same as the myosin isoform in the bag2 fiber. However, no exercise-induced change of myosin isoform profile was found in the bag1 and bag2 fibers. Myosin ATPase (and immunofluorescence) staining showed the percentage of permuted chain fibers increased from 0 to 6.7% (5.6%) after 6 wk of training and to 19.2% (14.1%) after 12 wk of training and that it was still at 6.1% (4.2%) 10 wks after training. A novel myosin isoform may thus be expressed in nuclear chain fibers by repetitive recruitment of muscle spindles.  相似文献   

10.
Myosin heavy chain (MHC) expression by intrafusal fibers was studied by immunocytochemistry to determine how closely it parallels MHC expression by extrafusal fibers in the soleus and tibialis anterior muscles of the rat. Among the MHC isoforms expressed in extrafusal fibers, only the slow-twitch MHC of Type 1 extrafusal fibers was expressed along much of the fibers. Monoclonal antibodies (MAb) specific for this MHC bound to the entire length of bag2 fibers and the extracapsular region of bag1 fibers. The fast-twitch MHC isoform strongly expressed by bag2 and chain fibers had an epitope not recognized by MAb to the MHC isoforms characteristic of developing muscle fibers or the three subtypes (2A, 2B, 2X) of Type 2 extrafusal fibers. Therefore, intrafusal fibers may express a fast-twitch MHC that is not expressed by extrafusal fibers. Unlike extrafusal fibers, all three intrafusal fiber types bound MAb generated against mammalian heart and chicken limb muscles. The similarity of the fast-twitch MHC of bag2 and chain fibers and the slow-tonic MHC of bag1 and bag2 fibers to the MHC isoforms expressed in avian extrafusal fibers suggests that phylogenetically primitive MHCs might persist in intrafusal fibers. Data are discussed relative to the origin and regional regulation of MHC isoforms in intrafusal and extrafusal fibers of rat hindlimb muscles.  相似文献   

11.
Histochemistry of rat intrafusal muscle fibers and their motor innervation.   总被引:2,自引:0,他引:2  
Muscle spindles were followed in serial transverse sections of freshly frozen rat soleus muscles. Adenosine triphosphatase (ATPase) histochemical staining reaction was used to identify nuclear bag1, nuclear bag2 and nuclear chain intrafusal muscle fibers. Regional differences in ATPase staining occurred along bag1 and bag2 fibers but not along chain fibers. Bag1 fibers displayed ultrastructural heterogenity when their intra- and extracapsular regions were compared. Simple "diffuse" and more elaborate "plate" motor nerve terminals were demonstrated histochemically along the poles of bag1 and bag2 fibers by staining for cholinesterase. One motor terminal of the "plate" appearance was present on a chain fiber pole. There was no consistent spatial correlation between the intensity of regional ATPase staining along the nuclear bag fibers and the location, number and type of motor endings. Other factors, such as intrafusal fiber sensory innervation and regional differences in active and passive functional recruitment of nuclear bag fibers during muscle activity, may contribute to the ATPase staining variability along the intrafusal fibers.  相似文献   

12.
The purpose was to investigate the contribution of mechanical damage to sarcomeres to the greater susceptibility of dystrophic muscle fibers to contraction-induced injury. Single stretches provide an effective method for studying mechanical factors that contribute to the initiation of contraction-induced injury. We hypothesized that, after single stretches, the deficits in isometric force would be greater for muscles of mdx than C57BL/10 mice, whereas membrane damage would be minimal for all muscles. Extensor digitorum longus (EDL) and soleus muscles of mice were removed under anesthesia with Avertin (tribromoethanol). During the plateau of a maximum isometric contraction in vitro, muscles were stretched through single strains of 20-60% fiber length. Isometric force was remeasured 1 min later, and muscles were then incubated in procion orange dye to identify fibers with membrane damage. Force deficits at 1 min were two- to threefold greater for EDL muscles of mdx compared with C57BL/10 mice, whereas no significant differences were observed between soleus muscles of mdx and C57BL/10 mice. For all muscles, membrane damage was minimal and not significantly increased by single stretches for either strain of mice. These data support a critical role of dystrophin maintaining sarcomere stability in EDL muscles, whereas soleus muscles retain abilities, in the absence of dystrophin, not different from control muscles to resist sarcomere damage.  相似文献   

13.
J Kucera  J M Walro 《Histochemistry》1988,90(2):151-160
Muscle spindles were either deafferented or deefferented by selectively severing the sensory or motor nerve supply to neonatal soleus muscles of rats at a time when spindles are formed but when intrafusal muscle fibers are structurally and immunocytochemically immature. Experimental muscles were excised two months after nerve section. Control and experimental spindles were examined using monoclonal antibodies specific for myosin heavy chains of slow-tonic (ALD58) and fast-twitch (MF30) chicken muscles. Only intrafusal fibers bound these antibodies in intact soleus muscles. The deefferented spindles exhibited a pattern of ALD58 and MF30 binding similar to that of normal adult intrafusal fibers, whereas deafferented intrafusal fibers were unreactive with the two antibodies. Thus intact sensory innervation is essential for myosin heavy chain expression in intrafusal muscle fibers during postnatal development of rat spindles.  相似文献   

14.
Summary Muscle spindles were either deafferented or deefferented by selectively severing the sensory or motor nerve supply to neonatal soleus muscles of rats at a time when spindles are formed but when intrafusal muscle fibers are structurally and immunocytochemically immature. Experimental muscles wereexcised two months after nerve section. Control and experimental spindles were examined using monoclonal antibodies specific for myosin heavy chains of slow-tonic (ALD58) and fast-twitch (MF30) chicken muscles. Only intrafusal fibers bound these antibodies in intact soleus muscles. The deefferented spindles exhibited a pattern of ALD58 and MF30 binding similar to that of normal adult intrafusal fibers, whereas deafferented intrafusal fibers were unreactive with the two antibodies. Thus intact sensory innervation is essential for myosin heavy chain expression in intrafusal muscle fibers during postnatal development of rat spindles.  相似文献   

15.
Chicken leg muscles were examined to calculate the percentages of slow myosin heavy chain (MHC)-positive fibers in spindles and in adjacent extrafusal fascicles, and to clarify how the encapsulated portions of muscle spindles are positioned relative to these fascicles. Unlike mammals, in chicken leg muscles slow-twitch MHC and slow-tonic MHC are expressed in intrafusal fibers and in extrafusal fibers, suggesting a close developmental connection between the two fiber populations. In 8-week-old muscles the proportions of slow MHC-positive extrafusal fibers that ringed muscle spindles ranged from 0-100%. In contrast, proportions of slow MHC-positive intrafusal fibers in spindles ranged from 0-57%. Similar proportions in fiber type composition between intrafusal fibers and surrounding extrafusal fibers were apparent at embryonic days 15 and 16, demonstrating early divergence of extrafusal and intrafusal fibers. Muscle spindles were rarely located within single fascicles. Instead, they were commonly placed where several fascicles converged. The frequent extrafascicular location of spindles suggests migration of intrafusal myoblasts from developing clusters of extrafusal fibers toward the interstitium, perhaps along a neurotrophic gradient established by sensory axons that are advancing in the connective tissue matrix that separates adjoining fascicles.  相似文献   

16.
Whether nerve activity and active contraction of myotubes are essential for the assembly and initial differentiation of muscle spindles was investigated by paralyzing fetal rats with tetrodotoxin (TTX) from embryonic day 16 (E16) to E21, prior to and during the period when spindles typically form. TTX-treated soleus muscles were examined by light and electron microscopy for the presence of spindles and expression of myosin heavy chain (MHC) isoforms by the intrafusal fibers. Treatment with TTX did not inhibit the formation of a spindle capsule or the expression of a slow-tonic MHC isoform characteristic of intrafusal fibers, but did retard development of spindles. Spindles of TTX-treated E21 muscles usually consisted of one intrafusal fiber (bag2) only rather than two fibers (bag1 and bag2) typically present in untreated (control) E21 spindles. Intrafusal fibers of TTX-treated spindles also had only one sensory region supplied by multiple afferents, and were devoid of motor innervation. These features are characteristic of spindles in normal E18-E19 muscles. Thus, nerve and/or muscle activity is not essential for the assembly of muscle spindles, formation of a spindle capsule, and transformation of undifferentiated myotubes into the intrafusal fibers containing spindle-specific myosin isoforms. However, activity may promote the maturation of intrafusal bundles, as well as the maturation of afferent and efferent nerve supplies to intrafusal fibers.  相似文献   

17.
Features of the nerve supply and the encapsulated fibers of muscle spindles were assessed in grafted and normal extensor digitorum longus (EDL) muscles of rats by analysis of serial 10-microns frozen transverse sections stained for enzymes which delineated motor and sensory endings, oxidative capacity and muscle fiber type. The number of fibers was significantly more variable, and branched fibers were more frequently observed in regenerated spindles than in control spindles. Forty-eight percent of regenerated spindles received sensory innervation. Spindles reinnervated by afferents had a larger periaxial space than did spindles which were not reinnervated by afferents. Regenerated fibers innervated by afferents had small cross-sectional areas, equatorial regions with myofibrils restricted to the periphery of fibers, unpredictable patterns of nonuniform and nonreversible staining along the length of the fiber for 'myofibrillar' adenosine triphosphatase (mATPase) after acid and alkaline preincubation. In contrast, regenerated fibers devoid of sensory innervation resembled extrafusal fibers in that they usually exhibited myofibrils throughout the length of the fiber, no central aggregations of myonuclei, uniform staining for mATPase and a reversal of staining for mATPase after preincubation in an acid or alkaline medium. Approximately thirty percent of encapsulated fibers devoid of sensory innervation stained analogous to a type I extrafusal fiber, a pattern of staining never observed in intrafusal fibers of normal spindles. Groups of encapsulated fibers all exhibiting this pattern of staining reflect that either these fibers may have been innervated by collaterals of skeletomotor axons that originally innervated type I extrafusal fibers or that fibers innervated by only fusimotor neurons express patterns of staining for mATPase similar to extrafusal fibers in the absence of sensory innervation. Sensory innervation may also influence the reestablishment of multiple sites of motor endings on regenerated intrafusal fibers. Those regenerated fibers innervated by afferents had more motor endings than did regenerated fibers devoid of sensory innervation. Differences in size, morphology, and patterns of staining for mATPase and numbers of motor endings between fibers innervated by afferents and fibers devoid of sensory innervation reflect that afferents can influence the differentiation of muscle cells and the reestablishment of motor innervation other than during the late prenatal/early postnatal period when muscle spindles form and differentiate in rats.  相似文献   

18.
Role of nerve and muscle factors in the development of rat muscle spindles   总被引:2,自引:0,他引:2  
The soleus muscles of fetal rats were examined by electron microscopy to determine whether the early differentiation of muscle spindles is dependent upon sensory innervation, motor innervation, or both. Simple unencapsulated afferent-muscle contacts were observed on the primary myotubes at 17 and 18 days of gestation. Spindles, encapsulations of muscle fibers innervated by afferents, could be recognized early on day 18 of gestation. The full complement of spindles in the soleus muscle was present at day 19, in the region of the neuromuscular hilum. More afferents innervated spindles at days 18 and 19 of gestation than at subsequent developmental stages, or in adult rats; hence, competition for available myotubes may exist among afferents early in development. Some of the myotubes that gave rise to the first intrafusal (bag2) fiber had been innervated by skeletomotor (alpha) axons prior to their incorporation into spindles. However, encapsulated intrafusal fibers received no motor innervation until fusimotor (gamma) axons innervated spindles 3 days after the arrival of afferents and formation of spindles, at day 20. The second (bag1) intrafusal fiber was already formed when gamma axons arrived. Thus, the assembly of bag1 and bag2 intrafusal fibers occurs in the presence of sensory but not gamma motor innervation. However, transient innervation of future bag2 fibers by alpha axons suggests that both sensory and alpha motor neurons may influence the initial stages of bag2 fiber assembly. The confinement of nascent spindles to a localized region of the developing muscle and the limited number of spindles in developing muscles in spite of an abundance of afferents raise the possibility that afferents interact with a special population of undifferentiated myotubes to form intrafusal fibers.  相似文献   

19.
Muscle spindle development and function are dependent upon sensory innervation. During muscle regeneration, both neural and muscular components of spindles degenerate and it is not known whether reinnervation of a regenerating muscle results in reestablishment of proper neuromuscular relationships within spindles or whether sensory neurons may exert an influence upon differentiation of these spindles. Muscle spindle regeneration was studied in bupivacaine-treated grafts of rat extensor digitorum longus (EDL) muscles. Three types of EDL graft were performed in order to manipulate the extent to which regenerating spindles might be reinnervated: (1) grafts reinnervated following severance of their nerve supply (standard grafts); (2) grafts in which intact nerve sheaths appear to facilitate reinnervation (nerveintact grafts); and (3) grafts in which reinnervation was prevented (nonreinnervated grafts). Complete degeneration of muscle fibers occurred in all grafts prior to regeneration. Initial formation of spindles in regenerating EDL grafts is independent of innervation; intrafusal muscle fibers degenerate and regenerate within spindle capsules that remain intact and viable. The extent of spindle differentiation was evaluated in each type of graft using criteria that included nucleation and ATPase activity, both of which have been shown to be regulated by sensory innervation, as well as the number of muscle fibers/spindle and morphology of spindle capsules.While most spindles contained normal numbers of muscle fibers, most of these fibers were morphologically and histochemically abnormal. Alterations of ATPase activity occurred in all spindles, but were least severe in nerve-intact grafts. While fully differentiated nuclear bag and chain fibers were not observed in regenerated spindles, large, vesicular nuclei, similar to those of normal intrafusal fibers, were present in a small number of spindles in nerve-intact grafts. Sensory nerve terminations were observed only in those spindles that also contained the distinctive nuclei. This study suggests that a specific neurotrophic influence is necessary for regeneration of normal intrafusal muscle fibers and that this influence corresponds to the properly timed sensory neuron-muscle interaction which directs muscle spindle embryogenesis. However, the infrequent occurrence of characteristics unique to intrafusal muscle fibers indicates that reinnervation of regenerating muscle grafts by sensory neurons is inadequate and/or faulty.  相似文献   

20.
The size, distribution, and content of catalase-reactive microperoxisomes were studied cytochemically in slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), and fast-twitch glycolytic (FG) fibers of soleus and extensor digitorum longus (EDL) rat muscles. Fiber types were classified on the basis of mitochondrial content and distribution, Z-band widths, and myofibril size and shape. Microperoxisomes were generally located between myofibrils at the I-bands. The absence of crystalloid inclusions prevented positive identification of microperoxisomes in nonreacted and aminotriazole-inhibited muscles. EDL and soleus SO fibers possessed the largest microperoxisomes, whereas FOG and FG fibers of the EDL contained small- to medium-sized microperoxisomes. Comparing either microperoxisome number per muscle fiber area or microperoxisome area per fiber area revealed significant differences between fiber types with this ranking: soleus SO greater than EDL SO greater than EDL FOG greater than EDL FG. The present observations demonstrate that the content of catalase-positive microperoxisomes is greatest in the oxidative muscle fiber types. These cytochemical findings account for the higher catalase activity in homogenates of soleus muscles as compared to that of EDL muscles, because the soleus contains more oxidative fibers than EDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号