首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer   总被引:11,自引:0,他引:11  
Somatic hypermethylation of CpG island sequences at GSTP1, the gene encoding the pi-class glutathione S-transferase, appears to be characteristic of human prostatic carcinogenesis. To consider the potential utility of this epigenetic alteration as a biomarker for prostate cancer, we present here a comprehensive review of the literature describing somatic GSTP1 changes in DNA from prostate cells and tissues. GSTP1 CpG island hypermethylation has been detected in prostate cancer DNA using a variety of assay techniques, including (i) Southern blot analysis (SB), after treatment with (5-m)C-sensitive restriction endonucleases, (ii) the polymerase chain reaction, following treatment with (5-m)C-sensitive restriction endonucleases (RE-PCR), (iii) bisulfite genomic sequencing (BGS), and (iv) bisulfite modification followed by the polymerase chain reaction, using primers selective for target sequences containing (5-m)C (MSP). In the majority of the case series so far reported, GSTP1 CpG island hypermethylation was present in DNA from at least 90% of prostate cancer cases. When analyses have been carefully conducted, GSTP1 CpG island hypermethylation has not been found in DNA from normal prostate tissues, or from benign prostatic hyperplasia (BPH) tissues, though GSTP1 CpG island hypermethylation changes have been detected in DNA from candidate prostate cancer precursor lesions proliferative inflammatory atrophy (PIA) and prostatic intraepithelial neoplasia (PIN). Using PCR methods, GSTP1 CpG island hypermethylation has also been detected in urine, ejaculate, and plasma from men with prostate cancer. GSTP1 CpG island hypermethylation, a somatic epigenetic alteration, appears poised to serve as a molecular biomarker useful for prostate cancer screening, detection, and diagnosis.  相似文献   

2.
Endonucleases   总被引:4,自引:0,他引:4  
Programmed cell death (PCD) involves hydrolysis of genomic DNA, which must be catalyzed by endonuclease(s) capable of digesting dsDNA. Plants have two major classes of endonucleases active towards dsDNA, Zn2+-dependent endonuclease and Ca2+-dependent endonuclease. Both classes are found among endonucleases nominated for machineries of PCD in plants. Survey of plant endonucleases in relation to PCD leads to a possibility that a different class of endonuclease reflects a different phase of PCD-associated DNA hydrolysis.  相似文献   

3.
Homing endonucleases recognize and generate a DNA double-strand break, which has been used to promote gene targeting. These enzymes recognize long DNA stretches; they are highly sequence-specific enzymes and display a very low frequency of cleavage even in complete genomes. Although a large number of homing endonucleases have been identified, the landscape of possible target sequences is still very limited to cover the complexity of the whole eukaryotic genome. Therefore, the finding and molecular analysis of homing endonucleases identified but not yet characterized may widen the landscape of possible target sequences. The previous characterization of protein-DNA interaction before the engineering of new homing endonucleases is essential for further enzyme modification. Here we report the crystal structure of I-CvuI in complex with its target DNA and with the target DNA of I-CreI, a homologue enzyme widely used in genome engineering. To characterize the enzyme cleavage mechanism, we have solved the I-CvuI DNA structures in the presence of non-catalytic (Ca2+) and catalytic ions (Mg2+). We have also analyzed the metal dependence of DNA cleavage using Mg2+ ions at different concentrations ranging from non-cleavable to cleavable concentrations obtained from in vitro cleavage experiments. The structure of I-CvuI homing endonuclease expands the current repertoire for engineering custom specificities, both by itself as a new scaffold alone and in hybrid constructs with other related homing endonucleases or other DNA-binding protein templates.  相似文献   

4.
Inactivation of the p16INK4a gene by mutation and deletion is common in head and neck squamous cell carcinoma (HNSCC). The present study demonstrates that hypermethylation of the 5 CpG islands can serve as an alternative mechanism for the inactivation of the p16INK4a gene in this tumor. We studied 11 HNSCC cell lines and 17 oral squamous cell carcinoma (OSCC) primary tumors for p16INK4a gene status by protein/mRNA and DNA genetic/epigenetic analyses to determine the incidence of its inactivation. Our study indicates that: (1) inactivation of p16 protein is frequent in HNSCC cell lines (6/11, 54.5%) and OSCC primary tumors (15/17, 88.2%), (2) inactivation of p16INK4a protein is commonly associated with the presence of gene alteration such as mutation, homozygous deletion and especially aberrant methylation, and (3) genomic sequencing of bisulfite-modified DNA shows that the carcinoma develops a heterogeneous pattern of hypermethylation.  相似文献   

5.
Cell death in mammals seems to have caspase-dependent and -independent pathways unlike that in Caenorhabditis elegans where CED-3 protease activation is the central command. A recent suggestion to define apoptosis as the caspase-dependent or caspase-committed cell death form and leave cell death committed by other pathways as just cell death was meant to categorize the apparent divergence in mammalian cell death pathways. However, we show CpG oligonucleotides (ODN) blocking caspase-dependent fas(CD95) ligand-mediated apoptosis as well as caspase-independent etoposide-mediated apoptosis and etoposide–zVAD-mediated necrosis. CpG specificity was demonstrated by reversing the CpG motif or replacing it with a methylated motif (mCpG) which failed to inhibit. CpG ODN blocked CpG-specific DNA cleavage by rare-cutting NotI restriction, which produced a megabase cleavage pattern similar to that in the fasL and etoposide cell death inductions. CpG ODN inhibition was similar to that by CpG-specific SssI methylase. A common CpG-specific commitment point preceding caspase-dependent and -independent cell death pathways was suggested. CpG-specific modulation is a key epigenetic mechanism in genomic imprinting, resisting nuclease restriction, and patterning of chromatin conformations. It is now shown to have a powerful effect modulating cell death.  相似文献   

6.
Unusual DNA/RNA structures of the C9orf72 repeat may participate in repeat expansions or pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Expanded repeats are CpG methylated with unknown consequences. Typically, quadruplex structures form by G-rich but not complementary C-rich strands. Using CD, UV and electrophoresis, we characterized the structures formed by (GGGGCC)8 and (GGCCCC)8 strands with and without 5-methylcytosine (5mCpG) or 5-hydroxymethylcytosine (5hmCpG) methylation. All strands formed heterogenous mixtures of structures, with features of quadruplexes (at pH 7.5, in K+, Na+ or Li+), but no feature typical of i-motifs. C-rich strands formed quadruplexes, likely stabilized by G•C•G•C-tetrads and C•C•C•C-tetrads. Unlike G•G•G•G-tetrads, some G•C•G•C-tetrad conformations do not require the N7-Guanine position, hence C9orf72 quadruplexes still formed when N7-deazaGuanine replace all Guanines. 5mCpG and 5hmCpG increased and decreased the thermal stability of these structures. hnRNPK, through band-shift analysis, bound C-rich but not G-rich strands, with a binding preference of unmethylated > 5hmCpG > 5mCpG, where methylated DNA-protein complexes were retained in the wells, distinct from unmethylated complexes. Our findings suggest that for C-rich sequences interspersed with G-residues, one must consider quadruplex formation and that methylation of quadruplexes may affect epigenetic processes.  相似文献   

7.
8.
M McClelland  M Nelson 《Gene》1988,74(1):169-176
Site-specific DNA methylation is known to block cleavage by a number of restriction endonucleases. We show that methylation at 'non-canonical' DNA modification sites can also block methylation by five of 13 DNA methyltransferases (MTases) tested. Furthermore, MTases and endonucleases that recognize the same nucleotide sequence can differ in their sensitivity to non-canonical methylation. In particular, BamHI endonuclease can cut 5'-GGATCm5C efficiently, whereas M.BamHI cannot methylate this modified sequence. Methyltransferase/endonuclease pairs which differ in their sensitivity to non-canonical methylation can be exploited to generate rare DNA cleavage sites. For example, we show that M.HpaII, M.BamHI, and BamHI can be used sequentially in a three-step procedure to specifically cleave DNA at the 10-bp sequence 5'-CCGGATCCGG. Several highly selective DNA cutting strategies are made possible by these sequential double methylation-blocking reactions.  相似文献   

9.
《Epigenetics》2013,8(10):1188-1199
Regulatory change has long been hypothesized to drive the delineation of the human phenotype from other closely related primates. Here we provide evidence that CpG dinucleotides play a special role in this process. CpGs enable epigenome variability via DNA methylation, and this epigenetic mark functions as a regulatory mechanism. Therefore, species-specific CpGs may influence species-specific regulation. We report non-polymorphic species-specific CpG dinucleotides (termed “CpG beacons”) as a distinct genomic feature associated with CpG island (CGI) evolution, human traits and disease. Using an inter-primate comparison, we identified 21 extreme CpG beacon clusters (≥ 20/kb peaks, empirical p < 1.0 × 10?3) in humans, which include associations with four monogenic developmental and neurological disease related genes (Benjamini-Hochberg corrected p = 6.03 × 10?3). We also demonstrate that beacon-mediated CpG density gain in CGIs correlates with reduced methylation in these species in orthologous CGIs over time, via human, chimpanzee and macaque MeDIP-seq. Therefore mapping into both the genomic and epigenomic space the identified CpG beacon clusters define points of intersection where a substantial two-way interaction between genetic sequence and epigenetic state has occurred. Taken together, our data support a model for CpG beacons to contribute to CGI evolution from genesis to tissue-specific to constitutively active CGIs.  相似文献   

10.
Regulatory change has long been hypothesized to drive the delineation of the human phenotype from other closely related primates. Here we provide evidence that CpG dinucleotides play a special role in this process. CpGs enable epigenome variability via DNA methylation, and this epigenetic mark functions as a regulatory mechanism. Therefore, species-specific CpGs may influence species-specific regulation. We report non-polymorphic species-specific CpG dinucleotides (termed “CpG beacons”) as a distinct genomic feature associated with CpG island (CGI) evolution, human traits and disease. Using an inter-primate comparison, we identified 21 extreme CpG beacon clusters (≥ 20/kb peaks, empirical p < 1.0 × 10−3) in humans, which include associations with four monogenic developmental and neurological disease related genes (Benjamini-Hochberg corrected p = 6.03 × 10−3). We also demonstrate that beacon-mediated CpG density gain in CGIs correlates with reduced methylation in these species in orthologous CGIs over time, via human, chimpanzee and macaque MeDIP-seq. Therefore mapping into both the genomic and epigenomic space the identified CpG beacon clusters define points of intersection where a substantial two-way interaction between genetic sequence and epigenetic state has occurred. Taken together, our data support a model for CpG beacons to contribute to CGI evolution from genesis to tissue-specific to constitutively active CGIs.  相似文献   

11.
Type II restriction endonucleases (REs) are widely used tools in molecular biology, biotechnology and diagnostics. Efforts to generate new specificities by structure-guided design and random mutagenesis have been unsuccessful so far. We have developed a new procedure called the methylation activity-based selection (MABS) for generating REs with a new specificity. MABS uses a unique property of bifunctional type II REs to methylate DNA targets they recognize. The procedure includes three steps: (1) conversion of a bifunctional RE into a monofunctional DNA-modifying enzyme by cleavage center disruption; (2) mutagenesis and selection of mutants with altered DNA modification specificity based on their ability to protect predetermined DNA targets; (3) reconstitution of the cleavage center's wild-type structure. The efficiency of the MABS technique was demonstrated by altering the sequence specificity of the bifunctional RE Eco57I from 5'-CTGAAG to 5'-CTGRAG, and thus generating the mutant restriction endonuclease (and DNA methyltransferase) of a specificity not known before. This study provides evidence that MABS is a promising technique for generation of REs with new specificities.  相似文献   

12.
AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves deoxyribonucleic acid (DNA) containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises an N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ∼70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ∼22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition.  相似文献   

13.
14.
15.
Tensin3 is a cytoskeletal regulatory protein that inhibits cell motility. Downregulation of the gene encoding Tensin3 (TNS3) in human renal cell carcinoma (RCC) may contribute to cancer cell metastatic behavior. We speculated that epigenetic mechanisms, e.g., gene promoter hypermethylation, might account for TNS3 downregulation. In this study, we identified and validated a TNS3 gene promoter containing a CpG island, and quantified the methylation level within this region in RCC. Using a luciferase reporter assay we demonstrated a functional minimal promoter activity for a 500-bp sequence within the TNS3 CpG island. Pyrosequencing enabled quantitative determination of DNA methylation of each CpG dinucleotide (a total of 43) in the TNS3 gene promoter. Across the entire analyzed CpG stretch, RCC DNA showed a higher methylation level than both non-tumor kidney DNA and normal control DNA. Out of all the CpGs analyzed, two CpG dinucleotides, specifically position 2 and 8, showed the most pronounced increases in methylation levels in tumor samples. Furthermore, CpG-specific higher methylation levels were correlated with lower TNS3 gene expression levels in RCC samples. In addition, pharmacological demethylation treatment of cultured kidney cells caused a 3-fold upregulation of Tensin3 expression. In conclusion, these results reveal a differential methylation pattern in the TNS3 promoter occurring in human RCC, suggesting an epigenetic mechanism for aberrant Tensin downregulation in human kidney cancer.  相似文献   

16.
17.
Restriction endonucleases protect bacterial cells against bacteriophage infection by cleaving the incoming foreign DNA into fragments. In presence of Mg2+ ions, EcoRV is able to cleave the DNA but not in presence of Ca2+, although the protein binds to DNA in presence of both metal ions. We make an attempt to understand this difference using conformational thermodynamics. We calculate the changes in conformational free energy and entropy of conformational degrees of freedom, like DNA base pair steps and dihedral angles of protein residues in Mg2+(A)-EcoRV-DNA complex compared to Ca2+(S)-EcoRV-DNA complex using all-atom molecular dynamics (MD) trajectories of the complexes. We find that despite conformational stability and order in both complexes, the individual degrees of freedom behave differently in the presence of two different metal ions. The base pairs in cleavage region are highly disordered in Ca2+(S)-EcoRV-DNA compared to Mg2+(A)-EcoRV-DNA. One of the acidic residues ASP90, coordinating to the metal ion in the vicinity of the cleavage site, is conformationally destabilized and disordered, while basic residue LYS92 gets conformational stability and order in Ca2+(S) bound complex than in Mg2+(A) bound complex. The enhanced fluctuations hinder placement of the metal ion in the vicinity of the scissile phosphate of DNA. Similar loss of conformational stability and order in the cleavage region is observed by the replacement of the metal ion. Considering the placement of the metal ion near scissile phosphate as requirement for cleavage action, our results suggest that the changes in conformational stability and order of the base pair steps and the protein residues lead to cofactor sensitivity of the enzyme. Our method based on fluctuations of microscopic conformational variables can be applied to understand enzyme activities in other protein-DNA systems.  相似文献   

18.
Silencing of the O (6)-methylguanine-DNA methyltransferase (MGMT) gene, a key to DNA repair, is involved in carcinogenesis. Recent studies have focused on DNA hypermethylation of the promoter CpG island. However, cases showing silencing with DNA hypomethylation certainly exist, and the mechanism involved is not elucidated. To clarify this mechanism, we examined the dynamics of DNA methylation, histone acetylation, histone methylation, and binding of methyl-CpG binding proteins at the MGMT promoter region using four MGMT negative cell lines with various extents of DNA methylation. Histone H3K9 di-methylation (H3me2K9), not tri-methylation, and MeCP2 binding were commonly seen in all MGMT negative cell lines regardless of DNA methylation status. 5Aza-dC, but not TSA, restored gene expression, accompanied by a decrease in H3me2K9 and MeCP2 binding. In SaOS2 cells with the most hypomethylated CpG island, 5Aza-dC decreased H3me2K9 and MeCP2 binding with no effect on DNA methylation or histone acetylation. H3me2K9 and DNA methylation were restricted to in and around the island, indicating that epigenetic modification at the promoter CpG island is critical. We conclude that H3me2K9 and MeCP2 binding are common and more essential for MGMT silencing than DNA hypermethylation or histone deacetylation. The epigenetic mechanism leading to silent heterochromatin at the promoter CpG island may be the same in different types of cancer irrespective of the extent of DNA methylation.  相似文献   

19.
5-Hydroxymethylcytosine (5-hmC) is a newly discovered DNA base in mammalian cells that is believed to be another important epigenetic modification. Here we report the use of a methylation-insensitive restriction enzyme TaqαI coupled with selective chemical labeling of 5-hmC in a combined glycosylation restriction analysis (CGRA) to detect 5-hmC in TCGA sequences. This method, differentiates fully versus hemi-hydroxymethylated cytosine in the CpG dinucleotide, adds a new tool to facilitate biological studies of 5-hmC.  相似文献   

20.
Restriction endonucleases have proven to be especially resistant to engineering altered substrate specificity, in part, due to the requirement of a cognate DNA methyltransferase for cellular DNA protection. The thermophilic restriction endonuclease BstYI recognizes and cleaves all hexanucleotide sequences described by 5'-R GATCY-3' (where R=A or G and Y=C or T). The recognition of a degenerate sequence is a relatively common feature of the more than 3000 characterized restriction endonucleases. However, very little is known concerning substrate recognition by such an enzyme. Our objective was to investigate the substrate specificity of BstYI by attempting to increase the specificity to recognition of only AGATCT. By a novel genetic selection/screening process, two BstYI variants were isolated with a preference for AGATCT cleavage. A fundamental element of the selection process is modification of the Escherichia coli host genomic DNA by the BglII N4-cytosine methyltransferase to protect AGATCT sites. The amino acid substitutions resulting in a partial change of specificity were identified and combined into one superior variant designated NN1. BstYI variant NN1 displays a 12-fold preference for cleavage of AGATCT over AGATCC or GGATCT. Moreover, cleavage of the GGATCC sequence is no longer detected. This study provides further evidence that laboratory evolution strategies offer a powerful alternative to structure-guided protein design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号