首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) were purified to homogeneity from human postheparin plasma. Molecular, catalytic and immunological properties of the purified enzymes were investigated. The native molecular weights of LPL and HTGL were 67,200 and 65,500, respectively, by gel chromatography. The subunit molecular weights of LPL and HTGL were 60,600 and 64,600, respectively, suggesting that these enzymes are catalytically active in a monomeric form. In addition, the purified LPL and HTGL each gave a single protein band when they were detected as glycoproteins with a probe of concanavalin A. The purified enzyme preparations were free of detectable antithrombin III by Western blot analysis. Catalytic properties of the purified enzymes were examined using triolein-gum arabic emulsion and triolein particles stabilized with phospholipid monolayer as substrates. LPL catalyzed the complete hydrolysis of triolein to free oleate and monooleate in the presence of apolipoprotein C-II. Apparent Km values for triolein and apolipoprotein C-II were 1.0 mM and 0.6 microM, and Vmax was 40.7 mmol/h per mg. HTGL hydrolyzed triolein substrate at a rate much slower than LPL, and produced mainly free oleate with little monooleate. Apparent Km and Vmax values were 2.5 mM and 16.1 mmol/h per mg, respectively. Polyclonal antibodies were developed against the purified LPL and HTGL. The purity and specificity of these antisera were ascertained by immunotitration, Ouchterlony double diffusion and Western blot analyses. The anti-human LPL and anti-human HTGL antiserum specifically reacted with the corresponding either native or denaturated enzyme, indicating that two enzymes were immunologically distinct. We developed an assay system for LPL and HTGL in human PHP by selective immunoprecipitation of each enzyme with the corresponding antiserum.  相似文献   

2.
An in vitro heparin release of lipoprotein lipase (LPL) from whole blood, mainly from monocytes, was demonstrated by (1) the time-course of lipolytic activity with the presence of 10 U/ml heparin at 37 degrees C, (2) the distribution of LPL activity in monocyte and lymphocyte fractions, (3) an immuno-inactivation with anti-LPL immunoglobulin (IgG) and (4) responses to various compounds such as NaCl, protamine sulfate, heparin, and serum activator. The in vitro heparin-releasable LPL activity from blood correlated well with the LPL activity of postheparin plasma obtained from both normolipidemic and hyperlipidemic rabbits. Studies in humans revealed sex- and age-related variations in the in vitro heparin-releasable LPL from monocytes in the blood of 134 normal subjects and 24 hypertriglyceridemic subjects: The mean LPL activity was significantly higher in normal females over the age of 30, than in the corresponding males. In the hypertriglyceridemic group, the LPL activity was also higher in females than in males, but it was not significant. The in vitro heparin-releasable LPL activity from monocytes in blood was comparable to the LPL activity derived from adipose tissue and postheparin plasma, and thus it reflects lipoprotein metabolism.  相似文献   

3.
A large family is reported with familial hepatic triglyceride lipase (HTGL) deficiency and with the coexistence of reduced lipoprotein lipase (LPL) similar to the heterozygote state of LPL deficiency. The proband was initially detected because of hypertriglyceridemia and chylomicronemia. He was later demonstrated to have beta-VLDL despite an apo E3/E3 phenotype and the lack of stigmata of type III hyperlipoproteinemia. The proband had no HTGL activity in postheparin plasma. Two of his half-sisters had very low HTGL activity (39 and 31 nmol free fatty acids/min/ml; normal adult female greater than 44). His son and daughters had decreased HTGL activity (normal male and preadolescent female greater than 102), which would be expected in obligate heterozygotes for HTGL deficiency. Low HTGL activity was associated with LDL particles which were larger and more buoyant. Several family members, including the proband, had reduced LPL activity and mass less than that circumscribed by the 95% confidence-interval ellipse for normal subjects and had hyperlipidemia similar to that described in heterozygote relatives of patients with LPL deficiency. All the sibs with hyperlipidemia had a reduced LPL activity and mass, while subjects with isolated reduced HTGL (with normal LPL activity) had normal lipid phenotypes. Analysis of genomic DNA from these subjects by restriction-enzyme digestion revealed no major abnormalities in the structure of either the HTGL or the LPL gene. Compound heterozygotes for HTGL and LPL deficiency show lipoprotein physiological characteristics typical for HTGL deficiency, while their variable lipid phenotype is typical for LPL deficiency.  相似文献   

4.
To determine the putative metabolic relevance of preheparin versus postheparin lipoprotein lipases, the relationships of both pre- and postheparin lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) to plasma triglycerides, low density lipoprotein (LDL) cholesterol, and high density lipoprotein (HDL) cholesterol were determined in 93 men. Relationships of preheparin lipases to their respective postheparin lipases were also examined. Although relationships between the preheparin lipases and plasma triglycerides and HDL cholesterol were not apparent, both preheparin LPL (rs = 0.306, P = 0.0036) and HTGL (rs = 0.348, P = 0.0008) correlated with LDL cholesterol, a relationship not seen with either postheparin lipase. Both postheparin LPL (rs = 0.515, P = 0.0001) and postheparin HTGL (rs = -0.228, P = 0.0028), however, correlated with HDL cholesterol. In addition, postheparin LPL was inversely correlated with postheparin HTGL (rs = -0.363, P = 0.0003), whereas the relationship between preheparin LPL and preheparin HTGL was positive (rs = 0.228, P = 0.0009). Overall, these data point to differences between pre- and postheparin lipases in their relationships to lipoproteins, and one to another. The relationships of LDL cholesterol to both preheparin LPL and HTGL suggest that displacement of active forms of both lipases from their endothelial binding sites may mark triglyceride-rich lipoproteins or their remnants for metabolic pathways that lead to LDL.  相似文献   

5.
OBJECTIVE: The aim of this study was to determine how lipoprotein lipase (LPL) and hepatic triacylglycerol lipase (HTGL) activity relate to serum adiponectin levels. RESEARCH DESIGN AND METHODS: Fifty-five hyperlipidemic Japanese men were recruited for this study. LPL and HTGL activity in post-heparin plasma (PHP) was measured using Triton X-100 emulsified-[14C] triolein. The remaining activity in the presence of 1M NaCl was defined as HTGL activity. Serum adiponectin levels were determined by an enzyme-linked immunosorbent assay system. RESULT: LPL activity had a positive relationship with HDL2, but had no relation with HDL3, while HTGL had positive relationship with HDL3, but had no relationship with HDL2. LPL activity showed a positive relationship [r = 0.345, p = 0.010] to serum adiponectin levels, while and HTGL activity showed an inverse relationship [r = - 0.365 p = 0.006]. Multiple regression analysis with LPL and HTGL as dependent variables and age, BMI, serum adiponectin and the homeostasis model assessment of insulin resistance (HOMA-IR) as independent variables showed LPL and HTGL's association to adiponectin did not persist after adjustments for these covariants. However, the association of LPL activity to HOMA-IR was found to persist after adjustments of age, BMI, and serum adiponectin. CONCLUSIONS: There was a co-linearity between insulin sensitivity and adiponectin as well as insulin sensitivity and LPL/HTGL activity.  相似文献   

6.
Macrophages from both rodent and human sources have been shown to produce lipoprotein lipase (LPL), the enzyme activity of which can be measured in culture media and in cellular homogenates. The studies reported here show the presence of LPL on the surface of human monocyte-derived macrophages. An inhibitory monoclonal antibody to human LPL was used for cellular and immunoelectron microscopy studies. This antibody is a competitive inhibitor of LPL hydrolysis of triacylglycerol but does not inhibit LPL hydrolysis of a water-soluble substrate, p-nitrophenyl acetate. Furthermore, when postheparin plasma was mixed with monoclonal antibody prior to gel filtration on 6% agarose, the LPL activity eluted with the lipoproteins and was not inhibited by the antibody. These studies suggest that the antibody recognized the lipid/lipoprotein binding site of the LPL molecule. Membrane-bound LPL was demonstrated on human monocyte-derived macrophages using colloidal gold-protein A to detect the monoclonal antibody to LPL. The surface colloidal gold was randomly distributed with a surface density of 56,700 gold particles per cell. Control cells cultured in heparin-containing media (10 units/ml) or cells reacted with anti-hepatic triacylglycerol lipase monoclonal IgG or nonimmune mouse IgG did not exhibit membrane binding of protein A-gold. Macrophages were incubated with control and monoclonal anti-LPL IgGs and 125I-labeled anti-mouse IgG F(ab')2. Heparin-releasable membrane-bound anti-LPL antibody was demonstrated. These studies demonstrate the presence of LPL on the surface of human monocyte-derived macrophages, such that the LPL is oriented with its lipid-binding portion (recognized by this antibody) exposed. Membrane-associated LPL may be important in the interaction and subsequent uptake of lipid and lipoproteins by macrophages and in the generation of atherosclerotic foam cells.  相似文献   

7.
Lipoprotein lipase (LPL) and hepatic triglyceride lipase (H-TGL) are lipolytic activities found in postheparin plasma. A simple and precise method for the direct determination of LPL in postheparin plasma is described. Pre-incubations of this plasma (45--60 min at 26 degrees C) with sodium dodecyl sulfate (35--50 mM) in 0.2 M Tris-HCl buffer, pH 8.2, results in the inactivation of H-TGL, while leaving LPL fully active. Direct determination of H-TGL is done in a separate aliquot of the same postheparin plasma sample using previously reported assay conditons that do not measure LPL. The sodium dodecyl sulfate-resistant lipolytic activity has the characteristics of LPL as judged by a) its activation by serum and by apolipoprotein C-II; b) its inactivation (over 90%) by 0.75 M NaCl; and c) its inactivation by a specific antiserum. No sodium dodecyl sulfate-resistant activity was found in postheparin plasma from a patient with LPL deficiency (primary type I hyperlipoproteinemia). An excellent correlation of values was obtained (r = 0.99) for 30 samples assayed after sodium dodecyl sulfate treatment and after immuno-inactivation of H-TGL. The intra-assay coefficient of variation was +/- 11% and 4% before and after normalization of values, respectively.  相似文献   

8.
Anti-lipoprotein lipase sera injected intravenously in roosters blocked quantitatively the catabolism of very low density lipoprotein (VLDL) triglyceride. Antibodies were produced in rabbits immunized with highly purified lipoprotein lipase (LPL, glycerol ester hydrolase, E C 3.1.1.3) prepared from chicken adipose tissue. Following anti-LPL serum injection there was a linear increase in plasma triglyceride concentration. The rate of entry of triglyceride in plasma was estimated from the rate of triglyceride accumulation in the plasma of animals injected with anti-LPL serum, or from the disappearance curve of biologically labelled VLDL. In instances where both measurements were conducted in the same animals there was very close agreement between the two procedures. Inhibition of VLDL triglyceride catabolism of anti-LPL serum provided a way to characterize newly secreted VLDL that exhibited a broad spectrum of particle sizes with a median of 625 A degrees. They contained 76.2 +/- 1.2% triglyceride and had a high ratio of free to ester cholesterol (2.46 +/- 0.45). In control VLDL samples there was 46.1% triglyceride, and the ratio of free to ester cholesterol was 1.19. The complete inhibition of triglyceride removal by an antiserum prepared against adipose tissue LPL demonstrates that the NaCl-inhibited, serum-activated lipase prepared by affinity chromatography on heparin-Sepharose and concanavalin A-Sepharose columns is the enzyme responsible in vivo for the catabolism of VLDL triglyceride. Further, the kinetics of triglyceride accumulation in the plasma provide evidence that the site of degradation of VLDL triglyceride is within the plasma compartment.  相似文献   

9.
Appraisal of hepatic lipase and lipoprotein lipase activities in mice   总被引:1,自引:0,他引:1  
A variety of methods are currently used to analyze HL and LPL activities in mice. In search of a simple methodology, we analyzed mouse preheparin and postheparin plasma LPL and HL activities using specific polyclonal antibodies raised in rabbit against rat HL (anti-HL) and in goat against rat LPL (anti-LPL). As an alternative, we analyzed HL activity in the presence of 1 M NaCl, a condition known to inhibit LPL activity in humans. The assays were validated using plasma samples from wild-type and HL-deficient C57BL/6 mice. We now show that the use of 1 M NaCl for the inhibition of plasma LPL activity in mice may generate incorrect measurements of both LPL and HL activities. Our data indicate that HL can be measured directly, without heparin injection, in preheparin plasma, because virtually all HL is present in an unbound form circulating in plasma. In contrast, measurable LPL activity is present only in postheparin plasma. Both HL and LPL can be measured using the same assay conditions (low salt and the presence of apolipoprotein C-II as an LPL activator). Total lipase activity in postheparin plasma minus preheparin HL activity reflects LPL activity. Specific antibodies are not required.  相似文献   

10.
A direct, noncompetitive immunoassay for chicken lipoprotein lipase (LPL) was developed. Antibodies to LPL were purified by immunoadsorption chromatography of goat antisera on an LPL-Sepharose column. Purified anti-LPL immunoglobulins were coupled covalently to hydrophilic polyacrylamide beads by a carbodiimide reagent. An excess amount of these beads was incubated with the sample or the standard to be assayed. The amount of LPL immobilized by the beads was then detected by an excess amount of 125I-labeled anti-LPL immunoglobulin. A linear relationship was obtained between the radioactivity bound and the amount of highly purified LPL used as a standard. The range of the assay was from 0.1-1.1 ng LPL. The assay was specific for chicken LPL and showed no cross-reactivity with liver lipase. It does not distinguish heat-inactivated from catalytically active enzyme species. This assay should be useful in studies of lipoprotein lipase where both catalytic activity and enzyme mass need to be quantitated.  相似文献   

11.
Hepatic triglyceride lipase (H-TGL) was purified from human postheparin plasma. Specific monoclonal antibodies (MAbs) were produced that discriminate between active (native) and inactive (denatured) forms of the enzyme. Mice immunized with native H-TGL resulted in MAbs that recognized only the native protein. The antibodies did not react with H-TGL treated with 1% sodium dodecyl sulfate or heated at 60 degrees C. The loss of immunoreactivity with heating correlated directly with the loss of enzyme activity and there was a corresponding increase in immunoreactivity with the MAbs prepared against the denatured enzyme. Western blot analysis of postheparin plasma with the MAbs against denatured H-TGL gave a single protein band of 65 kD; preheparin plasma showed no detectable immunoreactivity with either MAb. These immunochemical studies suggest that there are no circulating active or inactive forms of H-TGL in man. Furthermore, the MAbs provide the necessary reagents for development of immunoassays for H-TGL.  相似文献   

12.
The effects of saturated and polyunsaturated dietary fat on the lipolytic activity of post-heparin plasma, lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) were studied in the rat. The lipolytic activity was studied from 0 to 60 min using labelled chylomicrons as the substrate. Triacylglycerol hydrolysis rate was higher for the plasma of rats fed high fat diets (14% fat by weight). Chylomicrons of rats fed saturated or unsaturated fats were hydrolyzed at the same rate within the first 15 min but afterwards hydrolysis of chylomicrons of rats fed saturated fat was slower. The activities of LPL and HTGL were increased by high fat diets. Unsaturated fat increased more LPL activity than saturated fat conversely, HTGL activity was enhanced more by saturated fat than by unsaturated fat.  相似文献   

13.
14.
The objective of this study was to investigate how a conformational change in lipoprotein lipase (LPL) affects its molecular functions. Monoclonal antibodies (MAbs) were raised against purified bovine milk lipoprotein lipase. MAb 5D2 bound to human and bovine LPL both before and after denaturation of LPL. MAb 5F9 also recognized LPL from both species, but only after denaturation of the antigen, suggesting that a conformational change led to exposure of a previously hidden epitope. The MAbs were used in two sandwich enzyme-linked immunosorbent assays (ELISAs). One ELISA used the same MAb (5D2) to coat the plate and detect the bound antigen. This ELISA thus required the same epitope to be present in duplicate for detection (as would be the case with a dimeric antigen). The second ELISA used MAb 5F9 to coat the plate and MAb 5D2 to detect the antigen. This ELISA detected LPL only after it had been denatured. By measuring the same sample before and after denaturation with guanidine hydrochloride (GuHCl) in the 5F9 ELISA, and subtracting one from the other, a measure of native LPL was obtained. In inactivation experiments using human LPL, activity and the measure of LPL mass obtained in the 5D2 ELISA decreased and were related inversely to the measured mass obtained in the 5F9 ELISA which increased, indicating that loss of activity is closely linked to dimer dissociation and loss of native conformation. The effect of conformation and dimeric structure on LPL-heparin interaction was studied by heparin-Sepharose chromatography.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Intravenous injections of anti-lipoprotein lipase serunis quantitatively block the catabolism of very low density lipoprotein (VLDL) and portomicron triglyceride and specifically inhibit triglyceride transport into ovarian follicles. The immunological studies presented provide information on the site of action of lipoprotein lipase (LPL). In the anti-LPL serum-treated animals initial plasma triglyceride accumulation occurs at the time of antiserum injection. This instantaneous inhibition of triglyceride removal provides direct evidence that the functional LPL responsible for VLDL and portomicron triglyceride hydrolysis is located in sites within the plasma compartment readily accessible to immunoglobulins. In vitro immunological studies show that the adipose, heart, ovarian, and liver LPL share common immunological determinants. Biochemical studies on highly purified heart and adipose LPL suggest that these enzymes have identical protein moieties.  相似文献   

16.
Oral nicotine induces an atherogenic lipoprotein profile   总被引:3,自引:0,他引:3  
Male squirrel monkeys were used to evaluate the effect of chronic oral nicotine intake on lipoprotein composition and metabolism. Eighteen yearling monkeys were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine primates given liquid diet supplemented with nicotine at 6 mg/kg body wt/day. Animals were weighed biweekly, plasma lipid, glucose, and lipoprotein parameters were measured monthly, and detailed lipoprotein composition, along with postheparin plasma lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) activity, was assessed after 24 months of treatment. Although nicotine had no effect on plasma triglyceride or high density lipoproteins (HDL), the alkaloid caused a significant increase in plasma glucose, cholesterol, and low density lipoprotein (LDL) cholesterol plus protein while simultaneously reducing the HDL cholesterol/plasma cholesterol ratio and animal body weight. Levels of LDL precursors, very low density (VLDL) and intermediate density (IDL) lipoproteins, were also lower in nicotine-treated primates while total postheparin lipase (LPL + HTGL) activity was significantly elevated. Our data indicate that long-term consumption of oral nicotine induces an atherogenic lipoprotein profile (increases LDL, decreases HDL/total cholesterol ratio) by enhancing lipolytic conversion of VLDL to LDL. These results have important health implications for humans who use smokeless tobacco products or chew nicotine gum for prolonged periods.  相似文献   

17.
Plasma clearance of triglyceride-rich lipoproteins appears decreased in aged humans and rats and may be due to lowered activities of the lipases responsible for lipid degradation. This study was designed to examine differential effects of age and diet on lipoprotein lipase (LPL) activity of adipose and heart tissue and hepatic triglyceride lipase (HTGL) activity. LPL and HTGL activities were examined in 3- and 13-month-old Sprague-Dawley rats after they had consumed either a high-carbohydrate or a high-fat diet for 14 days. The data were analyzed for age and diet differences by two-way analysis of variance. Although animals in the two age groups consumed diets of equal caloric content, the older rats gained less weight. Rats on the high-carbohydrate diet consumed less calories and gained less weight than the fat fed rats in both age groups. Neither heart nor adipose tissue LPL activity differed when examined for age or diet. HTGL activity levels, while not affected by age, were higher in the carbohydrate fed rats (P = 0.014). Regardless of age group, fasting plasma cholesterol levels were significantly higher in the carbohydrate-fed rats than fat-fed rats (P = 0.002). Thus, the diet effect was much stronger than the age effect for HTGL and plasma cholesterol levels.  相似文献   

18.
Apolipoprotein E (apoE) is the primary recognition signal on triglyceride-rich lipoproteins responsible for interacting with low density lipoprotein (LDL) receptors and LDL receptor-related protein (LRP). It has been shown that lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) promote receptor-mediated uptake and degradation of very low density lipoproteins (VLDL) and remnant particles, possibly by directly binding to lipoprotein receptors. In this study we have investigated the requirement for apoE in lipase-stimulated VLDL degradation. We compared binding and degradation of normal and apoE-depleted human VLDL and apoE knockout mouse VLDL in human foreskin fibroblasts. Surface binding at 37 degrees C of apoE knockout VLDL was greater than that of normal VLDL by 3- and 40-fold, respectively, in the presence of LPL and HTGL. In spite of the greater stimulation of surface binding, lipase-stimulated degradation of apoE knockout mouse VLDL was significantly lower than that of normal VLDL (30, 30, and 80%, respectively, for control, LPL, and HTGL treatments). In the presence of LPL and HTGL, surface binding of apoE-depleted human VLDL was, respectively, 40 and 200% of normal VLDL whereas degradation was, respectively, 25 and 50% of normal VLDL. LPL and HTGL stimulated degradation of normal VLDL in a dose-dependent manner and by a LDL receptor-mediated pathway. Maximum stimulation (4-fold) was seen in the presence LPL (1 microgram/ml) or HTGL (3 microgram/ml) in lovastatin-treated cells. On the other hand, degradation of apoE-depleted VLDL was not significantly increased by the presence of lipases even in lovastatin-treated cells. Surface binding of apoE-depleted VLDL to metabolically inactive cells at 4 degrees C was higher in control and HTGL-treated cells, but unchanged in the presence of LPL. Degradation of prebound apoE-depleted VLDL was only 35% as efficient as that of normal VLDL. Surface binding of apoE knockout or apoE-depleted VLDL was to heparin sulfate proteoglycans because it was completely abolished by heparinase treatment. However, apoE appears to be a primary determinant for receptor-mediated VLDL degradation.Our studies suggest that overexpression of LPL or HTGL may not protect against lipoprotein accumulation seen in apoE deficiency.  相似文献   

19.
M. H. Tan 《CMAJ》1978,118(6):675-680
Hypertriglyceridemia, a risk factor for premature atherosclerosis, may result from decreased use of plasma triglycerides by tissues. The removal of triglycerides is mediated by the enzyme lipoprotein lipase (LPL). Heparin releases LPL from tissues and post-heparin plasma lipolytic activity (PHLA) has been extensively used to elucidate the mechanism of hypertriglyceridemia in various diseases. There is evidence to show that postheparin plasma contains enzymes other than LPL. Hence data on total PHLA are difficult to interpret. Availability of assays for the LPL component of PHLA has clarified equivocal findings in certain hypertriglyceridemic states. However, the LPL component is also heterogeneous. The LPL "isoenzymes" from various extrahepatic tissues behave differently under various metabolic conditions. Therefore, to understand properly the LPL system it is necessary to study the specific tissue LPL. Furthermore, the serum activator for LPL is now characterized. Its importance is evidenced by the recent discovery of a hypertriglyceridemic patient deficient in this apoprotein.  相似文献   

20.
To address the question whether an increase in insulinemia and/or glycemia affects the total activity of lipoprotein lipase (LPL) in circulation, the enzyme activity was measured after periods of hyperinsulinemia (HI), hyperglycemia (HG), and combined hyperinsulinemia and hyperglycemia (HIHG) induced by euglycemic hyperglycemic clamp, hyperglycemic clamp with the infusion of somatostatin to inhibit endogenous insulin secretion, and hyperglycemic clamp, respectively. The results obtained were compared to those after saline infusion (C). Twelve healthy normolipidemic and non-obese men with normal glucose tolerance were included in the study. At the end of each clamp study, LPL activity was determined first in vivo using an intravenous fat tolerance test and then in vitro in postheparin plasma. Whereas isolated HI had no effect on LPL activity in postheparin plasma, both HG and HIHG reduced LPL activity to 60 % and 56 % of that observed after saline infusion. Similarly, the k2 rate constant determined in intravenous fat tolerance test was reduced to 95 %, 84 %, and 54 % after periods of HI, HG, and HIHG, respectively. The activity of hepatic lipase, another lipase involved in lipoprotein metabolism, was not affected by hyperinsulinemia and/or hyperglycemia. In conclusion, our data suggest that hyperglycemia per se can downregulate the total LPL activity in circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号