首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
Non-oxidative metabolism of ethanol via fatty acid ethyl ester synthase is present in those extrahepatic organs most commonly damaged by alcohol abuse. DEAE-cellulose chromatography of human myocardial cytosol at pH 8.0 separated synthase I, minor and major activities, eluting at conductivities of 5, 7 and 11 mS, respectively. The major synthase was purified 8900-fold to homogeneity by sequential gel permeation, hydrophobic interaction, and anti-human albumin affinity-chromatographies with an overall yield of 25%. SDS-PAGE showed a single polypeptide with a molecular mass of 26 kDa and gel permeation chromatography under nondenaturing conditions indicated a molecular mass of 54 kDa for the active enzyme. The purified enzyme catalyzed ethyl ester synthesis at the highest rates with unsaturated octadecanoic fatty acid substrates (Vmax = 100 and 65 nmol/mg/h for oleate and linoleate, respectively). Km values for oleate, linoleate, arachidonate, palmitate and stearate were 0.22 mM, 0.20 mM, 0.13 mM, 0.18 mM and 0.12 mM, respectively. Thus, human heart fatty acid ethyl ester synthase (major form) is a soluble dimeric enzyme comprised or two identical, or nearly identical, subunits (Mr = 26000).  相似文献   

2.
Wax monoesters are synthesized by the esterification of fatty alcohols and fatty acids. A mammalian enzyme that catalyzes this reaction has not been isolated. We used expression cloning to identify cDNAs encoding a wax synthase in the mouse preputial gland. The wax synthase gene is located on the X chromosome and encodes a member of the acyltransferase family of enzymes that synthesize neutral lipids. Expression of wax synthase in cultured cells led to the formation of wax monoesters from straight chain saturated, unsaturated, and polyunsaturated fatty alcohols and acids. Polyisoprenols also were incorporated into wax monoesters by the enzyme. The wax synthase had little or no ability to synthesize cholesteryl esters, diacylglycerols, or triacylglycerols, whereas other acyltransferases, including the acyl-CoA:monoacylglycerol acyltransferase 1 and 2 enzymes and the acyl-CoA:diacylglycerol acyltransferase 1 and 2 enzymes, exhibited modest wax monoester synthesis activities. Confocal light microscopy indicated that the wax synthase was localized in membranes of the endoplasmic reticulum. Wax synthase mRNA was abundant in tissues rich in sebaceous glands such as the preputial gland and eyelid and was present at lower levels in other tissues. Coexpression of cDNAs specifying fatty acyl-CoA reductase 1 and wax synthase led to the synthesis of wax monoesters. The data suggest that wax monoester synthesis in mammals involves a two step biosynthetic pathway catalyzed by fatty acyl-CoA reductase and wax synthase enzymes.  相似文献   

3.
C1-THF (5,6,7,8-tetrahydrofolate) synthase is a trifunctional protein catalyzing the sequential reactions specified by the enzymes 10-formyl-THF synthetase (EC 6.3.4.3), 5,10-methenyl-THF cyclohydrolase (EC 3.5.4.9), and 5,10-methylene-THF dehydrogenase (EC 1.5.1.5). These three activities supply the activated one-carbon units required for the biosynthesis of purines, thymidylate, the amino acids histidine and methionine, the vitamin pantothenic acid, and the formyl group of mitochondrial fMet-tRNAfMet. Extracts of Saccharomyces cerevisiae whose growth is dependent on the three activities of C1-THF synthase contain 2-3 times the level of enzyme activity of extracts from cells grown under conditions where they are independent of this enzyme. Repression of C1-THF synthase activity requires the simultaneous presence of adenine, histidine, methionine, and pantothenic acid. Starvation of the cells for any one of these nutrients leads to derepression of the enzyme. Drug-induced folate starvation also leads to derepression of enzyme activity. The response to changing nutritional conditions occurs within 1 h and is due to changes in the steady-state concentration of C1-THF synthase enzyme, rather than to activation or deactivation of a pre-existing pool of enzyme. Determination of the amount of C1-THF synthase mRNA under the various growth conditions by an in vitro translation/immunoprecipitation assay indicates that regulation of the enzyme occurs predominantly at a pretranslational level since steady-state levels of C1-THF synthase mRNA are 2-3-fold higher in derepressed cells than in repressed cells.  相似文献   

4.
Malic enzyme [L-malate-NADP oxidoreductase (decarboxylating), EC 1.1.1.40] and fatty acid synthase activities were barely detectable in the uropygial gland of duck embryos until 4 or 5 days before hatching, when they began to increase. These activities increased about 30- and 140-fold, respectively, by the day of hatching. Malic enzyme and fatty acid synthase activities were also very low in embryonic liver. However, hepatic malic enzyme activity did not increase until the newly hatched ducklings were fed. Hepatic fatty acid synthase began to increase the day before hatching and the rate of increase in enzyme activity accelerated markedly when the newly hatched ducklings were fed. Starvation of newly hatched or 12-day-old ducklings had no effect on the activities of malic enzyme and fatty acid synthase in the uropygial gland but markedly inhibited these activities in liver. Changes in the concentrations of both enzymes and in the relative synthesis rates of fatty acid synthase correlated with enzyme activities in both uropygial gland and liver. Developmental patterns for sequence abundance of malic enzyme and fatty acid synthase mRNAs in uropygial gland and liver were similar to those for their respective enzyme activities. Starvation of 4-day-old ducklings had no significant effect on the abundance of these mRNAs in uropygial gland but caused a pronounced decrease in their abundance in liver. It is concluded that developmental and nutritional regulation of these enzymes is tissue specific and occurs primarily at a pretranslational level in both uropygial gland and liver.  相似文献   

5.
Phosphoglycerate mutase and bisphosphoglycerate synthase (mutase) can both be phosphorylated by either glycerate-1,3-P2 or glycerate-2,3-P2 to form phosphohistidine enzymes. The present study uses a rapid quench procedure to determine if, for each enzyme, the formation of the phosphorylated enzyme and phosphate transfer from the enzyme can occur at rates consistent with the overall reactions. With bisphosphoglycerate synthase from horse red blood cells (glycerate-1,3-P2 leads to glycerate-2,3-P2) at pH 7.5, 25 degrees, phosphorylation of the enzyme appears rate-limiting, k = 13.5 s-1, compared with kcat = 12.5 s-1 for the overall synthase rate. Phosphoryl transfer from the enzyme to phosphoglycerate occurs at 38 s-1 at 4 degrees and was too fast to measure at 25 degrees. With chicken muscle phosphoglycerate mutase the half-times were too short to measure under optimal conditions. The rate of enzyme phosphorylation by glycerate-2,3-P2 at pH 5.5, 4 degrees, could account for the overall reaction rate of 170 s-1. The rate of phosphoryl transfer from the enzyme to glycerate-3-P was too rapid to measure under the same conditions. It is concluded that the phosphorylated enzymes have kinetic properties consistent with their participation as intermediates in the reactions catalyzed by these enzymes.  相似文献   

6.
The effects of unsaturated fatty acids on the activities of peroxisomal enzymes of Tetrahymena pyriformis were investigated. When saturated fatty acids and the corresponding unsaturated fatty acids (C18) were added to the culture medium at 0.05%, the activities of peroxisomal enzymes [fatty acyl-CoA oxidase (FAO), carnitine acetyltransferase (CAT), isocitrate lyase (ICL), and malate synthase (MS)] were significantly increased. The order of effectiveness was linoleic acid greater than oleic acid greater than stearic acid. However, alpha-linolenic acid and gamma-linolenic acid at the same concentration were lethal to the cells. The inhibitory effect on growth disappeared upon addition of an antioxidant, alpha-tocopherol. Lipid peroxides derived from unsaturated fatty acids induced marked cell lysis. In the presence of a low concentration (0.005%) of linolenic acid the production of lipid peroxide was lower and no inhibitory effect on the growth was observed, while the activities of peroxisomal enzymes participating in lipid metabolism and that of catalase were significantly increased. These results indicate that the peroxisomal enzyme systems related to the beta-oxidations of fatty acids and the glyoxylate cycle are regulated by unsaturated long-chain fatty acids, including linolenic acid, at low concentrations, as well as by saturated fatty acid in the medium.  相似文献   

7.
In order to determine the regulation mechanisms of ergosterol biosynthesis in yeast, we developed growth conditions leading to high or limiting ergosterol levels in wild type and sterol-auxotrophic mutant strains. An excess of sterol is obtained in anaerobic sterol-supplemented cultures of mutant and wild type strains. A low sterol level is obtained in aerobic growth conditions in mutant strains cultured with optimal sterol supplementation and in wild type strain deprived of pantothenic acid, as well as in anaerobic cultures without sterol supplementation. Measurements of the specific activities of acetoacetyl-CoA thiolase, HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) synthase and HMG-CoA reductase (the first three enzymes of the pathway), show that in cells deprived of ergosterol, acetoacetyl-CoA thiolase and HMG-CoA synthase are generally increased. In an excess of ergosterol, in anaerobiosis, the same enzymes are strongly decreased. A 5-10-fold decrease is observed for acetoacetyl-CoA thiolase and HMG-CoA synthase. In contrast, HMG-CoA reductase is only slightly affected by these conditions. These results show that ergosterol could regulate its own synthesis, at least partially, by repression of the first two enzymes of the pathway. Our results also show that exogenous sterols, even if strongly incorporated by auxotrophic mutant cells, cannot suppress enzyme activities in aerobic growth conditions. Measurement of specific enzyme activities in mutant cells also revealed that farnesyl pyrophosphate thwarts the enhancement of the activities of the two first enzymes.  相似文献   

8.
The last reaction in the biosynthesis of brassinolide has been examined enzymatically. A microsomal enzyme preparation from cultured cells of Phaseolus vulgaris catalyzed a conversion from castasterone to brassinolide, indicating that castasterone 6-oxidase (brassinolide synthase) is membrane associated. This enzyme preparation also catalyzed the conversions of 6-deoxocastasterone and typhasterol to castasterone which have been reported to be catalyzed by cytochrome P450s, CYP85A1 of tomato and CYP92A6 of pea, respectively. The activities of these enzymes require molecular oxygen as well as NADPH as a cofactor. The enzyme activities were strongly inhibited by carbon monoxide, an inhibitor of cytochrome P450, and this inhibition was recovered by blue light irradiation in the presence of oxygen. Commercial cytochrome P450 inhibitors including cytochrome c, SKF 525A, 1-aminobenzotriazole and ketoconazole also inhibited the enzyme activities. The present work presents unanimous enzymological evidence that cytochrome P450s are responsible for the synthesis of brassinolide from castasterone as well as of castasterone from typhasterol and 6-deoxocastasterone, which have been deemed activation steps of BRs.  相似文献   

9.
Glyoxylate cycle in Mucor racemosus.   总被引:1,自引:0,他引:1       下载免费PDF全文
The dimorphic phycomycete Mucor racemosus was grown in media containing acetate, glutamate, and peptone as carbon sources. The component enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase, were present under these conditions throughout the growth cycles. Highest specific activities for each enzyme were found in media with acetate as the carbon source. In an enriched peptone medium containing glucose, neither activity was detected until glucose was exhausted from the medium. Treatment of acetate-grown cells with glucose resulted in a rapid decline in the specific activities of both enzymes. The importance of this cycle in acetate-grown cells was indicated by the ability of itaconic acid (100 mM) to inhibit the growth of M. racemosus in acetate but not glutamate media. Itaconate was also shown to be a potent inhibitor of isocitrate lyase activity in vitro.  相似文献   

10.
Developmental changes in the starch and sucrose content of grains andthe activities of enzymes of starch synthesis in wheat were studied under waterstress conditions. Water stress caused a marked reduction in the sucrose andstarch content of the grains. Sucrose synthase (SS) and UDP-glucosepyrophosphorylase (UDP-Gppase), showed higher catalytic activity and moreresistance to water stress compared with amyloplastic enzymes. ADP-glucosepyrophosphorylase (ADP-Gppase) activity was reduced to a low level under bothin situ and osmotic stress conditions in which grainsfailed to accumulate dry matter in vivo. Granule-boundstarch synthase (GBSS) also responded rapidly to in situwater stress treatments as did ADP-Gppase. Reduction in GBSS activity at thetime of growth cessation in situ was less than that ofADP-Gppase and the enzyme did not respond to severe osmotic stress. Solublestarch synthase (SSS) was the enzyme most sensitive to water stress in that itresponded earlier, and to a greater extent, than the other enzymes. However,under severe dehydration conditions, leading to cessation of growth, thedeclinein SSS activity was less than that for ADP-Gppase. SSS showed the lowestin vitro activity followed by GBSS. These results suggestthat SSS is the site of response to water stress by which the rate of graingrowth can be affected, whereas growth cessation is due mainly to theinactivation of ADP-Gppase.  相似文献   

11.
The human malaria parasite Plasmodium falciparum synthesizes fatty acids by using a type II synthase that is structurally different from the type I system found in eukaryotes. Because of this difference and the vital role of fatty acids, the enzymes involved in fatty acid biosynthesis of P. falciparum represent interesting targets for the development of new antimalarial drugs. beta-Ketoacyl-acyl carrier protein (ACP) synthase (PfFabBF), being the only elongating beta-ketoacyl-ACP synthase in P. falciparum, is a potential candidate for inhibition. In this study we present the cloning, expression, purification, and characterization of PfFabBF. Soluble protein was obtained when PfFabBF was expressed as a NusA fusion protein in Escherichia coli BL21(DE3)-CodonPlus-RIL cells under conditions of osmotic stress. The fusion protein was purified by affinity and ion exchange chromatography. Various acyl-P. falciparum acyl carrier protein (PfACP) substrates were tested for their specific activities, and their kinetic parameters were determined. Activity of PfFabBF was highest with C(4:0)- to C(10:0)-acyl-PfACPs and decreased with use of longer chain acyl-PfACPs. Consistent with the fatty acid synthesis profile found in the parasite cell, no activity could be detected with C(16:0)-PfACP, indicating that the enzyme is lacking the capability of elongating acyl chains that are longer than 14 carbon atoms. PfFabBF was found to be specific for acyl-PfACPs, and it displayed much lower activities with the corresponding acyl-CoAs. Furthermore, PfFabBF was shown to be sensitive to cerulenin and thiolactomycin, known inhibitors of beta-ketoacyl-ACP synthases. These results represent an important step toward the evaluation of P. falciparum beta-ketoacyl-ACP synthase as a novel antimalaria target.  相似文献   

12.
The activities of the enzymes nitrate reductase (EC 1.6.6.1), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (GOGAT; EC 1.4.7.1), glutamate-oxaloacetate aminotransferase (EC 2.6.1.1), and glutamate dehydrogenase (EC 1.4.1.2) were compared in light-grown green or etiolated leaves of rye seedlings ( Secale cereale L. cv. Halo) raised at 22°C, and in the bleached 70S ribosome-deficient leaves of rye seedlings grown at a non-permissive high temperature of 32°C. Under normal permissive growth conditions the activities of most of the enzymes were higher in light-grown, than in dark-grown, leaves. All enzyme activities assayed were also observed in the heat-treated 70S ribosome-deficient leaves. Glutamine synthetase, glutamate synthase, and glutamate-oxaloacetate aminotransferase occurred in purified ribosome-deficient plastids separated on sucrose gradients. For glutamate-oxaloacetate aminotransferase four multiple forms were separated by polyacrylamide gel electrophoresis from leaf extracts. The chloroplastic form of this enzyme was also present in 70S ribosome-deficient leaves. It is concluded that the chloroplast-localized enzymes nitrite reductase, glutamine synthetase, glutamate synthase and glutamate-oxaloacetate aminotransferase, or their chloroplast-specific isoenzyme forms, are synthesized on cytoplasmic 80S ribosomes.  相似文献   

13.
The mycelial growth front of the band strain of Neurospora grown on a solid surface exhibits a circadian rhythm of conidiation. Enzyme assays on extracts from that mycelium have shown that the activities of 6 of 13 enzymes (nicotinamide adenine dinucleotide nucleosidase, isocitrate lyase, citrate synthase, glyceraldehydephosphate dehydrogenase, phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase) and soluble-protein content oscillate with the visible morphological change. The rhythmic enzymes associated with the Krebs and glyoxylate cycles are more active during conidiogenesis, whereas the activities of the rhythmic enzymes of glycolysis and the hexose monophosphate shunt are reduced during that phase. The absence of enzyme oscillations in wild-type and fluffy strains which do not form conidia under the conditions employed suggests that the enzyme fluctuations are associated with conidiogenesis itself. Oscillations of enzyme activity as a function of time are restricted to the growth front. A permanent record of rhythmicity associated with conidial and nonconidial regions does, however, exist in the mycelial mat behind the growth front. The activities of three enzymes (nicotinamide adenine dinucleotide nucleosidase, glucose-6-phosphate dehydrogenase, and phosphogluconate dehydrogenase) are not directly influenced by CO(2) concentration, but are correlated with the prescence or absence of conidiation which is controlled by CO(2) concentration. In contrast, citrate synthase and malate dehydrogenase activities are correlated with changes in CO(2) concentration.  相似文献   

14.
The activities of two lipogenic enzymes, acetyl-CoA carboxylase and fatty acid synthase, were determined in two transplantable mammary adenocarcinomas (13762 and R3230AC) carried by non-pregnant, pregnant and lactating rats, and in mammary tissue of control animals (non-tumour-carrying) of comparable physiological states. During mammary-gland differentiation of control or tumour-carrying animals, the activities of acetyl-CoA carboxylase and fatty acid synthase in the lactating gland increased by about 40--50-fold over the values found in non-pregnant animals. On the other hand, in tumours carried by lactating dams there were only modest increases (1.5--2-fold) in acetyl-CoA carboxylase and fatty acid synthase compared with the neoplasms carried by non-pregnant animals. On the basis of the Km values for different substrates and immunodiffusion and immunotitration data, the fatty acid synthase of neoplastic tissues appeared to be indistinguishable from the control mammary-gland enzyme. However, a comparison of the immunotitration and immunodiffusion experiments indicated that the mammary-gland acetyl-CoA carboxylase might differ from the enzyme present in mammary neoplasms.  相似文献   

15.
Cystathionine synthesis from O-acetylhomoserine and cysteine has been demonstrated in yeast extracts for the first time. The activity is less than that of O-acetylhomoserine sulfhydrylase, but it is higher than that reported for homoserine O-transacetylase and therefore should not be growth limiting. Cystathionine synthase seems to share the regulatory properties of the sulfhydrylase, and both activities are missing from the methionine auxotroph Saccharomyces cerevisiae EY9, suggesting that both reactions are catalyzed by the same enzyme. However, cystathionine synthase activity was lost during purification of the sulfhydrylase, suggesting that the two reactions may be catalyzed by separate enzymes. Since previous studies have shown that yeast extracts can catalyze the cleavage of cystathionine to homocysteine, our results show the existence of two complete alternate pathways for homocysteine biosynthesis in yeast. Which of these is the major physiological pathway remains to be determined.  相似文献   

16.
It is fully established that the condensing reaction for the initiation of fatty acid synthesis is essential for viability of many bacteria. In model bacteria such as Escherichia coli, this reaction is exclusively catalyzed by β-ketoacyl-ACP synthase (KAS) III (encoded by fabH) and the FabH loss results in a fatty acid auxotroph. However, such a notion has been under the challenge of recent findings. In an attempt to resolve the conflicting results, in this study, we examined the physiological role of multiple KASIII enzyme homologues in Shewanella oneidensis, an excellent model for researching type II fatty acid synthesis (FASII) and its regulation. We demonstrated that FabH1 and temperature-responsive FabH2 are primarily responsible for initiating synthesis of straight- and branched-chain fatty acids respectively, whereas FabH3 and OleA are dispensable. Cells lacking all these enzymes as a set are viable but carry severe defects in growth. Further analyses revealed that in the absence of KASIII either of FabB (KASI) and FabF2 (KASII) is able to support growth, suggesting that they could initiate FASII. Strikingly, KASIII enzymes and OleA together confer S. oneidensis cells resistance to cerulenin, a selective inhibitor of FabF and FabB. Along with our previous finding that S. oneidensis FabF1 and FabB are fully equivalent with respect to their physiological impacts, these results imply that physiological function promiscuity of bacterial KAS enzymes could be more extensive than previously expected.  相似文献   

17.
Biochemical, electrophoretic and immunological studies were made among peroxisomal enzymes in three organs of soybean [Glycine max (L.) Merr. cv. Centennial] to compare the enzyme distribution and characteristics of specialized peroxisomes in one species. Leaves, nodules and etiolated cotyledons were compared with regard to several enzymes localized solely in their peroxisomes: catalase (EC 1.11.1.6), malate synthase (EC 4.1.3.2), glycolate oxidase (EC 1.1.3.1), and urate oxidase (EC 1.7.3.3). Catalase activity was found in all tissue extracts. Electrophoresis on native polyacrylamide gels indicated that leaf catalase migrated more anodally than nodule or cotyledon catalase as shown by both activity staining and Western blotting. Malate synthase activity and immunologically detectable protein were present only in the cotyledon extracts. Western blots of denaturing (lithium dodecyl sulfate) gels probed with anti-cotton malate synthase antiserum, reveal a single subunit of 63 kDa in both cotton and soybean cotyledons. Glycolic acid oxidase activity was present in all three organs, but ca 20-fold lower (per mg protein) in both nodule and cotyledon extracts compared to leaf extracts. Electrophoresis followed by activity staining on native gels indicated one enzyme form with the same mobility in nodule, cotyledon and leaf preparations. Urate oxidase activity was found in nodule extracts only. Native gel electrophoresis showed a single band of activity. Novel electrophoretic systems had to be developed to resolve the urate oxidase and glycolate oxidase activities; both of these enzymes moved cathodally in the gel system employed while most other proteins moved anodally. This multifaceted study of enzymes located within three specialized types of peroxisomes in a single species has not been undertaken previously, and the results indicate that previous comparisons between the enzyme content of specialized peroxisomes from different organisms are mostly consistent with that for a single species, soybean.  相似文献   

18.
Fatty acid degradation in Caulobacter crescentus.   总被引:3,自引:1,他引:2       下载免费PDF全文
Fatty acid degradation was investigated in Caulobacter crescentus, a bacterium that exhibits membrane-mediated differentiation events. Two strains of C. crescentus were shown to utilize oleic acid as sole carbon source. Five enzymes of the fatty acid beta-oxidation pathway, acyl-coenzyme A (CoA) synthase, crotonase, thiolase, beta-hydroxyacyl-CoA dehydrogenase, and acyl-CoA dehydrogenase, were identified. The activities of these enzymes were significantly higher in C. crescentus than the fully induced levels observed in Escherichia coli. Growth in glucose or glucose plus oleic acid decreased fatty acid uptake and lowered the specific activity of the enzymes involved in beta-oxidation by 2- to 3-fold, in contrast to the 50-fold glucose repression found in E. coli. The mild glucose repression of the acyl-CoA synthase was reversed by exogenous dibutyryl cyclic AMP. Acyl-CoA synthase activity was shown to be the same in oleic acid-grown cells and in cells grown in the presence of succinate, a carbon source not affected by catabolite repression. Thus, fatty acid degradation by the beta-oxidation pathway is constitutive in C. crescentus and is only mildly affected by growth in the presence of glucose. Tn5 insertion mutants unable to form colonies when oleic acid was the sole carbon source were isolated. However, these mutants efficiently transported fatty acids and had beta-oxidation enzyme levels comparable with that of the wild type. Our inability to obtain fatty acid degradation mutants after a wide search, coupled with the high constitutive levels of the beta-oxidation enzymes, suggest that fatty acid turnover, as has proven to be the case fatty acid biosynthesis, might play an essential role in membrane biogenesis and cell cycle events in C. crescentus.  相似文献   

19.
Cell envelope vesicles of Halobacterium halobium synthesize ATP by utilizing base-acid transition (an outside acidic pH jump) under optimal conditions (1 M NaCl, 80 mM MgCl2, pH 6.8) even in the presence of azide (a specific inhibitor of F0F1-ATPase) (Mukohata & Yoshida (1987) J. Biochem. 101, 311-318). An azide-insensitive ATPase was isolated from the inner face of the vesicle membrane, and shown to hydrolyze ATP under very specific conditions (1.5 M Na2SO4, 10 mM MnCl2, pH 5.8) (Nanba & Mukohata (1987) J. Biochem. 102, 591-598). This ATPase activity could also be detected when the vesicle components were solubilized by detergent. The relationship between ATP synthesis and the membrane-bound ATPase was investigated by modification of the vesicles with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) or N-ethylmaleimide (NEM). The inhibition pattern of ATP synthesis in the modified vesicles and that of ATP hydrolysis of the solubilized modified vesicles were compared under the individual optimum conditions. The inhibition patterns were almost identical, suggesting that the ATP synthesis and hydrolysis are catalyzed by a single enzyme complex. The ATP synthase includes the above ATPase (300-320 kDa), which is composed of two pairs of 86 and 64 kDa subunits. This is a novel H+-translocating ATP synthase functioning in the extremely halophilic archaebacterium. This "archae-ATP-synthase" differs from F0F1-ATPase/synthase, which had been thought to be ubiquitous among all respiring organisms on our biosphere.  相似文献   

20.
Malonate decarboxylases, which catalyze the conversion of malonate to acetate, can be classified into biotin-dependent and biotin-independent enzymes. In order to reveal the stereochemical course of the reactions catalyzed by the biotin-independent enzymes from Acinetobacter calcoaceticus and Pseudomonas fluorescens, a chiral substrate, malonate carrying (13)C in one carboxyl group and (3)H at one of the methylene positions, was prepared and used in the reactions catalyzed by these two enzymes. The decarboxylation of (R)-[1-(13)C(1), 2-(3)H]malonate in (2)H(2)O gave a pseudo-racemate of chiral acetate which was converted via acetyl-CoA into malate with malate synthase. From the relative proportions of the isotopomers of malate present, determined by (3)H NMR analysis, it was concluded that in the decarboxylation of malonate by these two biotin-independent enzymes COOH is replaced by H with retention of configuration. The same stereochemical outcome had been previously observed for the reaction catalyzed by the biotin-dependent malonate decarboxylase from Malonomonas rubra (J. Micklefield et al. J. Am. Chem. Soc. 117, 1153-1154, 1995).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号