首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat fragmentation and invasive species are two of the greatest threats to species diversity worldwide. This is particularly relevant for oceanic islands with vulnerable endemics. Here, we examine how habitat fragmentation influences nest predation by Rattus spp. on cup‐nesting birds in Samoan forests. We determined models for predicting predation rates by Rattus on artificial nests at two scales: (i) the position of the bird's nest within the landscape (e.g. proximity to mixed crop plantations, distance to forest edge); and (ii) the microhabitat in the immediate vicinity of the nest (e.g. nest height, ground cover, slope). Nest cameras showed only one mammal predator, the black rat (Rattus rattus), predating artificial nests. The optimal model predicting nest predation rates by black rats included a landscape variable, proximity to plantations and a local nest site variable, the percentage of low (<15 cm) ground cover surrounding the nest tree. Predation rates were 22 ± 13% higher for nests in forest edges near mixed crop plantations than in edges without plantations. In contrast, predation rates did not vary significantly between edge habitat where the matrix did not contain plantations, and interior forest sites (>1 km from the edge). As ground cover reduced, nest predation rates increased. Waxtags containing either coconut or peanut butter were used as a second method for assessing nest predation. The rates at which these were chewed followed patterns similar to the predation of the artificial nests. Rural development in Samoa will increase the proportion of forest edge near plantations. Our results suggest that this will increase the proportion of forest birds that experience nest predation from black rats. Further research is required to determine if rat control is needed to maintain even interior forest sites populations of predator‐sensitive bird species on South Pacific islands.  相似文献   

2.
Three factors and their interaction effects are increasingly recognized as important determinants of nest predation: nest concealment, nest height, and predator type. The risk of nest predation is predicted to vary across these variables because of nest detectability and accessibility. In general, however, few studies examine how these three variables interact in relation to nest predation, focusing instead on either nest concealment or nest height (whereby predator identity is usually not known). In this study, we examine the role of nest concealment and nest height for nest survival using both artificial and natural nests in the superb fairy-wren (Malurus cyaneus). We indirectly identified potential predators through marks left on artificial eggs and footprints left on tracking tunnels. Predation level at artificial nests was lower than at natural nests, and this could be due to a failure of some nest predators to locate cryptic nests in the absence of cues provided by parental activity. Our results supported the prediction that exposed and concealed nests have different levels of nest predation, which can be explained by variation in predator type. Visual predators were only detected at exposed nests, and survival from visual predators was lower for high nests that were also exposed. However, olfactory predators were detected irrespective of nest height or nest concealment. Because rodents use olfaction to locate nests, this could explain the lack of association between nest concealment and predation outcome at low nests. In addition, rodent footmarks near nests were significantly associated with rodent tooth marks on eggs.  相似文献   

3.
Wetlands in many parts of the world are affected by fragmentation at multiple spatial scales. In Switzerland, most wetlands have been destroyed over the past two centuries and management of the remaining wetland reserves has intensified in the recent years leading to increased fragmentation of reed areas within reserves. Using four years of data on the reproductive performance of color-banded reed bunting Emberiza schoeniclus populations, we explored fragmentation effects on nest predation rates at four spatial scales ranging from the nest to the landscape scale. In the egg stage, predation rate was negatively related to vegetation cover, vegetation height and nest height, but positively linked to water cover and depth next to the nest (nest scale). Probability of predation declined with increasing size of reed patches containing the nests and distances of nests to the water and land sided reed edge, as well as with decreasing edge to area ratio (edge scale). There was a weak positive association between degree of fragmentation of reed patches within sites and nest predation rates (site scale). Finally, nest predation probability increased with distance to the nearest wetland (landscape scale). Jointly analyzing variables from different spatial scales revealed that a model combining variables from the nest, edge and landscape scale best explained predation probability in the egg stage. In the nestling stage, the single most important factor influencing nest predation probability was the distance to the nearest wetland (landscape scale), with nest predation decreasing with distance between sites. Our results show that the probability of nest predation in reed buntings is affected by fragmentation within and between wetland reserves and that the effects differ between breeding stages. Future management of wetland reserves should aim at sparing reed patches large and dense enough to provide safe nest sites for birds.  相似文献   

4.
Summary To examine if differences in egg predation rates could explain differences in bird community composition, egg predation was studied in two years on small islands in a South Swedish lake and on the nearby mainland using both natural and artificial nests.In plots with similar vegetation, the combined density of ground- and tree-nesting bird species did not differ between the islands and the mainland. Egg predation rates were similar on islands and the mainland for natural Turdus nests in two years, and for artificial Turdus and Phylloscopus nests. Unmarked and unvisited experimental nests suffered similar rate of egg predation as marked and visited nests. Egg predation rates were higher on natural nests when artificial nests were also put out, increasing the total nest density. Initial egg predation rates in artificial nests were also higher than later when nest density had decreased by 75%.The egg predators involved differed for artificial Phylloscopus nests between the islands and the mainland. Small mammals were apparently responsible for 29% of the predation on the mainland, but none on the islands. Artificial Turdus nests near crow nests suffered from a higher egg predation rate than nests further away from crow nests. Daily survival rates of Turdus nests increased from the laying to the incubation and further to the fledging state.Egg predation can not explain differences in bird community composition between islands and mainland in the present case.  相似文献   

5.
There is concern that predation of Lapwing Vanellus vanellus nests may create additional pressure on declining populations of this species in Europe. At seven sites in England and Wales, daily nest predation rates on 1,390 nests were related to variables using Generalised Linear Mixed Models. The strongest predictor was Lapwing nest density (number of nests within 100 m): predation rates declined as nest density increased. Since nocturnal species, probably mammals, have been identified as the major predators of Lapwing nests at these sites, these results suggest that Lapwings are able to deter mammalian predators or may settle to nest at high densities in areas with low predation pressure. At the site level, there was no relationship between Lapwing nesting density and fox density, and a positive relationship with Carrion Crow Corvus corone nesting density. There was a weaker effect of distance to field boundary: nests closer to boundaries were more likely to be predated. Weak interactive effects between crow density and both nest visibility and distance to vantage point were identified in models using a reduced subset of nests. These were counter-intuitive, did not persist in the larger data set, and do not have obvious explanations. If Lapwings nesting at high density are able to deter predators, there are implications for land management. Smaller areas could be managed within potential breeding habitat to encourage Lapwings to nest in dense colonies. Selection of larger fields for such management, where nests could be located far from the field boundary should improve the value of such measures.  相似文献   

6.
This study examined predator faunas of artificial ground and shrub nests and whether nest predation risk was influenced by nest site, proximity to forest edge, and habitat structure in 38 grassland plots in south-central Sweden. There was a clear separation of predator faunas between shrub and ground nests as identified from marks in plasticine eggs. Corvids accounted for almost all predation on shrub nests whereas mammals mainly depredated ground nests. Nest predation risk was significantly greater for shrub than for ground nests at all distances (i.e. 0, 15 and 30 m) from the forest edge. However, nest predation risk was not significantly related to distance to forest edge, but significantly increased with decreasing distance to the nearest tree. Different corvid species robbed nests at different distances from the forest edge, with jays robbing nests closest to edges. We conclude that the relationship between the predation risk of grassland bird nests and distance to the forest edge mainly depends on the relative importance of different nest predator species and on the structure of the forest edge zone. A review of published articles on artificial shrub and ground nest predation in the temperate zone corroborated the results of our own study, namely that shrub nests experienced higher rates of depredation in open habitats close to the forest edge and that avian predators predominantly robbed shrub nests. Furthermore, the review results showed that predation rates on nests in general are highest <50 m inside the forest and lower in open as well as forest interior habitats (≥50 m from the edge). Received: 16 March 1998 / Accepted: 30 July 1998  相似文献   

7.
Capsule Bare ground increases artificial nest predation in olive groves.

Aims To assess the effect of different soil management regimes on nest predation rates in olive groves.

Methods We performed nest predation experiments with artificial nests during the breeding season in 2013, in two areas of southern Spain. Each artificial nest (n?=?300) contained three quail Coturnix eggs, two of which were unmanipulated and the third one was emptied and injected with plaster. Predators were identified by marks on eggs filled with plaster.

Results Ground nests were significantly more depredated, irrespective of the presence of ground cover; tree nests were less depredated in fields with ground cover. There was a clear difference in nest predators of ground and tree nests. Rodents were the most frequent predators of tree nests.

Conclusion Lower predation rates of tree nests in orchards with ground cover are probably linked to a change in the foraging behaviour of rodents, which in these more complex habitats might be restricted by rodents' own risk of predation. This study underscores the important role of agricultural practices in preserving farmland bird communities, particularly tree-nesting species, suggesting that for this group, implementation of ground cover in olive groves might enhance breeding success by reducing nest predation rates.  相似文献   

8.
9.
There has long been interest in the influence of predators on prey populations, although most predator–prey studies have focused on prey species that are targets of directed predator searching. Conversely, few have addressed depredation that occurs after incidental encounters with predators. We tested two predictions stemming from the hypothesis that nest predation on two sympatric freshwater turtle species whose nests are differentially prone to opportunistic detection—painted turtles (Chrysemys picta) and snapping turtles (Chelydra serpentina)—is incidental: (1) predation rates should be density independent, and (2) individual predators should not alter their foraging behavior after encountering nests. After monitoring nest survival and predator behavior following nest depredation over 2 years, we confirmed that predation by raccoons (Procyon lotor), the primary nest predators in our study area, matched both predictions. Furthermore, cryptic C. picta nests were victimized with lower frequency than more detectable C. serpentina nests, and nests of both species were more vulnerable in human-modified areas where opportunistic nest discovery is facilitated. Despite apparently being incidental, predation on nests of both species was intensive (57% for painted turtles, 84% for snapping turtles), and most depredations occurred within 1 day of nest establishment. By implication, predation need not be directed to affect prey demography, and factors influencing prey crypsis are drivers of the impact of incidental predation on prey. Our results also imply that efforts to conserve imperiled turtle populations in human-modified landscapes should include restoration of undisturbed conditions that are less likely to expose nests to incidental predators.  相似文献   

10.
We studied the effects of forest patch size and forest edge structure on nest predation in a boreal coniferous forest landscape. The following predictions were tested. Nest predation should be higher in small than in large stands, in edges than in interior areas of forest stands, and in barren forest/clear–cut edges created by forestry than in natural forest/open marsh edges. Four types of artificial above ground nests (total of 261) were used; open cup nests with reindeer Rangifer t. tarandus hair, open cup nests with domestic hen Gallus domesticus feathers, and unlined open cup and nest–box nests. Nests were baited with one Japanese quail Coturnix coturnix japonica egg. Nest–boxes were depredated significantly less than open cup nests of all types. No edge- or stand size–related nest predation was found. The predation rate, regardless of the nest type, did not differ relative to the edge type and vegetation characteristics. However, better horizontal visibility of open cup nests due to more open vegetation structure increased predation risk in man–made edges compared to inherent edges. The results suggest that edge–related nest predation is absent or weak in forest dominated landscapes. This may be due to predator types present in the landscape and/or predators habitat use in forest dominated areas. Therefore, it might be that findings documented in other areas, such as in agricultural dominated landscapes, cannot be directly applied to managed forest landscapes.  相似文献   

11.
Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds.In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management.Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.  相似文献   

12.
Road construction is considered to be one of the primary causes of forest fragmentation, and little is known about how roads affect bird reproductive success. The objective of this study was to assess the survival rate of artificial nests along an edge associated with a highway and in the interior of a tabuleiro forest. The study was performed at the Sooretama Biological Reserve, on the margins of federal highway BR‐101, between September and October 2015. A total of 168 artificial nests with a Common quail (Coturnix coturnix) egg in each nest were placed along six sampling transects, at distances of 2, 25, 50, 100, 200, 400, and 800 m from the highway toward the forest interior. We used logistic regression and estimated daily survival rate (DSR) using the “Nest Survival” function in the program MARK to estimate artificial nest survival and assessed the effect of the distance from the highway. The artificial nest survival rate was significantly higher on the highway margins than at other distances. The results show that artificial nests located up to 25 m from the highway have a greater success probability (over 95%) and a significant decrease in success probability more than 50 m from the highway. Although we cannot rule out other nonroad‐specific edge effects on artificial nest predation, our results suggest that the impacts of the highway (e.g., noise, vibration, visual stimuli) cause predators to avoid the road's surroundings (up to 25 m into the forest) when selecting their feeding sites, which partially supports the predation release hypothesis.  相似文献   

13.
Predation is a major cause of nest failure in many bird species. High levels of nest loss may be a consequence of habitat fragmentation, leading to increased amounts of edge habitat. Yet the evidence for generally high nest predation rates along edges in fragmented landscapes is ambiguous. Using real nests of Reed Buntings Emberiza schoeniclus in which artificial Reed Bunting and real Japanese Quail Coturnix japonica eggs were placed, we experimentally tested for edge effects on nest predation in highly fragmented reed Phragmites sp. habitats in the Swiss lowlands. We also examined seasonal patterns of predation and the impacts of nest visits by observers. We found evidence for an edge effect at the water-sided reed edge, with nests located closer to the water being more likely to be predated than those further away. Predation probability increased from early to late season, suggesting that nest predation may be density dependent. Probability of nest predation was only weakly influenced by whether or not a nest was visited. Our results suggest that the intensive reed management currently applied in Swiss nature reserves may result in unnaturally high levels of nest losses in the Reed Bunting, because reed bands are not wide enough to allow nest placement at a safe distance from reed edges.  相似文献   

14.
Variation in nest predation levels associated with rainforest fragmentation (edge effects) was assessed in Australia's Wet Tropics bioregion. Artificial nests were placed in the forest understorey at seven edge sites where continuous forest adjoined pasture, seven interiors (about 1 km from the edge), and six linear riparian forest remnants (50–100 m wide) that were connected to continuous forest. Four nest types were also compared, representing different combinations of two factors; height (ground, shrub) and shape (open, domed). At each site, four nests of each type, containing one quail egg and two model plasticine eggs, were interspersed about 15 m apart within a 160 m transect during September–October 2001. Predators were identified from marks on the plasticine eggs. The overall depredation rate was 66.5% of 320 nests' contents damaged over a three-day period. Large rodents, especially the rat Uromys caudimaculatus, and birds, especially the spotted catbird Ailuroedus melanotis, were the main predators. Mammals comprised 56.5% and birds 31.0% of predators, with 12.5% of unknown identity. The depredation rate did not vary among site-types, or between open and domed nests, and there were no statistically significant interactions. Nest height strongly affected depredation rates by particular types of predator; depredation rates by mammals were highest at ground nests, whereas attacks by birds were most frequent at shrub nests. These effects counterbalanced so that overall there was little net effect of nest height. Mammals accounted for 78.4% of depredated ground nests and birds for at least 47.4% of shrub nests (and possibly up to 70.1%). The main predators were species characteristic of rainforest, rather than habitat generalists, open-country or edge specialists. For birds that nest in the tropical rainforest understorey of the study region, it is unlikely that edges and linear remnants presently function as ecological population sinks due to mortality associated with increased nest predation.  相似文献   

15.
In habitats with more predators, a species is expected to breed in safer sites and be less successful than in predator-impoverished habitats. We tested this hypothesis by studying nest-habitat selection and nest predation in two populations of Trumpeter finch (Bucanetes githagineus). One breeds in a predator-rich habitat (Tabernas, Iberian Peninsula), and the other is found on an island with fewer predators (La Oliva, Canary Islands). In both localities, we studied the features of nests in two different substrates, on the ground and in cliffs, including visibility and position in the cliff. We measured the habitat characteristics in a series of plots around the ground nests and compared them to random points. We also studied the influence of nest features and habitat selection on predation of both nest types. Trumpeter finches built more nests in cliffs in Tabernas, probably because there are more cliffs available there. In this locality, the patches selected for ground nesting had below-average vegetation cover, lower vegetation height, and were on steeper slopes. In La Oliva, they selected above-average vegetation height and steeper slopes. Cliff nests were less predated than ground nests in La Oliva, but not in Tabernas. The only variable that affected survival rates in Tabernas was the height of vegetation around ground nests, with nests in lower vegetation having higher survival rates. These results suggest that locality-related differences in habitat selection by vegetation height could be related to the different predator assemblages present in any given area, though we cannot rule out confounding influences of other differences between the two sites.  相似文献   

16.
ABSTRACT Nest‐site selection and nest defense are strategies for reducing the costs of brood parasitism and nest predation, two selective forces that can influence avian nesting success and fitness. During 2001–2002, we analyzed the effect of nest‐site characteristics, nesting pattern, and parental activity on nest predation and brood parasitism by cowbirds (Molothrus spp.) in a population of Brown‐and‐yellow Marshbirds (Pseudoleistes virescens) in the Buenos Aires province, Argentina. We examined the possible effects of nest detectability, nest accessibility, and nest defense on rates of parasitism and nest predation. We also compared rates of parasitism and nest predation and nest survival time of marshbird nests during the egg stage (active nests) with those of the same nests artificially baited with passerine eggs after young fledged or nests failed (experimental nests). Most nests (45 of 48, or 94%) found during the building or laying stages were parasitized, and 79% suffered at least one egg‐predation event. Cowbirds were responsible for most egg predation, with 82 of 107 (77%) egg‐predation events corresponding to eggs punctured by cowbirds. Nests built in thistles had higher rates of parasitism and egg predation than nests in other plant, probably because cowbirds were most active in the area where thistles were almost the only available nesting substrate. Parasitism rates also tended to increase as the distance to conspecific nests increased, possibly due to cooperative mobbing and parental defense by marshbirds. The proportion of nests discovered by cowbirds was higher for active (95%) than for experimental (29%) nests, suggesting that cowbirds used host parental activity to locate nests. Despite active nest defense, parental activity did not affect either predation rates or nest‐survival time. Thus, although nest defense by Brown‐and‐yellow Marshbirds appears to be based on cooperative group defense, such behavior did not reduce the impact of brood parasites and predators.  相似文献   

17.
Nest predation has been used to explain aspects of avian ecology ranging from nest site selection to population declines. Many arguments rely on specific assumptions regarding how predators find nests, yet these predatory mechanisms remain largely untested. Here we combine artificial nest experiments with behavioural observations of individual red squirrels Tamiasciurus hudsonicus to differentiate between two common hypotheses: predation is incidental versus learned. Specifically, we tested: 1) whether nest survival could be explained solely by a squirrel's activity patterns or habitat use, as predicted if predation was incidental; or 2) if predation increased as a squirrel gained experience preying on a nest, as predicted if predation was learned. We also monitored squirrel activity after predation to test for evidence of two search mechanisms: area‐restricted searching and use of microhabitat search images. Contrary to incidental predation and in support of learning, squirrels did not find nests faster in areas with high use (e.g. forest edges). Instead, survival of artificial nests was strongly related to a squirrel's prior experience preying on artificial nests. Experience reduced nest survival times by over half and increased predation rates by 150–200%. Squirrels returned to and doubled their activity at the site of a previously preyed on nest. However, neither area‐restricted searching nor microhabitat search images can explain how squirrels located artificial nests more readily with experience. Instead, squirrels likely used cues associated with the nests or eggs themselves. Learning implies that squirrels could be increasingly effective predators as the density or profitability of nests increases. Our results add support to the view that nest predation is complex and broadly influenced (e.g. by predator experience, motivation), and is unlikely to be predicted consistently by simple relationships with predator activity, abundance or habitat.  相似文献   

18.
Many passerine bird populations, particularly those that have open‐cup nests, are in decline in agricultural landscapes. Current theory suggests that an increase in habitat generalist predators in response to landscape change is partially responsible for these declines. However, empirical tests have failed to reach a consensus on how and through what mechanisms landscape change affects nest predation. We tested one hypothesis, the Additive Predation Model, with an artificial nest experiment in fragmented landscapes in southern Queensland, Australia. We employed structural equation modelling of the influence of the relative density of woodland and habitat generalist predators and landscape features at the nest, site, patch and landscape scales on the probability of nest predation. We found little support for the Additive Predation Model, with no significant influence of the density of woodland predators on the probability of nest predation, although landscape features at different spatial scales were important. Within woodlands fragmented by agriculture in eastern Australia, the presence of noisy miner colonies appears to influence ecological processes important for nest predation such that the Additive Predation Model does not hold. In the absence of colonies of the aggressive native bird, the noisy miner, the influence of woodland predators on the risk of artificial nest predation was low compared with that of habitat generalist predators. Outside noisy miner colonies, we found significant edge effects with greater predation rates for artificial nests within woodland patches located closer to the agricultural matrix. Furthermore, the density of habitat generalist predators increased with the extent of irrigated land‐use, suggesting that in the absence of noisy miner colonies, nest predation increases with land‐use intensity at the landscape scale.  相似文献   

19.
We studied whether the presence of breeding kestrels (Falco tinnunculus) affected nest predation and breeding habitat selection of curlews (Numenius arquata) on an open flat farmland area in western Finland. We searched for nests of curlews from an area of 6 km2 during 1985–1993. For each nest found, we recorded the fate of the nest, and the distance to the nearest kestrel nest and to the nearest perch. We measured the impact of breeding kestrels on nest predation by constructing artificial curlew nests in the vicinity of ten kestrel nests in 1993. Curlew nests were closer to kestrel nests than expected from random distribution, eventhough kestrels fed on average 5.5% of curlew chick production. Predation risk by kestrels was lower than predation risk by corvids and other generalist predators, which predated 9% of curlew nests surviving farming practices and an unknown proportion of chicks. Artificial nest experiment showed that nest predation was lower close to kestrel nests than further away suggesting that the breeding association of curlews and kestrels was a behavioural adaptation against nest predation. Thus, the presence of a predator may sometimes be beneficial to prey, and prey animals have behavioural adaptations to these situations.  相似文献   

20.
Abstract An experiment, involving 2000 members of the public, determined the identity of nest predators in urban environments. Experimental nests of halved tennis balls covered with coconut fibre and wool were manufactured to resemble the nests of willie wagtails, Rhipidura leucophrys. The identity of predators was determined by analysis of imprints left in artificial eggs made of coloured modelling clay. Sixty-four per cent of nests were preyed upon, with most predation being the result of large birds. Direct observations of predation (n = 134) indicated that pied currawongs were the most common large bird, accounting for 52% of all predation. Predation incidence was higher in gardens with more trees and in which kookaburras, Dacelo novaeguineae, were fed frequently. Among nests placed in trees, nest predation was correlated with nest height. Eggs camouflaged by speckling experienced a similar incidence of predation to plain eggs. This study provides evidence to support the contention that pied currawongs are a major threat to the persistence of small birds in Australian urban environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号