首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the capacity of a natural macroalgae consortium consisting of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species for the removal of copper ions from aqueous environment was investigated at different operating conditions, such as solution pH, copper ion concentration and contact time. These environmental parameters affecting the biosorption process were optimized on the basis of batch experiments. The experimentally obtained data for the biosorption of copper ions onto the macroalgae-based biosorbent were modeled using the isotherm models of Freundlich, Langmuir, Sips and Dubinin–Radushkevich and the kinetic models of pseudo-first-order, pseudo-second-order, Elovich and Weber and Morris. The pseudo-first-order and Sips equations were the most suitable models to describe the copper biosorption from aqueous solution. The thermodynamic data revealed the feasibility, spontaneity and physical nature of biosorption process. Based on the data of Sips isotherm model, the biosorption capacity of biosorbent for copper ions was calculated as 105.370 mg g?1 under the optimum operating conditions. A single-stage batch biosorption system was developed to predict the real-scale-based copper removal performance of biosorbent. The results of this investigation showed the potential utility of macroalgae consortium for the biosorption of copper ions from aqueous medium.  相似文献   

2.
High levels of heavy metals like copper ions in many industrial based effluents lead to serious environmental and health problems. Biosorption is a potential environmental biotechnology approach for biotreatment of aquatic sites polluted with heavy metal ions. Seaweeds have received great attention for their high bioremediation potential in recent years. However, the co-application of marine macroalgae for removal of heavy metals from wastewater is very limited. Thus, for the first time in literature, a coastal seaweed community composed of Chaetomorpha sp., Polysiphonia sp., Ulva sp. and Cystoseira sp. species was applied to remove copper ions from synthetic aqueous medium in this study. The biosorption experiments in batch mode were conducted to examine the effects of operating variables including pH, biosorbent amount, metal ion concentration and contact time on the biosorption process. The biosorption behavior of biosorbent was described by various equilibrium, kinetic and thermodynamic models. The biosorption of copper ions was strongly influenced by the operating parameters. The results indicated that the equilibrium data of biosorption were best modeled by Sips isotherm model. The values of mean free energy of biosorption computed from Dubinin-Radushkevich isotherm model and the standard Gibbs free energy change indicated a feasible, spontaneous and physical biotreatment system. The pseudo-second-order rate equation successfully defined the kinetic behavior of copper biosorption. The pore diffusion also played role in the control of biosorption process. The maximum copper uptake capacity of biosorbent was found to be greater than those of many other biosorbents. The obtained results revealed that this novel biosorbent could be a promising material for copper ion bioremediation implementations.  相似文献   

3.
Summary An indigenous strain of blue green microalga, Synechococcus sp., isolated from wastewater, was immobilized onto loofa sponge discs and investigated as a potential biosorbent for the removal of cadmium from aqueous solutions. Immobilization has enhanced the sorption of cadmium and an increase of biosorption (21%) at equilibrium was noted as compared to free biomass. The kinetics of cadmium biosorption was extremely rapid, with (96%) of adsorption within the first 5 min and equilibrium reached at 15 min. Increasing initial pH or initial cadmium concentration resulted in an increase in cadmium uptake. The maximum biosorption capacity of free and loofa immobilized biomass of Synechococcus sp. was found to be 47.73 and 57.76 mg g−1 biomass respectively. The biosorption equilibrium was well described by Langmuir adsorption isotherm model. The biosorbed cadmium was desorbed by washing the immobilized biomass with dilute HCl (0.1 M) and desorbed biomass was reused in five biosorption–desorption cycles without an apparent decrease in its metal biosorption capacity. The metal removing capacity of loofa immobilized biomass was also tested in a continuous flow fixed-bed column bioreactor and was found to be highly effective in removing cadmium from aqueous solution. The results suggested that the loofa sponge-immobilized biomass of Synechococcus sp. could be used as a biosorbent for an efficient removal of heavy metal ions from aqueous solution.  相似文献   

4.
The feasibility of using fish (Labeo rohita) scales as low-cost biosorbent for the removal of hazardous Malachite Green (MG) dye from aqueous solutions was investigated. Employing a batch experimental setup, the effect of operational parameters such as biosorbent dose, initial solution pH, contact time, and temperature on the dye removal process was studied. The equilibrium biosorption data followed both Langmuir and Freundlich isotherm models, whereas the experimental kinetic data fitted well to the pseudo-second-order kinetic model. Thermodynamic study indicated spontaneous and endothermic nature of the biosorption process. The results suggest that fish scales could be used as an effective biosorbent for removal of MG dye from aqueous solutions.  相似文献   

5.
A unicellular green microalga, Chlorella sorokiniana, was immobilized on loofa (Luffa cylindrica) sponge and successfully used as a new biosorption system for the removal of lead(II) ions from aqueous solutions. The biosorption of lead(II) ions on both free and immobilized biomass of C. sorokiniana was investigated using aqueous solutions in the concentration range of 10–300 mg/L. The biosorption of lead(II) ions by C. sorokiniana biomass increased as the initial concentration of lead(II) ions increased in the medium. The maximum biosorption capacity for free and immobilized biomass of C. sorokiniana was found to be 108.04 and 123.67 mg lead(II)/g biomass, respectively. The biosorption kinetics were found to be fast, with 96 % of adsorption within the first 5 min and equilibrium reached at 15 min. The adsorption of lead(II) both by free and immobilized C. sorokiniana biomass followed the Langmuir isotherm. The biosorption capacities were detected to be dependent on the pH of the solution; and the maximum adsorption was obtained at a solution pH of about 5. The effect of light metal ions on lead(II) uptake was also studied and it was shown that the presence of light metal ions did not significantly affect lead(II) uptake. The loofa sponge‐immobilized C. sorokiniana biomass could be regenerated using 0.1 M HCl, with up to 99 % recovery. The desorbed biomass was used in five biosorption‐desorption cycles, and no noticeable loss in the biosorption capacity was observed. In addition, fixed bed breakthrough curves for lead(II) removal were presented. These studies demonstrated that loofa sponge‐immobilized biomass of C. sorokiniana could be used as an efficient biosorbent for the treatment of lead(II) containing wastewater.  相似文献   

6.
Summary Biosorption of manganese from its aqueous solution using yeast biomass Saccharomyces cerevisiae and fungal biomass Aspergillus niger was carried out. Manganese biosorption equilibration time for A. niger and S. cerevisiae were found to be 60 and 20 min, with uptakes of 19.34 and 18.95 mg/g, respectively. Biosorption increased with rise in pH, biomass, and manganese concentration. The biosorption equilibrium data fitted with the Freundlich isotherm model revealed that A. niger was a better biosorbent of manganese than S. cerevisiae.  相似文献   

7.
Abstract

The removal of Malathion, a moderately toxic organophosphate pesticide causing environmental pollution, from dilute aqueous solutions was studied. The experimental results showed that the dry cells of Bacillus sp. S14 were effective in removing Malathion from solution. Biosorption equilibrium was attained within 6h. Maximum biosorption of Malathion (81.4%) was observed under the following environmental conditions, pH 6.5, temperature 25°C, dry biomass concentration 1g L?1 at 6h. Both Langmuir and Freundlich isotherms were tested and the latter had a better fit with the data. The dried powdered cells of Bacillus sp. S14 can be safely stored for 60 days at room temperature without any loss of biosorption efficiency. The results suggest that the dry cells of the isolated Bacillus sp. S14 can be used as a biosorbent for an efficient removal of Malathion from aqueous solutions.  相似文献   

8.
Three different kinds of Phanerochaete chrysosporium (NaOH‐treated, heat‐inactivated and active) biosorbent were used for the removal of Cd(II) and Hg(II) ions from aquatic systems. The biosorption of Cd(II) and Hg(II) ions on three different forms of Phanerochaete chrysosporium was studied in aqueous solutions in the concentration range of 50–700 mg/L. Maximum biosorption capacities of NaOH‐treated, heat‐inactivated and active Phanerochaete chrysosporium biomass were found to be 148.37 mg/g, 78.68 mg/g and 68.56 mg/g for Cd(II) as well as 224.67 mg/g, 122.37 mg/g and 88.26 mg/g for Hg(II), respectively. For Cd(II) and Hg(II) ions, the order of affinity of the biosorbents was arranged as NaOH‐treated > heat‐inactivated > active. The order of the amount of metal ions adsorbed was established as Hg(II) > Cd(II) on a weight basis, and as Cd(II) > Hg(II) on a molar basis. Biosorption equilibriums were established in about 60 min. The effect of the pH was also investigated, and maximum rates of biosorption of metal ions on the three different forms of Phanerochaete chrysosporium were observed at pH 6.0. The reusability experiments and synthetic wastewater studies were carried out with the most effective form, i.e., the NaOH‐treated Phanerochaete chrysosporium biomass. It was observed that the biosorbent could be regenerated using 10 mM HCl solution, with a recovery of up to 98%, and it could be reused in five biosorption‐desorption cycles without any considerable loss in biosorption capacity. The alkali‐treated Phanerochaete chrysosporium removed 73% of Cd(II) and 81% of Hg(II) ions from synthetic wastewater.  相似文献   

9.
The ability of the brown seaweed, Turbinaria conoides to absorb rhodamine B (RB) from aqueous solution was investigated in a batch system. The effects of various experimental parameters (e.g., morphology, initial dye concentration, temperature, and pH) were investigated and optimal experimental condition was ascertained. The results revealed that sorption capacity of T. conoides increased with increasing temperature, and decreasing initial dye concentration and pH. Sorption equilibrium studies using Langmuir and Freundlich models demonstrated that RB biosorption fitted well to the Langmuir isotherm. This study suggested that T. conoides can be used as a potential biosorbent for the removal of RB from wastewater.  相似文献   

10.
The present study reports the feasibility of using Rhodotorula glutinis biomass as an alternative low-cost biosorbent to remove Ni(II) ions from aqueous solutions. Acetone-pretreated R. glutinis cells showed higher Ni(II) biosorption capacity than untreated cells at pH values ranging from 3 to 7.5, with an optimum pH of 7.5. The effects of other relevant environmental parameters, such as initial Ni(II) concentration, shaking contact time and temperature, on Ni(II) biosorption onto acetone-pretreated R. glutinis were evaluated. Significant enhancement of Ni(II) biosorption capacity was observed by increasing initial metal concentration and temperature. Kinetic studies showed that the kinetic data were best described by a pseudo-second-order kinetic model. Among the two-, three-, and four-parameter isotherm models tested, the Fritz-Schluender model exhibited the best fit to experimental data. Thermodynamic parameters (activation energy, and changes in activation enthalpy, activation entropy, and free energy of activation) revealed that the biosorption of Ni(II) ions onto acetone-pretreated R. glutinis biomass is an endothermic and non-spontaneous process, involving chemical sorption with weak interactions between the biosorbent and Ni(II) ions. The high sorption capacity (44.45 mg g−1 at 25°C, and 63.53 mg g−1 at 70°C) exhibited by acetone-pretreated R. glutinis biomass places this biosorbent among the best adsorbents currently available for removal of Ni(II) ions from aqueous effluents.  相似文献   

11.
《农业工程》2023,43(1):72-81
Fluoride contamination in groundwater is a major concern in many parts of India and all over the world. Researches paying attention for the removal of fluoride through the application of biosorbents prepared from different parts of plants are finding greater scope and importance. The present research work focuses on Senna auriculata L., flower petal biomass as biosorbent, and evaluated its feasibility for fluoride ion elimination from aqueous solutions. Batch experiments were conducted to remove fluoride under different experimental conditions have been optimized for the maximum removal of fluoride; 80% removal was observed at pH: 6, sorbent dosage: 0.25 g/100 mL, time of agitation: 90 min, and initial concentration of the fluoride ions: 5 mg/L. Characterization studies of the biosorbent revealed its favorability towards the sorption of fluoride. In the isothermal modeling studies, Langmuir isotherm model was obeyed by the biosorption process with R2 value of 0.98 and from a kinetic perspective, the biosorption of fluoride onto the biosorbent observed the pseudo-second-order reaction with R2 value of 0.98. The developed biosorbent has been applied to real field fluoride-contaminated water samples and found to be successful.  相似文献   

12.
This study investigates the equilibrium, kinetics and thermodynamics of Nickel(II) biosorption from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass. The optimum biosorption conditions like pH, contact time, biomass dosage, initial metal ion concentration and temperaturewere determined in the batch method. The biosorbent was characterized by FTIR, SEM and BET surface area analysis. The experimental data were analyzed in terms of pseudo-first-order, pseudo-secondorder and intraparticle diffusion kinetic models, further it was observed that the biosorption process of Ni(II) ions closely followed pseudo-second-order kinetics. The equilibrium data of Ni(II) ions at 303, 313, and 323 K were fitted to the Langmuir and Freundlich isotherm models. Langmuir isotherm provided a better fit to the equilibrium data andthe maximum monolayer biosorption capacity of the T. versicolor(rainbow) biomass for Ni(II) was 212.5 mg/g at pH 4.0. The calculated thermodynamic parameters, ΔG, ΔH, and ΔS, demonstrated that the biosorption of Ni(II) ions onto the T. versicolor (rainbow) biomass was feasible, spontaneous and endothermic at 303 ~ 323 K. The performance of the proposed fungal biosorbent was also compared with that of many other reported sorbents for Nickel(II) removal and it was observed that the proposed biosorbent is effective in terms of its high sorption capacity.  相似文献   

13.
以土生鳞伞(Pholiota terrestris Overh.)子实体为生物吸附剂吸附水溶液中的Cd2+,分析吸附剂用量、初始pH值、初始重金属浓度、反应时间这4个因素对吸附的影响,并采用Langmuir和Freundlich等温吸附模型及准一级、准二级动力学模型拟合土生鳞伞的生物吸附特性.结果表明:水溶液中Cd2+...  相似文献   

14.
Biosorption of zinc by fungal mycelial wastes   总被引:11,自引:0,他引:11  
Summary Waste mycelia from several industrial fermentation plants (Aspergillus niger, Penicillium chrysogenum, Claviceps paspali) were used as a biosorbent for zinc ions from aqueous environments, both batchwise as well as in a column mode. With all mycelia testes, biosorption per biomass dry weight was a function of pH (increasing with increasing pH between 1.0 and 9.0), biomass concentration (decreasing at high biomass concentrations) and the zinc concentration. Under optimized conditions, A. niger and C. paspali were superior to P. chrysogenum. Treatment of A. niger biomass with NaOH further increased its biosorbent capacity. Desorption of biosorbed zinc was achieved by elution with 0.1 m HCl, best results being obtained with NaOH-treated A. niger. Such treatment did not affect the capacity for biosorption in repeated experiments. NaOH-treated A. niger mycelia were also successfully used in removal of zinc from polluted waters in Austria, thereby showing that the simultaneous presence of other naturally occurring ions does not affect biosorption. Offprint requests to: C. P. Kubicek  相似文献   

15.
AIMS: The aim was to develop a new, efficient and cost-effective biosorbent for the removal of heavy metals from aqueous solution. METHODS AND RESULTS: A new biosorbent was developed by immobilizing a unicellular green microalga Chlorella sorokiniana within luffa sponge discs and used for the removal of metal ions from aqueous solution. Microalgal-luffa sponge immobilized discs (MLIDs) removed Ni(II) very rapidly, with 97% of equilibrium loading being reached in 5 min. MLIDs were tested for their potential to remove Ni(II) from aqueous solution in fixed-bed column bioreactor. The regenerated MLIDs retained 92.9% of the initial binding capacity for Ni(II) up to five cycles of reuse. CONCLUSIONS: In this study for the first time, C. sorokiniana biomass immobilized within luffa sponge disc was successfully used as a metal biosorbent for the removal of Ni(II). It appears that MLIDs can be used as an effective biosorbent for efficient removal of Ni(II) or other metals from aqueous solution. SIGNIFICANCE AND IMPACT OF THE STUDY: MLIDs biosorption system was shown to have good biosorption properties with respect to Ni(II). Efficient metal removal ability of MLIDs, low cost and simplicity of the technique used for the preparation of MILDs could provide an attractive strategy for developing high-affinity biosorption system for heavy metal removal.  相似文献   

16.
Abstract

Biosorption technology has been acknowledged as one of the most successful treatment approaches for colored industrial effluents. The problems such as its high manufacturing cost and poor regeneration capability in the use of activated carbon as a biosorbent have prompted the environmental scientists to develop alternative biosorbent materials. In this context, as a sustainable green generation alternative biosorbent source, the discarded seed biomass from pepper (Capsicum annuum L.) processing industry was explored for the biotreatment of colored aqueous effluents in this study. To test the wastewater cleaning ability of biosorbent, Basic red 46 was selected as a typical model synthetic dye. Taguchi DoE methodology was employed to study the effect of important operational parameters, contact time, pH and synthetic dye concentration, on the biosorption process and to develop a mathematical model for the estimation of biosorption potential of biosorbent. The percentage contribution of each of these process variables on the dye biosorption was found to be 19.31%, 41.39%, and 38.74%, respectively. The biosorption capacity under the optimum environmental conditions, contact time of 360?min, pH of 8 and dye concentration of 30?mg L?1, was estimated to be 92.878?mg g?1 (R2: 99.45). This value was very close to the experimentally obtained dye removal performance value (92.095?mg g?1). These findings indicated the high ability of Taguchi DoE technique in the optimization and simulation of dye biosorption system. The kinetic and equilibrium modeling studies showed that the pseudo-second-order and Langmuir models were the best models for the elucidation of dye removal behavior of biosorbent. The thermodynamic studies displayed that the dye biosorption was a feasible, spontaneous and exothermic process. This parametric and phenomenological survey revealed that the discarded pepper seed biomass can be introduced as a potential and efficient biosorbent for the bioremediation of colored industrial effluents.  相似文献   

17.
Yang F  Liu H  Qu J  Paul Chen J 《Bioresource technology》2011,102(3):2821-2828
A new biosorbent - Sargassum sp. encapsulated with epichlorohydrin (ECH) cross-linked chitosan (CS) was investigated for nickel ions removal. The prepared biosorbent with Sargassum sp. to cross-linked chitosan of 3 (weight ratio) had the highest sorption capacity. The biosorption kinetics can be well fitted by the diffusion-controlled model. The organic leaching of CS was 77-88% less than that of algae at different pH. The biosorption capacity of nickel on CS was much higher than that of cross-linked chitosan (CLC) bead and lower than that of raw algae due to encapsulation. In addition, the reusability of CS was further evaluated and confirmed through five adsorption-desorption cycles. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the nickel ions sequestration mechanism included ion exchange and nickel complexation with the carboxyl, amino, alcoholic and ether groups in CS.  相似文献   

18.
Laboratory investigation of the potential use of Penicillium sp. as biosorbent for the removal of acid violet dye from aqueous solution was studied with respect to pH, temperature, biosorbent, initial dye concentrations. Penicillium sp. decolourizes acid violet (30 mg l−1) within 12 h agitation of 150 rpm at pH 5.7 and temperature of 35 °C. The pellets exhibited a high dye adsorption capacity (5.88 mg g−1) for acid violet dye over a pH range (4–9); the maximum adsorption was obtained at pH 5.7. The increase of temperature favored biosorption for acid violet, but the optimum temperature was 35 °C. Adsorption kinetic data were tested using pseudo-first-order, pseudo-second-order and kinetic studies showed that the biosorption process follows pseudo-first-order rate kinetics with an average rate constant of 0.312 min−1. Isotherm experiments were conducted to determine the sorbent–desorption behavior of examined dye from aqueous solutions using Langmuir and Freundlich equations. Langmuir parameter indicated a maximum adsorption capacity of 4.32 mg g−1 for acid violet and RL value of 0.377. Linear plot of log qe vs log Ce shows that applicability of Freundlich adsorption isotherm model. These results suggest that this fungus can be used in biotreatment process as biosorbent for acid dyes.  相似文献   

19.
Biosorption is an eco-friendly and cost-effective method for treating the dye house effluents. Aspergillus niger and Trichoderma sp. were cultivated in bulk and biomasses used as biosorbents for the biosorption of an azo dye Orange G. Batch biosorption studies were performed for the removal of Orange G from aqueous solutions by varying the parameters like initial aqueous phase pH, biomass dosage, and initial dye concentration. It was found that the maximum biosorption was occurred at pH 2. Experimental data were analyzed by model equations such as Langmuir and Freundlich isotherms, and it was found that both the isotherm models best fitted the adsorption data. The monolayer saturation capacity was 0.48 mg/g for Aspergillus niger and 0.45 mg/g for Trichoderma sp. biomasses. The biosorption kinetic data were tested with pseudo first-order and pseudo second-order rate equations, and it was found that the pseudo second-order model fitted the data well for both the biomasses. The rate constant for the pseudo second-order model was found to be 10–0.8 (g/mg min−1) for Aspergillus niger and 8–0.4 (g/mg min−1) for Trichoderma sp. by varying the initial dye concentrations from 5 to 25 mg/l. It was found that the biomass obtained from Aspergillus niger was a better biosorbent for the biosorption of Orange G dye when compared to Trichoderma sp.  相似文献   

20.
Abstract

The present study aims at evaluating a batch scale biosorption potential of Moringa oleifera leaves (MOL) for the removal of Pb(II) from aqueous solutions. The MOL biomass was characterized by FTIR, SEM, EDX, and BET. The impact of initial concentrations of Pb (II), adsorbent dosage, pH, contact time, coexisting inorganic ions (Ca2+, Na+, K+, Mg2+, CO32?, HCO3?, Cl?), electrical conductivity (EC) and total dissolved salts (TDS) in water was investigated. The results revealed that maximum biosorption (45.83?mg/g) was achieved with adsorbent dosage 0.15?g/100?mL while highest removal (98.6%) was obtained at adsorbent biomass 1.0?g/100?mL and pH 6. The presence of coexisting inorganic ions in water showed a decline in Pb(II) removal (8.5% and 5%) depending on the concentrations of ions. The removal of Pb(II) by MOL decreased from 97% to 89% after five biosorption/desorption cycles with 0.3?M HCl solution. Freundlich model yielded a better fit for equilibrium data and the pseudo-second-order well described the kinetics of Pb(II) biosorption. FTIR spectra showed that –OH, C–H, –C–O, –C?=?O, and –O–C functional groups were involved in the biosorption of Pb(II). The change in Gibbs free energy (ΔG = ?28.10?kJ/mol) revealed that the biosorption process was favorable and thermodynamically driven. The results suggest MOL as a low cost, environment-friendly alternative biosorbent for the remediation of Pb(II) contaminated water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号