首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adult female golden hamsters were induced to superovulate. When they were mated several hours prior to ovulation or artificially inseminated about the time of ovulation, nearly 100% of their eggs were subsequently fertilized monospermically. During the progression of fertilization when the eggs were still surrounded by compact cumulus oophorus, the contents of the ampullary region of the oviducts were collected and spermatozoa moving in the ampullary fluid, within the cumulus and on/in the zonae pellucidae of unfertilized eggs, were examined by light and electron microscopy to evaluate the status of their acrosomal caps. Most spermatozoa swimming in the ampullary fluid had apparently intact acrosomal caps, while the vast majority moving within the cumulus had distinctly modified acrosomal caps. Most spermatozoa that had passed through the cumulus and reached the zona surfaces had remnants of their acrosomal caps (“acrosomal ghosts”). When the ghosts were present around the sperm heads on the zona, the heads pivoted about a point roughly corresponding to the places where the ghosts were located. The ghosts seemed to firmly attach to the zona surfaces, then were split open by the sperm heads and left behind as the sperm heads advanced into the zona. A few spermatozoa on the zona surfaces had no acrosomal ghosts (at least not detectable by light microscopy). In this case, the sperm head pivoted about either the inner acrosomal membrane or the equatorial segment of the acrosome. In no instance were spermatozoa with intact acrosomal caps found on zona surfaces. We infer from these observations that most spermatozoa in vivo initiate their acrosome reactions while they are advancing through the cumulus. When they arrive at the zona surfaces, acrosomal ghosts are generally present on the sperm heads. These ghosts appear to hold sperm heads to zona surfaces as well as to restrict the direction of advancement of sperm head through the zona. In a minority of cases, ghostless spermatozoa reach the zona surfaces. As these spermatozoa appear to be able to penetrate the zona successfully, structures other than the acrosomal ghost (ie, the inner acrosomal membrane and the plasma membrane over the equatorial segment of the acrosome) may also attach to zona surfaces before spermatozoa penetrate into the zona.  相似文献   

2.
The present study investigates whether a 5 hour capacitation period modifies the ability of human spermatozoa to undergo induced acrosomal loss. Human sperm acrosomal loss was induced by treatment with either the calcium ionophore A23187, low concentrations of the phospholipid dilauroylphosphatidylcholine (PC12), or 2 hours incubation in conditioned medium prepared from human cumulus cells (CM/CC). The use of a dual staining method (FITC-ConA and Hoechst 33258) for simultaneous assessment of acrosomal status and viability demonstrated that induction of acrosomal loss with calcium ionophore was not dependent on a capacitation period. A short (5 hour) incubation period was not sufficient to induce acrosomal loss with CM/CC above spontaneous acrosome reaction rates in medium alone. A significant capacitation-dependent increase (P < 0.05) in acrosomal loss was observed when human spermatozoa were incubated with PC12. Induction of acrosomal loss of capacitated human spermatozoa with PC12 therefore provides a simple assay for the simultaneous assessment of human sperm capacitation and the acrosome reaction in vitro.  相似文献   

3.
We have developed an inexpensive in vitro system for studying cumulus penetration and fertilization by using physiological numbers of sperm. This system simulates conditions believed to exist in vivo more closely than any in current usage. In this system, 1–100 hamster sperm are used to challenge fresh hamster oocyte-cumulus complexes (OCC). Only fresh (nonoviducal) OCC are used, as they present the most stringent challenge to sperm. Because sperm numbers are low, OCC do not disperse, and sperm can be studied microscopically during penetration of the cumulus oophorus and corona radiata. These conditions permit microscopic assessment of the sperm acrosome. Video tapes of experiments allow easy review and analysis of experiments. Results obtained employing this technique show that, in vitro, (1) capacitated, acrosome-intact hamster sperm can penetrate the extracellular matrix between cumulus cells and bind to the zona pellucida; (2) the “figure-eight motility” characteristic of hyperactivated hamster sperm swimming in culture medium is suppressed when sperm swim in the extracellular matrix between cumulus cells; and (3) fertilization occurs in capillary tubes when low numbers of sperm are used. The in vitro system that we have described will be useful in analyzing the mechanisms used by sperm to penetrate the cumulus and corona radiata and to clarify the role of the acrosomal enzymes in fertilization.  相似文献   

4.
Significant release of the acrosomal enzymes arylsulfatase, β-N-acetylhexosaminidase and hyaluronidase was observed following the treatment of ejaculated rabbit spermatozoa for 12 hours in 20% rabbit serum for inducing in vitro capacitation, and these sperm were capable of in vivo fertilization; however, the treatment of sperm for 15 minutes in high ionic strength (380 mOsm/kg) or low ionic strength medium (305 mOsm/kg) for in vitro capacitation did not result in any significant release of the above enzymes nor were the sperm capable of in vivo fertilization. Serum-treated spermatozoa remained significantly motile following the 12 hour treatment, 51% underwent the acrosome reaction and were capable of fertilizing 66% of the ova in vivo. Identical serum treatment of lysosomes from rabbit liver resulted in a comparable release of the lysosomal enzymes. Serum treatment for in vitro capacitation resulted in vesiculation of the anterior margin of half the spermatozoa, but left their inner acrosomal membranes and equatorial segments intact. A biochemical relationship between the release of acrosomal enzymes and capacitation is suggested.  相似文献   

5.
A system has been developed for inducing a calcium-dependent acrosome reaction in ram spermatozoa in vitro using the calcium ionophore A23187. The resultant reaction is accompanied by release of the acrosomal enzymes hyaluronidase and acrosin, but there is no release of the cytoplasmic enzyme glucose 6-phosphate isomerase. In any given cell, the visible acrosome reaction apparently takes place rapidly, but there is a variable delay before the reaction occurs. Under optimum conditions, about 90% of treated spermatozoa show an acrosome reaction within one hour. Preincubation of the spermatozoa with the proteinase inhibitors p-amino-benzamidine or p-nitrophenylguanidinobenzoate allows two stages of the reaction to be distinguished ultrastructurally, a membrane fusion stage followed by a dispersal of the acrosomal matrix. In the presence of the inhibitors, the first stage is delayed but is completed within 1 hour, whereas the second remains largely incomplete. In the presence of calcium, ionophore concentrations which induce an acrosome reaction abolish sperm motility rapidly and completely. However, by adding serum albumin shortly after addition of ionophore, motility can be preserved while the acrosome reaction occurs as usual; the motility pattern observed under these conditions is of the “whip-lash” or “activated” type. Although the motile ionophore-treated spermatozoa were unsuccessful at penetrating normal mature sheep oocytes in vitro, they were able to penetrate zona-free oocytes, after which swelling and decondensation of the sperm head took place.  相似文献   

6.
Living spermatozoa of seven mammalian species were treated with the thiol-alkylating fluorescent labelling compound, monobromobimane (MBBR). MB-labelling alone had no effect on sperm motility, nor on the time course or ability of golden hamster spermatozoa to undergo the acrosome reaction when capacitated in vitro. Exposure of MB-labelled spermatozoa to ultraviolet (UV) light and excitation of the MB fluorochrome resulted in virtually immediate immobilization of the spermatozoa without affecting acrosomal status. UV exposure of unlabelled spermatozoa for up to 30 sec had no effect upon motility. Immobilization of MB-labelled spermatozoa depended on the midpiece being irradiated, as irradiation of the head alone, or of the more distal parts of the principal piece, had little or no effect upon motility. Labelling with MB followed by immobilization of individually selected spermatozoa was most useful for detailing the course and site of occurrence of the acrosome reaction during penetration of the cumulus oophorus by golden hamster spermatozoa in vitro. In these often hyperactivated spermatozoa, precise determination of the acrosomal status could not often otherwise be made due to the difficulty in visualizing the acrosomal region of a vigorously thrashing, hyperactivated spermatozoon. This technique should prove valuable in a variety of studies on sperm motility, capacitation and fertilization, and could also be extended to other cell systems.  相似文献   

7.
We have compared the ability of uncapacitated, capacitated acrosome intact, and acrosome-reacted hamster sperm to penetrate the cumulus and corona radiata of fresh hamster oocyte-cumulus complexes (OCC) in vitro. This was done using physiological numbers (1-20) of sperm so that cumulus and corona radiata cells did not disperse during challenge. Uncapacitated sperm did not penetrate to the zona pellucida surface; most (74%) uncapacitated sperm bound to cumulus cells at the periphery of the OCC. Capacitated acrosome-intact sperm penetrated to the zona pellucida surface; a significant percentage of these sperm arrived at the zona pellucida without showing evidence of initiating an acrosome reaction. Most capacitated acrosome-reacted sperm did not enter the extracellular matrix between cumulus and corona radiata cells; those which did penetrated to the zona surface with difficulty, if at all. These results suggest that the changes which occur in the sperm surface during capacitation are more important than the acrosome reaction in enabling hamster sperm to penetrate the cumulus and corona radiata. The effects of gold sodium thiomalate (GST) and polyphloretin phosphate (PPP) (inhibitors of hyaluronidase) on penetration of the OCC by capacitated sperm were also examined. Both synthetic inhibitors blocked sperm penetration to the zona pellucida, but the effective concentrations of inhibitors were far in excess of what was needed to block hyaluronidase activity. Reasons for concluding that the action of these inhibitors is nonspecific are discussed. These data show that hamster sperm with intact acrosomes can penetrate the cumulus and corona radiata cell layers of fresh OCC in vitro and support the hypothesis that the acrosome reaction occurs on the zona pellucida surface.  相似文献   

8.
Mammalian sperm acrosomes contain a trypsin-like protease called acrosin which causes limited and specific hydrolysis of the extracellular matrix of the mammalian egg, the zona pellucida. Acrosin was localized on hamster, guinea-pig and human sperm using monoclonal and polyclonal antibodies to human acrosin labelled with colloidal gold. This was visualized directly with transmission electron microscopy, and with light and scanning microscopy after silver enhancement of the colloidal gold probe. Four distinct labelling patterns were found during capacitation and the acrosome reaction in hamster and guinea-pig spermatozoa, and three patterns were found in human spermatozoa. In the hamster, acrosin was not detected on the inner acrosomal surface after the completion of the acrosome reaction, thus correlating with the observation that hamster spermatozoa lose the ability to penetrate the zona after the acrosome reaction. With guinea-pig and human spermatozoa, acrosin was still detected after the completion of the acrosome reaction, thus correlating with the observation that acrosome reacted guinea-pig spermatozoa bind to and penetrate the zona pellucida.  相似文献   

9.
The effect of in vitro capacitation (events that occur before the acrosome reaction) on the acrosomal enzymes of human spermatozoa was determined. Capacitation of human spermatozoa was assessed by their ability to penetrate denuded hamster oocytes. The activities of a number of enzymes commonly associated with the sperm acrosome, including nonzymogen acrosin, proacrosin, inhibitor-bound acrosin, hyaluronidase, acid phosphatase, beta-glucuronidase, beta-glucosidase, beta-N-acetylglucosaminidase, beta-galactosidase and beta-N-acetylgalactosaminidase were assessed. With the exception of acid phosphatase, no alteration in enzyme activity occurred after 4 h of incubating the spermatozoa under capacitation conditions although gamete fusion took place. The acid phosphatase levels decreased twofold, presumably due to the loss of seminal (prostatic acid phosphatase that loosely adheres to spermatozoa. After 8 h of capacitation, a large decrease in sperm enzyme levels took place only in the case of hyaluronidase, although small decreases were also noted in total acrosin, proacrosin and inhibited acrosin. No new electrophoretically migrating forms of acrosin were observed. Decreases in total acrosin and proacrosin, but not in inhibited acrosin, also occurred when spermatozoa were incubated under noncapacitating conditions for 8 h, indicating that capacitation may specifically cause the release of some acrosin inhibitor from human spermatozoa. It is concluded that, with the possible exception of hyaluronidase, the in vitro capacitation of human spermatozoa does not cause a major change in its acrosomal enzyme content so that these hydrolases are fully present before the acrosome reaction takes place during gamete fusion. Serum albumin appears to protect against the loss of some of these enzymes since the activity of several glycosidases was significantly reduced when the spermatozoa were incubated for 8 h in human serum albumin-free medium.  相似文献   

10.
During mammalian fertilization sperm bind to the egg's zona pellucida (ZP) after undergoing capacitation. Capacitated mouse sperm bind to mZP3 (one of three ZP glycoproteins), undergo the acrosome reaction, penetrate the ZP, and fuse with egg plasma membrane. Sperm protein 56 (sp56), a member of the C3/C4 superfamily of binding proteins, was identified nearly 20 years ago as a binding partner for mZP3 by photoaffinity cross‐linking of acrosome‐intact sperm. However, subsequent research revealed that sp56 is a component of the sperm's acrosomal matrix and, for sperm with an intact acrosome, should be unavailable for binding to mZP3. Recently, this dilemma was resolved when it was recognized that some acrosomal matrix (AM) proteins, including sp56, are released to the sperm surface during capacitation. This may explain why uncapacitated mammalian sperm are unable to bind to the unfertilized egg ZP.  相似文献   

11.
Evaluation of relative fertility of cryopreserved goat sperm   总被引:1,自引:0,他引:1  
This study was designed to compare differences in the in vivo fertility of cryopreserved goat semen assessed by heterospermic insemination with differences in in vitro analyses. Five groups of does were inseminated with mixed frozen-thawed semen from different pairs of bucks. The percentage of offspring sired by each buck in the pair was compared with the relative ability of spermatozoa from that frozen-thawed ejaculate to penetrate zona-free hamster ova, relative post-thaw acrosomal integrity, ability to undergo an acrosome reaction during in vitro capacitation, and assessments of sperm motility. In 4 of the 5 different insemination pairs, the ratio of offspring born was other than 1:1. Acrosomal integrity, ability of spermatozoa to undergo an acrosome reaction, and parameters of sperm motility were not correlated with differences in relative fertility in this experiment using ejaculates from fertile bucks. The ability of spermatozoa to fuse with the oocyte plasma membrane was highly correlated with relative in vivo fertility (R(2) = 0.78, P = 0.04). This suggests that fusion with the oocyte plasma membrane is an event in the fertilization process in which significant variation exists among fertile bucks. Assessment of ability of spermatozoa to fuse with zona-free hamster ova may contribute to analysis of post-thaw fertility of frozen-thawed buck semen.  相似文献   

12.
Preserved stallion semen often has decreased spermatozoal motility and fertility that can vary significantly between individual stallions. It is not known whether the medium used for extending equine sperm contributes to these decreases by inducing premature capacitation during storage. If spermatozoa undergo capacitation or acrosome reaction prior to insemination, this could result in a diminished capacity to penetrate the cumulus mass and fertilize the egg. We hypothesized that skim milk-based semen extenders, similar to those used in cooled storage, stabilize sperm membranes and prolong sperm motility and longevity. However, this could decrease the efficiency of sperm to undergo subsequent capacitation in vivo. This study was designed to evaluate the effects from two media on sperm function. Spermatozoal motility was analyzed, intracellular calcium was measured, and the ability of sperm to undergo acrosome reaction was compared after incubation in a skim milk extender (SME) and Tyrode's medium containing albumin, lactate, and pyruvate (TALP) at 37 degrees C. Results suggest that the SME facilitated capacitation as detected by an increase in both intracellular calcium and acrosome reactions, and a decrease in motility, as compared to TALP. Our data support a shortened functional lifespan for equine sperm in skim milk extender, which indicates that further refinements in cooled semen preservation are required to improve fertility of transported equine semen.  相似文献   

13.
Freshly ovulated eggs are each surrounded by a compact cumulus oophorus. The overall diameter of the normal egg (including the zona pellucida) is about 100 μm. Cumulus cells, particularly those near the egg, are arranged redially in a viscous noncellular matrix. The spermatozoon is about 250 μm in length. The head a large acrosome, changes in which can be readily examined with the light (phase- contrast) microsope. When exposed to physiological salt solutions, testicular spermatozoa either were motionless or flexed the posterior half of their tails slowly. Spermatozoa from the caput epididymis were highly motile, flexing the entire tail. A few of them moved progressively. Mature spermatozoa from the vas deferens were highly motile and moved either straightforward or in a circle. They vibrated their tails stiffly without flexing them. In normally mated females, fertilization began sometime between 2 and 3 h after ovulation and was completed within the next 4 to 5 h. Spermatozoa swimming in the ampullary fluid or within the cumulus oophorus about the time of fertilization flexed the anterior half (which roughly corresponds to the midpieac region) of their tails. This peculiar movement may be homologous to the so-called “hyperactivation” of spermatozoa as reported in several other mammalian species. Actively motile spermatozoa within the cumulus or no the zona pellucida had either modified (“collapsed”) or no acrosomal caps. The sperm head usually passed verticually or nearly through the zona, but the path was oblique in some instances. In 54% of the recently fertilized eggs examined, the entire length of the sperm tail was within the perivitelline space; in the other 46% of the eggs varying lenghts of the tail remined the perivitelline space, the tails were extruded from the vitellus of many eggs even before the eggs began their first cleavage. When unfertilized eggs in the cumulus oophorus were inseminated with vas deferens spermatozoa in a modified Tyrode's solution (m-TALP), about 80% of them were ferrtilized by 4–6 h after insemination. The vast majority were monospermic. When eggs were freed from the cumulus prior to insemination, none were fertilized, suggesting that the cumulus cells or their matrix assisted capacitation and/or the acrosome reaction of the spermatozoa under the in vitro conditions employed. No eggs were fertilized by the testicular or caput epididymal spermatozoa regardless of the presence or absence of cumulus oophorus around the eggs at the time of insemination.  相似文献   

14.
Sperm penetration through oocyte investments in mammals   总被引:2,自引:0,他引:2  
Literature on the interactions between eutherian gametes is reviewed. The oocyte cumulus complex of the female is surrounded by a zona pellucida, corona radiata, and cumulus layer. Sperm undergo an acrosome reaction before penetrating the zona pellucida. The morphological consequences of this reaction and its possible role(s) in penetration of the oocyte cumulus complex are considered. The acrosomal enzyme, hyaluronidase, has been thought to aid sperm in penetrating the cumulus layer and corona radiata. Several recent investigations, including one that shows that motile cells lacking hyaluronidase can penetrate to the zona surface, do not support this idea. Other possible roles of this enzyme in fertilization are discussed. The development of in vitro fertilization systems that employ physiological numbers (1-100) of sperm will be valuable in studying the mechanisms used by sperm to penetrate the oocyte cumulus complex.  相似文献   

15.
Before fertilization, inseminated spermatozoa acquire the ability to fertilize an egg, a phenomenon called capacitation. Bovine sperm capacitation is influenced by factors originating from both the male and female genital tract, and results in intracellular and membrane changes of the spermatozoa that facilitate the induction of the acrosome reaction. However, the effects of reproductive tract secretions and capacitation on the binding of spermatozoa to the zona pellucida have not been investigated. In this study, a sperm-egg binding assay was used to determine whether the ability of bull spermatozoa to bind to the zona pellucida was altered during in vitro capacitation by heparin or oviductal fluid, or by treatment of spermatozoa from the cauda epididymidis with accessory sex gland fluid. In addition, biotinylated solubilized zona pellucida proteins were used to visualize zona binding on spermatozoa. The ability of bull spermatozoa to bind to the zona pellucida was increased after both heparin and oviductal fluid induced in vitro capacitation. Exposure of spermatozoa from the cauda epididymidis to accessory sex gland fluid resulted in a direct increase in zona binding ability, followed by a further increase during capacitation in vitro. Binding of solubilized zona proteins was restricted to the acrosomal cap of bull spermatozoa. It is suggested that the observed increased ability of bull spermatozoa to bind to the zona pellucida enables optimal sperm-egg attachment, which also relates to the induction of the acrosome reaction by the zona pellucida. Thus, increased zona binding ability is likely to be an essential part of the process of capacitation.  相似文献   

16.
Capacitation is the process by which mammalian sperm acquire the ability to undergo the acrosome reaction which, in turn, is a prerequisite for sperm-egg fusion and penetration. Until recently, it was thought that capacitation involved subtle physiological and chemical changes which had no morphological counterparts even at the electron microscopic level. However, it has now been shown by a number of investigators that material associated with the plasma membrane surface is either lost or extensively redistributed during in vitro or in vivo capacitation. We have made use of lectins and antibodies as probes of the sperm surface during capacitation and the acrosome reaction. Concanavalin A (Con A), wheat germ agglutinin (WGA) and soybean agglutinin (SBA) have been used in conjunction with fluorescent tags (FITC) and ultrastructural markers (ferritin, hemocyanin) to study the surface of golden hamster, guinea pig, mouse and human spermatozoa. Con A and WGA label the plasma membrane overlying the acrosomal region quite uniformly on these species. After capacitation there is a specific loss (or masking) of lectin binding sites over the acrosomal region of the sperm head in all species examined. Antibodies prepared against sperm and specific antibodies to a cell surface protein (fibronectin) were also tagged with fluorescent or ultrastructural markers and used to label the surfaces of sperm before and after capacitation. These probes also indicate a specific loss of surface associated material over the acrosomal surface after capacitation. These results are consistent with the notion that there is a general removal of surface components during capacitation and that this denuding of the surface is a prerequisite for the following membrane fusion events involved in the acrosome reaction and sperm-egg fusion.  相似文献   

17.
Following the discovery of mammalian sperm capacitation and its fundamental importance for the acquisition of fertilizing potential, it has gradually become possible to identify some specific molecules and molecular events that play pivotal roles in the “switching on” of spermatozoa. These are discussed in the context of the promotion and regulation of capacitation, emphasizing differences between commonly used conditions in vitro and the environment in vivo where spermatozoa normally undergo capacitation. Although typical culture media used in vitro do support capacitation, they do not prevent capacitated cells from undergoing spontaneous acrosome reactions and so losing fertilizing potential. This is not a problem in vitro, but could be in vivo where few spermatozoa reach the site of fertilization. Several small molecules, known to be present in vivo, have been shown in vitro to bind to spermatozoa and to regulate capacitation, first accelerating capacitation and then inhibiting spontaneous acrosome reactions, by regulating cAMP production. Since spermatozoa would contact these molecules during and after ejaculation, it is plausible that they serve a similar function in vivo. The mechanisms whereby the presence or absence of decapacitation factors might alter plasma membrane architecture and so alter functionality of a number of membrane‐associated enzymes involved in capacitation are also considered. Finally, several unresolved issues relating to events during capacitation are discussed. Mol. Reprod. Dev. 77: 197–208, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Oviductins are high-molecular-weight glycoproteins synthesized and secreted by nonciliated oviductal epithelial cells and have been shown to play a role in fertilization and early embryo development. The present study was carried out to examine the in vitro binding capacity of hamster oviductin to homologous sperm and to determine the sites of its localization in untreated, capacitated, and acrosome-reacted spermatozoa. Freshly prepared epididymal and capacitated sperm as well as acrosome-reacted sperm were incubated with oviductal fluid prepared from isolated hamster oviducts, fixed and then probed with a monoclonal antibody against hamster oviductin. Results obtained with pre-embedding immunolabeling experiments revealed binding of oviductin to the acrosomal cap and the apical aspect of the postacrosomal region. Immunolabeling of both regions appeared to be more intense in capacitated spermatozoa. Acrosome-reacted sperm showed an immunoreaction of moderate intensity over the postacrosomal region. The plasma membrane overlying the equatorial segment also exhibited a weak labeling. Quantitative analysis obtained with the surface replica technique indicated that oviductin had a higher binding affinity for the acrosomal cap than the postacrosomal region and that the binding of oviductin to the latter plasma membrane domain was enhanced during capacitation. Binding of oviductin to the postacrosomal region, however, was attenuated after acrosome reaction. Immunolabeling for oviductin was found to be the weakest over the equatorial segment regardless of the experimental conditions. The binding of hamster oviductin to specific membrane domains of the homologous sperm and the changes in its distribution during capacitation and acrosome reaction may be important for the function of hamster oviductin preceding and during fertilization.  相似文献   

19.
Caltrin is a small and basic protein of the seminal vesicle secretion that inhibits sperm calcium uptake. The influence of rat caltrin on sperm physiological processes related to fertilizing competence was studied by examining its effect on 1) spontaneous acrosomal exocytosis, 2) protein tyrosine phosphorylation, and 3) sperm-egg interaction. Results show that the presence of caltrin during in vitro capacitation both reduced the rate of spontaneous acrosomal exocytosis without altering the pattern of protein tyrosine phosphorylation, and enhanced the sperm ability to bind to the zona pellucida (ZP). The significantly higher proportion of sperm with intact acrosome observed in the presence of caltrin was accompanied by a strong inhibition in the acrosomal hyaluronidase release. Enhancement of sperm-ZP binding was evident by the increase in the percentage of eggs with bound spermatozoa as well as in the number of bound sperm per egg. Similar results were obtained when the assays were performed using spermatozoa preincubated with caltrin and then washed to remove the unbound protein, indicating that the sperm-bound caltrin was the one involved in both acrosomal exocytosis inhibition and sperm-ZP binding enhancement. Caltrin bound to the sperm head was partially released during the acrosomal exocytosis induced by Ca-ionophore A23187. Indirect immunofluorescence and immunoelectron microscopy studies revealed that caltrin molecules distributed on the dorsal sperm surface disappeared after ionophore exposure, whereas those on the ventral region remained in this localization after the treatment. The present data suggest that rat caltrin molecules bound to the sperm head during ejaculation prevent the occurrence of the spontaneous acrosomal exocytosis along the female reproductive tract. Consequently, more competent spermatozoa with intact and functional acrosome would be available in the oviduct to participate in fertilization.  相似文献   

20.
Over the past 40 years evidence from many sources has indicated that the mammalian acrosome reaction occurs within or near the cumulus oophorus. Recently, however, workers investigating in vitro fertilization in the mouse have concluded that in this system the acrosome reaction takes place on the surface of the zona pellucida. We have investigated the interaction of rat spermatozoa and the zona pellucida by using the scanning electron microscope (SEM) and two monoclonal antibodies which are directed to antigens of the rat sperm acrosome. When in vitro inseminated eggs from which the cumulus has been removed are viewed with the SEM some sperm heads on the surface of the zona pellucida appear unaltered whereas others appear to be undergoing changes. In vivo, all displayed altered head morphology. Using immunogold labeling we found that the two antibodies employed, 2C4 and 5B1, were directed to acrosomal content and vesiculating acrosomal membranes. Immunofluoresence staining of zonae pellucidae in in vitro fertilization studies revealed numerous small positive regions. These were presumably acrosomal content and membranes which had been left on the zona surface by spermatozoa which had been associated with the zona surface. Our results suggest that the rat acrosome interacts with the zona pellucida. During this interaction some acrosomal content and membranes detach from the spermatozoon and remain on the surface of the zona pellucida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号