首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Strigolactones are a new class of plant hormones that play a key role in regulating shoot branching. Studies of branching mutants in Arabidopsis, pea, rice and petunia have identified several key genes involved in strigolactone biosynthesis or signaling pathway. In the model plant Arabidopsis, MORE AXILLARY GROWTH1 (MAX1), MAX2, MAX3 and MAX4 are four founding members of strigolactone pathway genes. However, little is known about the strigolactone pathway genes in the woody perennial plants.

Methodology/Principal Finding

Here we report the identification of MAX homologues in the woody model plant Populus trichocarpa. We identified the sequence homologues for each MAX protein in P. trichocarpa. Gene expression analysis revealed that Populus MAX paralogous genes are differentially expressed across various tissues and organs. Furthermore, we showed that Populus MAX genes could complement or partially complement the shoot branching phenotypes of the corresponding Arabidopsis max mutants.

Conclusion/Significance

This study provides genetic evidence that strigolactone pathway genes are likely conserved in the woody perennial plants and lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.  相似文献   

3.
4.
Genetic adaptation, occurring over a long evolutionary time, enables host-specialized herbivores to develop novel resistance traits and to efficiently counteract the defenses of a narrow range of host plants. In contrast, physiological acclimation, leading to the suppression and/or detoxification of host defenses, is hypothesized to enable broad generalists to shift between plant hosts. However, the host adaptation mechanisms used by generalists composed of host-adapted populations are not known. Two-spotted spider mite (TSSM; Tetranychus urticae) is an extreme generalist herbivore whose individual populations perform well only on a subset of potential hosts. We combined experimental evolution, Arabidopsis thaliana genetics, mite reverse genetics, and pharmacological approaches to examine mite host adaptation upon the shift of a bean (Phaseolus vulgaris)-adapted population to Arabidopsis. We showed that cytochrome P450 monooxygenases are required for mite adaptation to Arabidopsis. We identified activities of two tiers of P450s: general xenobiotic-responsive P450s that have a limited contribution to mite adaptation to Arabidopsis and adaptation-associated P450s that efficiently counteract Arabidopsis defenses. In approximately 25 generations of mite selection on Arabidopsis plants, mites evolved highly efficient detoxification-based adaptation, characteristic of specialist herbivores. This demonstrates that specialization to plant resistance traits can occur within the ecological timescale, enabling the TSSM to shift to novel plant hosts.

Mites can evolve highly efficient detoxification-based adaptation in approximately 25 generations on an initially unfavorable plant host, revealing that specialization can occur within the ecological timescale.  相似文献   

5.
6.
Yellow-seed (i.e., yellow seed coat) is one of the most important agronomic traits of Brassica plants, which is correlated with seed oil and meal qualities. Previous studies on the Brassicaceae, including Arabidopsis and Brassica species, proposed that the seed-color trait is correlative to flavonoid and lignin biosynthesis, at the molecular level. In Arabidopsis thaliana, the oxidative polymerization of flavonoid and biosynthesis of lignin has been demonstrated to be catalyzed by laccase 15, a functional enzyme encoded by the AtTT10 gene. In this study, eight Brassica TT10 genes (three from B. napus, three from B. rapa and two from B. oleracea) were isolated and their roles in flavonoid oxidation/polymerization and lignin biosynthesis were investigated. Based on our phylogenetic analysis, these genes could be divided into two groups with obvious structural and functional differentiation. Expression studies showed that Brassica TT10 genes are active in developing seeds, but with differential expression patterns in yellow- and black-seeded near-isogenic lines. For functional analyses, three black-seeded B. napus cultivars were chosen for transgenic studies. Transgenic B. napus plants expressing antisense TT10 constructs exhibited retarded pigmentation in the seed coat. Chemical composition analysis revealed increased levels of soluble proanthocyanidins, and decreased extractable lignin in the seed coats of these transgenic plants compared with that of the controls. These findings indicate a role for the Brassica TT10 genes in proanthocyanidin polymerization and lignin biosynthesis, as well as seed coat pigmentation in B. napus.  相似文献   

7.
Cytochromes P450 in the biosynthesis of glucosinolates and indole alkaloids   总被引:1,自引:0,他引:1  
Characteristic of cruciferous plants is the synthesis of nitrogen- and sulfur-rich compounds, such as glucosinolates and indole alkaloids. The intact glucosinolates have limited biological activity, but give rise to an array of bio-active breakdown products when hydrolysed by endogenous β-thioglucosidases (myrosinases) upon tissue disruption. Both glucosinolates and indole alkaloids constitute an important part of the defence of plants against herbivores and pathogens, with the difference that a basal level of glucosinolates is ever-present in the plant whereas indole alkaloids are true phytoalexins that are de novo synthesised upon pathogen attack. With the completion of the genome sequence of the model plant, Arabidopsis thaliana, which is a crucifer, many genes involved in the biosynthesis of glucosinolates and indole alkaloids have been identified and cytochromes P450 are key players in these pathways. In the present review, we will focus on the cytochromes P450 in the biosynthesis of both groups of compounds. Their functional roles and regulation will be discussed.  相似文献   

8.
We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake.  相似文献   

9.
Tholl D  Sohrabi R  Huh JH  Lee S 《Phytochemistry》2011,72(13):1635-1646
Volatile organic compounds emitted by plants mediate a variety of interactions between plants and other organisms. The irregular acyclic homoterpenes, 4,8-dimethylnona-1,3,7-triene (DMNT) and 4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), are among the most widespread volatiles produced by angiosperms with emissions from flowers and from vegetative tissues upon herbivore feeding. Special attention has been placed on the role of homoterpenes in attracting parasitoids and predators of herbivores and has sparked interest in engineering homoterpene formation to improve biological pest control. The biosynthesis of DMNT and TMTT proceeds in two enzymatic steps: the formation of the tertiary C15-, and C20-alcohols, (E)-nerolidol and (E,E)-geranyl linalool, respectively, catalyzed by terpene synthases, and the subsequent oxidative degradation of both alcohols by a single cytochrome P450 monooxygenase (P450). In Arabidopsis thaliana, the herbivore-induced biosynthesis of TMTT is catalyzed by the concerted activities of the (E,E)-geranyllinalool synthase, AtGES, and CYP82G1, a P450 of the so far uncharacterized plant CYP82 family. TMTT formation is in part controlled at the level of AtGES expression. Co-expression of AtGES with CYP82G1 at wound sites allows for an efficient conversion of the alcohol intermediate. The identified homoterpene biosynthesis genes in Arabidopsis and related genes from other plant species provide tools to engineer homoterpene formation and to address questions of the regulation and specific activities of homoterpenes in plant-herbivore interactions.  相似文献   

10.
Indole glucosinolates, derived from the amino acid Trp, are plant secondary metabolites that mediate numerous biological interactions between cruciferous plants and their natural enemies, such as herbivorous insects, pathogens, and other pests. While the genes and enzymes involved in the Arabidopsis thaliana core biosynthetic pathway, leading to indol-3-yl-methyl glucosinolate (I3M), have been identified and characterized, the genes and gene products responsible for modification reactions of the indole ring are largely unknown. Here, we combine the analysis of Arabidopsis mutant lines with a bioengineering approach to clarify which genes are involved in the remaining biosynthetic steps in indole glucosinolate modification. We engineered the indole glucosinolate biosynthesis pathway into Nicotiana benthamiana, showing that it is possible to produce indole glucosinolates in a noncruciferous plant. Building upon this setup, we demonstrate that all members of a small gene subfamily of cytochrome P450 monooxygenases, CYP81Fs, are capable of carrying out hydroxylation reactions of the glucosinolate indole ring, leading from I3M to 4-hydroxy-indol-3-yl-methyl and/or 1-hydroxy-indol-3-yl-methyl glucosinolate intermediates, and that these hydroxy intermediates are converted to 4-methoxy-indol-3-yl-methyl and 1-methoxy-indol-3-yl-methyl glucosinolates by either of two family 2 O-methyltransferases, termed indole glucosinolate methyltransferase 1 (IGMT1) and IGMT2.  相似文献   

11.
PHYL1 and SAP54 are orthologs of pathogenic effectors of Aster yellow witches’-broom (AYWB) phytoplasma and Peanut witches’-broom (PnWB) phytoplasma, respectively. These effectors cause virescence and phyllody symptoms (hereafter leafy flower) in phytoplasma-infected plants. T0 lines of transgenic Arabidopsis expressing the PHYL1 or SAP54 genes (PHYL1 or SAP54 plants) show a leafy flower phenotype and result in seedless, suggesting that PHYL1 and SAP54 interfere with reproduction stage that restrict gain-of-function studies in the next generation of transgenic plants. Turnip mosaic virus (TuMV) mild strain (TuGK) has an Arg182Lys mutation in the helper-component proteinase (HC-ProR182K) that blocks suppression of the miRNA pathway and prevents symptom development in TuGK-infected plants. We exploited TuGK as a viral vector for gain-of-function studies of PHYL1 and SAP54 in Arabidopsis plants. TuGK-PHYL1- and TuGK-SAP54-infected Arabidopsis plants produced identical leafy flower phenotypes and similar gene expression profiles as PHYL1 and SAP54 plants. In addition, the leafy flower formation rate was enhanced in TuGK-PHYL1- or TuGK-SAP54-infected Arabidopsis plants that compared with the T0 lines of PHYL1 plants. These results provide more evidence and novel directions for further studying the mechanism of PHYL1/SAP54-mediated leafy flower development. In addition, the TuGK vector is a good alternative in transgenic plant approaches for rapid gene expression in gain-of-function studies.  相似文献   

12.
13.
An essential step in the biosynthesis of bioactive brassinosteroids (BRs) in plants is the hydroxylation at C-22, a reaction catalyzed by P450 enzymes of the CYP90B and CYP724B subfamilies. Genes for both types of enzymes are present in many species, and in rice (Oryza sativa) and tomato (Solanum lycopersicum) both CYP90B and CYP724B enzymes contribute to C-22 hydroxylation. In Arabidopsis (Arabidopsis thaliana), C-22 hydroxylation of BRs is catalyzed by CYP90B1 (encoded by DWF4) and null dwf4 mutants show severe symptoms of BR-deficiency. CYP724A1 (At5g14400), an Arabidopsis gene of unknown function and limited expression, encodes a P450 sharing less than 55% sequence identity to CYP724B proteins. We used transgenic plants of the null mutants dwf4-102 and a novel allele, bashful (bsf), ectopically expressing the CYP724A1 gene to investigate the potential activity of CYP724A1 as a C-22 hydroxylase of BRs. Defects associated with BR deficiency were reversed and a normal growth habit restored in transgenic dwf4-102 and bsf plants overexpressing CYP724A1. The vegetative phase was prolonged and the transgenic plants were on average larger than wild type plants with respect to several morphometric parameters. Fertility was restored in the transgenic plants but individual siliques yielded fewer and heavier seeds than those of wild type plants. The implications of these findings with regard to the functions of CYP724A1 and the activity of its encoded enzyme are discussed.  相似文献   

14.
15.
The Arabidopsis rugosa1 (rug1) mutant has irregularly shaped leaves and reduced growth. In the absence of pathogens, leaves of rug1 plants have spontaneous lesions reminiscent of those seen in lesion-mimic mutants; rug1 plants also express cytological and molecular markers associated with defence against pathogens. These rug1 phenotypes are made stronger by dark/light transitions. The rug1 mutant also has delayed flowering time, upregulation of the floral repressor FLOWERING LOCUS C (FLC) and downregulation of the flowering promoters FT and SOC1/AGL20. Vernalization suppresses the late flowering phenotype of rug1 by repressing FLC. Microarray analysis revealed that 280 nuclear genes are differentially expressed between rug1 and wild type; almost a quarter of these genes are involved in plant defence. In rug1, the auxin response is also affected and several auxin-responsive genes are downregulated. We identified the RUG1 gene by map-based cloning and found that it encodes porphobilinogen deaminase (PBGD), also known as hydroxymethylbilane synthase, an enzyme of the tetrapyrrole biosynthesis pathway, which produces chlorophyll, heme, siroheme and phytochromobilin in plants. PBGD activity is reduced in rug1 plants, which accumulate porphobilinogen. Our results indicate that Arabidopsis PBGD deficiency impairs the porphyrin pathway and triggers constitutive activation of plant defence mechanisms leading to leaf lesions and affecting vegetative and reproductive development.  相似文献   

16.
17.
AtCBR, a cDNA encoding NADH-cytochrome (Cyt) b5 reductase, and AtB5-A and AtB5-B, two cDNAs encoding Cyt b5, were isolated from Arabidopsis. The primary structure deduced from the AtCBR cDNA was 40% identical to those of the NADH-Cyt b5 reductases of yeast and mammals. A recombinant AtCBR protein prepared using a baculovirus system exhibited typical spectral properties of NADH-Cyt b5 reductase and was used to study its electron-transfer activity. The recombinant NADH-Cyt b5 reductase was functionally active and displayed strict specificity to NADH for the reduction of a recombinant Cyt b5 (AtB5-A), whereas no Cyt b5 reduction was observed when NADPH was used as the electron donor. Conversely, a recombinant NADPH-Cyt P450 reductase of Arabidopsis was able to reduce Cyt b5 with NADPH but not with NADH. To our knowledge, this is the first evidence in higher plants that both NADH-Cyt b5 reductase and NADPH-Cyt P450 reductase can reduce Cyt b5 and have clear specificities in terms of the electron donor, NADH or NADPH, respectively. This substrate specificity of the two reductases is discussed in relation to the NADH- and NADPH-dependent activities of microsomal fatty acid desaturases.  相似文献   

18.
19.
The investigation of plant cytochrome P450 genes and enzymes is a field of growing interest. Apparently, an even greater diversity of cytochrome P450 genes exists in plants in comparison to other eukaryotes. This may be due to their role in the biosynthesis of secondary metabolites that are present in plants in an enormous variety. Most cloning approaches are hampered by the large sequence diversity of plant cytochrome P450 genes. We present a method to clone divergent cytochrome P450 ESTs by a nested RT-PCR-strategy. These ESTs were used for the subsequent cloning of the corresponding full-size cDNAs of divergent families via cDNA-library screening. Sixteen cytochrome P450 genes belonging to different cytochrome P450-families have been identified in this way, proving the efficacy of the strategy. Received: 1 December 2000 / Accepted: 26 February 2001  相似文献   

20.
Data mining methods have been used to identify 356 Cyt P450 genes and 99 related pseudogenes in the rice (Oryza sativa) genome using sequence information available from both the indica and japonica strains. Because neither of these genomes is completely available, some genes have been identified in only one strain, and 28 genes remain incomplete. Comparison of these rice genes with the 246 P450 genes and 26 pseudogenes in the Arabidopsis genome has indicated that most of the known plant P450 families existed before the monocot-dicot divergence that occurred approximately 200 million years ago. Comparative analysis of P450s in the Pinus expressed sequence tag collections has identified P450 families that predated the separation of gymnosperms and flowering plants. Complete mapping of all available plant P450s onto the Deep Green consensus plant phylogeny highlights certain lineage-specific families maintained (CYP80 in Ranunculales) and lineage-specific families lost (CYP92 in Arabidopsis) in the course of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号