首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation.  相似文献   

3.
4.
Hereditary persistence of fetal hemoglobin (HPFH) is a condition characterized by the continued expression of the fetal globin gene in adulthood. Both deletional and nondeletional forms have been described. We studied one Japanese family with two different nondeletional forms of HPFH. Analysis of polymorphic restriction sites in the beta-globin gene cluster suggested that one affecting both G gamma and A gamma globin expression in two members of the family could be associated with unknown conditions not linked to the beta-globin gene loci. Characterization by the polymerase chain reaction (PCR) of another form producing a G gamma-HPFH phenotype in two other members demonstrated a novel C-T transition at the nucleotide -114 within the distal CCAAT motif of the G gamma-globin gene. Using gel retardation assays on various nuclear extracts, we also demonstrated that this novel mutation abolishes the binding of the ubiquitous CCAAT binding factor, CP1 to the distal CCAAT motif of the gamma-globin gene but does not affect the binding of any erythroid specific factor, thereby suggesting a possible role for CP1 in the developmental regulation of fetal globin expression.  相似文献   

5.
6.
Point mutations in G gamma and A gamma globin gene promoters are associated with increased production of G gamma and A gamma globin, respectively. To determine whether an upstream promoter mutation could account for elevated A gamma in a Black adolescent with A gamma-beta+-HPFH and sickle cell trait, we cloned the 13 kb BglII fragment containing both gamma genes into phage lambda vector EMBL3. For one clone, the A gamma upstream promoter showed no hybridization to a 19 bp oligonucleotide whose sequence centered at -117. A gamma promoter sequence data for this mutant clone revealed a 13 bp deletion which eliminated the A gamma distal CCAAT box. Amplified A gamma genomic DNA of this and a similar case showed hybridization to both deletion-mutant and normal oligonucleotide probes. We propose that this 13 bp deletion removes part of the binding site for a repressor protein which is abundant in adult erythroid cells.  相似文献   

7.
We have mapped the globin gene region in the DNA of two HPFH patients. In a patient homozygous for the G gamma A gamma type of HPFH at least 24 kb of DNA in the globin gene region has been deleted to remove most of the gamma-delta intergenic region and the delta and beta globin genes. The 5' break point of the deletion is located about 9 kb upstream from the delta globin gene. The 3' break point has not been precisely located but is at least 7 kb past the beta globin gene. DNA from an individual heterozygous for the Greek (A gamma) type of HPFH, however, shows no detectable deletion in the entire gamma delta beta-globin gene region. HPFH, therefore, appears to occur in different molecular forms. These results are discussed in terms of a model for the regulation of globin gene expression in man.  相似文献   

8.
9.
Transgenic mice carrying an (A)gamma gene construct containing a -382 5' truncation of the (A)gamma gene promoter have a phenotype of hereditary persistence of fetal hemoglobin (HPFH) but, when the CACCC box of the -382(A)gamma promoter is deleted, there is no gamma gene expression in the adult mice. We used this system to investigate the mechanism whereby human HPFH mutations result in gamma gene expression in the adult. Introduction of the -198 T-->C HPFH mutation into the CACCC-less (A)gamma gene construct re-established the HPFH phenotype, indicating that this mutation increases promoter strength, most probably by establishing a novel CACCC box sequence in the -198(A)gamma region. The HPFH phenotype was also re-established when the -117 C-->T HPFH mutation was introduced into a -141(A)gamma promoter with a destroyed CACCC box, indicating that this mutation increases gamma promoter strength in the absence of the CACCC motif. The T-->A -175 HPFH mutation failed to re-establish the HPFH phenotype when the CACCC box was deleted, indicating that gamma gene expression in this mutation is CACCC box dependent. These results provide the first in vivo experimental evidence in support of mechanistic heterogeneity of the non-deletion HPFH mutants.  相似文献   

10.
Co-inheritance of gamma and beta globin gene mutations in a compound heterozygous state is rare but of clinical interest as it provides an important data on understanding the HbF expression. Hematological analysis was carried out (Sysmex KX-21). F-cells were enumerated using flow cytometry. Beta globin gene was analysed by CRDB technique and by DNA sequencing. Gamma globin promoter region was sequenced and expression studies were carried out using real time Taqman assay. We report a family, where two inherited defects of the β globin gene cluster segregate. The proband and her sibling were compound heterozygotes for a novel Gγ promoter mutation and the 619 bp deletion a common Indian β thalassemia mutation. Molecular characterization revealed that the father (HbA2 5.1%, HbF 5.4%), proband (HbA2 3.6%, HbF 31.7%) and her brother (HbA2 3.9%, HbF 23.6%) were heterozygous for the 619 bp deletion. The mother (HbA2 2.1%, HbF 3.4%) had a normal β globin gene. As both the children showed high HbF levels, the γ globin gene work up was carried out. The Gγ-globin gene promoter analysis revealed that the mother and the two children were heterozygous for a 5 bp deletion -ATAAG (-533 to -529) that resides in the GATA binding site. These findings suggest that the 5 bp deletion in the Gγ globin promoter has a functional role in silencing the γ-globin gene expression in adults by disrupting GATA-1 binding and the associated repressor complex and results in the up-regulation of gamma globin gene expression. When co-inherited with β -thalassemia trait it leads to a phenotype of HPFH.  相似文献   

11.
12.
13.
14.
The T to C substitution at position -175 of the gamma-globin gene has been identified in some individuals with non-deletion hereditary persistence of fetal hemoglobin (HPFH). In this study, the HPFH phenotype was reestablished in transgenic mice carrying the mu'LCRAgamma(-175)psibetadeltabeta construct, which contained a 3.1-kb mu'LCR cassette linked to a 29-kb fragment from the Agamma-to beta-globin gene with the natural chromosome arrangement but with the -175 mutation, which provided evidence for this single mutation as the cause of this form of HPFH. The HPFH phenotype was also reproduced in transgenic mice carrying the mu'LCRAgamma(-173)psibetadeltabeta construct, in which the -175 T to C Agamma gene was substituted with the -173 T to C Agamma gene. In vitro experiments proved that the -175 mutation significantly reduced binding of Oct-1 but not GATA-1, whereas the -173 mutation dramatically decreased binding of GATA-1 but not Oct-1. These results suggest that abrogation of either GATA-1 or Oct-1 binding to this promoter region may result in the HPFH phenotype. An in vivo footprinting assay revealed that either the -175 mutation or the -173 mutation significantly decreased overall protein binding to this promoter region in adult erythrocytes of transgenic mice. We hypothesize that a multiprotein complex containing GATA-1, Oct-1, and other protein factors may contribute to the formation of a repressive chromatin structure that silences gamma-globin gene expression in normal adult erythrocytes. Both the -173 and -175 T to C substitutions may disrupt the complex assembly and result in the reactivation of the gamma-globin gene in adult erythrocytes.  相似文献   

15.
16.
Hereditary persistence of fetal hemoglobin (HPFH) can involve large deletions which eliminate the 3' end of the beta-like globin gene cluster and more than 70 kilobases (kb) of flanking DNA. Blot hybridization revealed a DNase I-hypersensitive site extending from 1.1 to 1.4 kb downstream of the HPFH-1 3' deletion endpoint. The site was found in normal fetal and adult nucleated erythroid cells and in two erythroleukemia cell lines but not in nonerythroid cells and tissues. Simian virus 40 core enhancer-like sequences were found nonrandomly distributed within the boundaries of the site, which is contained in a fragment of known enhancer activity (E. A. Feingold and B. G. Forget, Blood, in press). A second hypersensitive site was found 0.5 kb upstream of the HPFH-1 3' deletion endpoint but was not erythroid specific. A third site, most prominent in fetal liver-derived erythroid cells, was found 1 kb upstream of the HPFH-2 deletion endpoint. As predicted by the locations of the deletion endpoints, the first two sites were translocated to within 12 kb of the A gamma gene in erythroid colonies derived from an HPFH-2 heterozygote and in hybrid mouse-human erythroid cells carrying the HPFH-2 deletion chromosome. Further analysis of this region showed that it was DNase I sensitive in erythroid and myeloid cells, indicating that it resides in an open chromatin domain. These observations suggest that alterations of chromatin structure flanking the fetal globin genes may contribute to abnormal gene regulation in deletion-type HPFH.  相似文献   

17.
Hereditary persistence of fetal haemoglobin (HPFH) is a clinically important condition in which a change in the developmental specificity of the gamma-globin genes results in varying levels of expression of fetal haemoglobin in the adult. The condition is benign and can significantly alleviate the symptoms of thalassaemia or sickle cell anaemia when co-inherited with these disorders. We have examined structure-function relationships in the -117 HPFH gamma promoter by analysing the effect of mutating specific promoter elements on the functioning of the wild-type and HPFH promoters. We find that CCAAT box mutants dramatically affect expression from the HPFH promoter in adult blood but have little effect on embryonic/fetal expression from the wild-type promoter. Our results suggest that there are substantial differences in the structure of the wild-type gamma promoter expressed early in development and the adult HPFH promoter. Together with previous results, this suggests that gamma silencing is a complex multifactorial phenomenon rather than being the result of a simple repressor binding to the promoter. We present a model for gamma-globin gene silencing that has significant implications for attempts to reactivate the gamma promoters in human adults by pharmacological means.  相似文献   

18.
19.
Genetic evidence indicates that single point mutations in the gamma-globin promoter may be the cause of high expression of the mutated gene in the adult period (Hereditary Persistence of Fetal Hemoglobin, HPFH). Here we show that one of these mutations characterized by a T----C substitution at position -175 in a conserved octamer (ATGCAAAT) sequence, abolishes the ability of a ubiquitous octamer binding nuclear protein to bind a gamma-globin promoter fragment containing the mutated sequence; however, the ability of two erythroid specific proteins to bind the same fragment is increased three to five fold. DMS interference and binding experiments with mutated fragments indicate that the ubiquitous protein recognizes the octamer sequence, while the erythroid specific proteins B2, B3 recognize flanking nucleotides. Competition experiments indicate that protein B2 corresponds to an erythroid-specific protein known to bind to a consensus GATAG sequence present at several locations in alpha, beta and gamma-globin genes. Although the distal CCAAT box region of the gamma-globin gene shows a related sequence, an oligonucleotide including this sequence does not show any ability to bind the above mentioned erythroid protein; instead, it binds a different erythroid specific protein, in addition to a ubiquitous protein. The -117 G----A mutation also known to cause HPFH, and mapping two nucleotides upstream from the CCAAT box, greatly decreases the binding of the erythroid-specific, but not that of the ubiquitous protein, to the CCAAT box region fragment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号