首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To analyse the effect of the state of the sperm plasma membrane on oocyte activation rate following intracytoplasmic sperm injection (ICSI), three types of human and mouse spermatozoa (intact, immobilised and Triton X-100 treated) were individually injected into mouse oocytes. At 30, 60 and 120 min after injection, maternal chromosomes and sperm nuclei within oocytes were examined. Following human sperm injection, the fastest and the most efficient oocyte activation and sperm head decondensation occurred when the spermatozoa were treated with Triton X-100. Intact spermatozoa were the least effective in activating oocytes. Thus, the rate of mouse oocyte activation following human sperm injection is greatly influenced by the state of the sperm plasma membrane during injection. When mouse spermatozoa were injected into mouse oocytes, the rates of oocyte activation and sperm head decondensation within activated oocytes were the same irrespective of the type of sperm treatment prior to injection. We witnessed that live human spermatozoa injected into moue oocytes often kept moving very actively within the ooplasm for more than 60 min, whereas motile mouse spermatozoa usually became immotile within 20 min after injection into the ooplasm. In 0.002% Triton X-100 solution, mouse spermatozoa are immobilised faster than human spermatozoa. These facts seem to suggest that human sperm plasma membranes are physically and biochemically more stable than those of mouse spermatozoa. Perhaps the physical and chemical properties of the sperm plasma membrane vary from species to species. For those species whose spermatozoa have 'stable' plasma membranes, prior removal or 'damage' of sperm plasma membranes would increase the success rate of ICSI.  相似文献   

2.
Chung JT  Keefer CL  Downey BR 《Theriogenology》2000,53(6):1273-1284
In the human and the mouse, intracytoplasmic sperm injection (ICSI) apparently triggers normal fertilization and may result in offspring. In the bovine, injection of spermatozoa must be accompanied by artificial methods of oocyte activation in order to achieve normal fertilization events (e.g., pronuclear formation). In this study, different methods of oocyte activation were tested following ICSI of in vitro-matured bovine oocytes. Bovine oocytes were centrifuged to facilitate sperm injection, and spermatozoa were pretreated with 5 mM dithiothreitol (DTT) to promote decondensation. Sperm-injected or sham-injected oocytes were activated with 5 microM ionomycin (A23187). Three hours after activation, oocytes with second polar bodies were selected and treated with 1.9 mM 6-dimethylaminopurine (DMAP). The cleavage rate of sperm-injected oocytes treated with ionomycin and DMAP was higher than with ionomycin alone (62 vs 27%, P < or = 0.05). Blastocysts (2 of 41 cleaved) were obtained only from the sperm-injected, ionomycin + DMAP-treated oocytes. Upon examination 16 h after ICSI, pronuclear formation was observed in 33 of 47 (70%) DMAP-treated oocytes. Two pronuclei were present in 18 of 33 (55%), while 1 and 3 pronuclei were seen in 8 of 33 (24%) and 7 of 33 (21%) oocytes, respectively. In sham-injected oocytes, pronuclear formation was observed in 15 of 38 (39%) with 9 (60%) having 2 pronuclei. Asa single calcium stimulation was insufficient and DMAP treatment could result in triploidy, activation by multiple calcium stimulations was tested. Three calcium stimulations (5 microM ionomycin) were given at 30-min intervals following ICSI. Two pronuclei were found in 12 of 41 (29%) injected oocytes. Increasing the concentration of ionomycin from 5 to 50 microM resulted in a higher rate of activation (41 vs 26%). The rate of metaphase III arrest was lower while the rate of pronuclear formation and cleavage development was higher in sperm-injected than sham-injected oocytes, suggesting that spermatozoa contribute to the activation process. Further improvements in oocyte activation following ICSI in the bovine are necessary.  相似文献   

3.
We investigated whether the incorporation of the sperm membrane into the oolemma contributes to the human plasma membrane block to polyspermy. We used zona pellucida–free oocytes fertilized by intracytoplasmic sperm injection (ICSI) or activated by parthenogenetic activation. Only two of the 35 pronuclear oocytes fertilized by spermatozoa (control) demonstrated one single penetrating spermatozoa. In contrast, the majority of ICSI and parthenogenetically activated pronuclear oocytes were penetrated with an average of three spermatozoa per oocyte. The number of fused and binding spermatozoa of ICSI and parthenogenetically activated oocytes were significantly higher than in control oocytes (3.5 ± 0.6 and 4.3 ± 0.6 for ICSI; 3.0 ± 0.3 and 3.8 ± 0.4 for activated and 0.2 ± 0.1 and 0.6 ± 0.2 for controls, respectively, P < 0.01). Furthermore, the cortical granules were released from the cortex of ICSI and calcium ionophore‐puromycin‐activated pronuclear oocytes to the same extent as that of pronuclear oocytes fertilized by spermatozoa. These results suggest that the establishment of the plasma membrane block to sperm penetration in the human oocyte may require a fusion process between sperm and oocyte plasma membranes. Mol. Reprod. Dev. 52:183–188, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
The fertilization of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa was evaluated. Activation and male pronuclear (MPN) formation were better in oocytes injected with isolated freeze-dried sperm heads than whole freeze-dried spermatozoa, but cleaved embryos were generally difficult to develop to the morula or blastocyst stage. When spermatozoa were freeze-dried for 24 h, oocyte activation and MPN formation in activated oocytes after sperm head injection were inhibited. Embryo development to the blastocyst stage was only obtained after injecting sperm heads isolated from spermatozoa freeze-dried for 4 h and stored at 4 degrees C. The proportion of embryos that developed to the blastocyst stage was not increased by the treatment of injected oocytes with Ca ionophore (5-10 microM). Increasing the sperm storage time did not affect oocyte activation or MPN formation, but blastocyst development was observed only after 1 mo of storage. These results demonstrate that pig oocytes can be fertilized with appropriately freeze-dried spermatozoa and that the fertilized oocytes can develop to the blastocyst stage.  相似文献   

5.
Monoclonal antibody (mAb) MN13 labels mouse sperm head postacrosomal perinuclear theca (PT), which is possibly involved in oocyte activation during fertilization. The antigenic site is expressed after mild sonication followed by treatment with dithiothreitol (DTT) or heat (45 degrees C), and is visible as a thick band in the postacrosomal region. The presence of protease inhibitors in the sonication medium suppresses the exposure of MN13 epitope (MN13p), suggesting the involvement of a proteolytic reaction in this process. Spermatozoa do not express MN13p after the induction of acrosome exocytosis by Ca(2+) ionophore, zona binding, or during zona penetration, a strategy that ensures safe delivery of postacrosomal PT proteins to oocytes after fusion. MN13 labeling was not detectable during fertilization by zona-free in vitro fertilization, suggesting that the antigenic site does not react with proteolytic enzymes during sperm-oocyte fusion and the antibody does not recognize the nascent epitope. Microinjection of sperm heads prepared by sonication and DTT treatment led to the activation of metaphase II oocytes. The oocyte activating function of such sperm heads was significantly diminished after labeling with MN13 prior to intracytoplasmic sperm injection (ICSI), but labeling with antiequatorin antibody MN9 activated oocytes with a frequency similar to that of unlabeled sperm heads. The sperm heads in inactive oocytes formed premature chromosome condensations (PCCs), which were invested by independent metaphase-like spindles. These observations indicate that the postacrosomal PT recognized by mAb MN13 is involved in oocyte activation. MN13p is dissociated from sperm heads during the early stages of decondensation after ICSI. In activated oocytes, MN13-labeled fine granules were redistributed in the midzone spindle region, whereas in inactive oocytes they formed a ring around the polar regions of the metaphase II and PCC spindles.  相似文献   

6.
The objectives of this study were 1) to compare the efficiency of intracytoplasmic sperm injection (ICSI) with and without additional artificial stimulation using frozen-thawed sperm and in vitro-matured porcine oocytes and 2) to determine the nuclear anomalies of ICSI oocytes that failed to fertilize or develop. In experiments 1 and 2, we evaluated the effects of additional activation treatments, e.g., electrical stimulus, Ca ionophore (A23187), and/or cycloheximide, on fertilization and development of ICSI porcine oocytes. Significantly higher fertilization, cleavage, and blastocyst rates were obtained for oocytes treated with a combination of ICSI and electrical activation (EA) (P < 0.05) than for those treated with ICSI alone. However, different combinations of electrical and chemical activation treatments did not further improve the rates of fertilization, cleavage, and blastocyst development for ICSI embryos. To elucidate the association between sperm head decondensation and oocyte activation and to investigate the cause of embryonic development failure, in experiment 3 we evaluated the nuclear morphology of oocytes 16-20 h after ICSI. Nearly 100% of oocytes showed female pronucleus formation after ICSI regardless of activation treatment. However, failure of male pronucleus formation with intact or swelling sperm heads was observed in some ICSI embryos, suggesting that these embryos underwent cell division with the female pronucleus only. Artificial activation (EA and A23187) had a beneficial effect on embryonic development, sperm decondensation was independent of the resumption of meiosis, and the failure of formation of a male pronucleus was the major cause for fertilization failure in porcine ICSI embryos.  相似文献   

7.
《Theriogenology》2012,77(9):1658-1666
Non-adequate decondensation of injected sperm nucleus is one the main problems of intracytoplasmic sperm injection (ICSI) in porcine. With the aim of improving pronuclear formation, the effects on activation and embryo development rates of 0.1% Triton X-100 (TX) sperm pre-treatment for membrane removal and/or 5 mM Caffeine (CAF) addition in oocyte manipulating and culture medium for 2 h after ICSI or artificial activation were studied. The effects of 4 different Ca2+ concentrations contained in the injection medium on embryo development after sham injection were also analysed. In Experiment 1, no significant effect on cleavage or blastocyst rate was detected independently of Ca2+ concentration contained in the injection medium. In Experiment 2, oocytes injected with TX pre-treated sperm showed a significant higher rate of male pronuclear formation in comparison with oocytes from control group (2PN; 54.1 vs 36.6%). However, no differences on in vitro embryo development, cleavage or blastocyst rates were observed. In Experiment 3, oocytes treated with CAF during and after micromanipulation and injected with sperm pre-treated with TX had a significantly lower oocyte activation rate than any other experimental groups (25.7 vs 56.3–66.3%). No differences were observed in cleavage rates among different experimental groups. However, the CAF group showed a higher blastocyst rate significantly different from TX+CAF group (12.0 vs 1.9%, respectively). In a second approach, the effect of electric field strengths and CAF treatments on oocyte activation was studied. In Experiment 4, oocytes submitted to 0.6 kV/cm showed significant higher activation rates than 1.2 kV/cm ones regardless of the caffeine treatment (83.7 vs 55.9% and 75.7 vs 44.3%; in control and caffeine groups, respectively). No effect of caffeine treatment was observed in any experimental group. In conclusion, TX sperm treatment before ICSI without an additional activation procedure improved male pronuclear formation, but did not improve embryo development until blastocyst stage. No significant effect of caffeine was found when sperm was not treated with TX, although in membrane absence caffeine avoided oocyte activation and embryo development. Finally, caffeine had no effect on female pronuclear formation regardless of electric field strengths applied to the parthenogenetic activation.  相似文献   

8.
Non-adequate decondensation of injected sperm nucleus is one the main problems of intracytoplasmic sperm injection (ICSI) in porcine. With the aim of improving pronuclear formation, the effects on activation and embryo development rates of 0.1% Triton X-100 (TX) sperm pre-treatment for membrane removal and/or 5 mM Caffeine (CAF) addition in oocyte manipulating and culture medium for 2 h after ICSI or artificial activation were studied. The effects of 4 different Ca2+ concentrations contained in the injection medium on embryo development after sham injection were also analysed. In Experiment 1, no significant effect on cleavage or blastocyst rate was detected independently of Ca2+ concentration contained in the injection medium. In Experiment 2, oocytes injected with TX pre-treated sperm showed a significant higher rate of male pronuclear formation in comparison with oocytes from control group (2PN; 54.1 vs 36.6%). However, no differences on in vitro embryo development, cleavage or blastocyst rates were observed. In Experiment 3, oocytes treated with CAF during and after micromanipulation and injected with sperm pre-treated with TX had a significantly lower oocyte activation rate than any other experimental groups (25.7 vs 56.3-66.3%). No differences were observed in cleavage rates among different experimental groups. However, the CAF group showed a higher blastocyst rate significantly different from TX+CAF group (12.0 vs 1.9%, respectively). In a second approach, the effect of electric field strengths and CAF treatments on oocyte activation was studied. In Experiment 4, oocytes submitted to 0.6 kV/cm showed significant higher activation rates than 1.2 kV/cm ones regardless of the caffeine treatment (83.7 vs 55.9% and 75.7 vs 44.3%; in control and caffeine groups, respectively). No effect of caffeine treatment was observed in any experimental group. In conclusion, TX sperm treatment before ICSI without an additional activation procedure improved male pronuclear formation, but did not improve embryo development until blastocyst stage. No significant effect of caffeine was found when sperm was not treated with TX, although in membrane absence caffeine avoided oocyte activation and embryo development. Finally, caffeine had no effect on female pronuclear formation regardless of electric field strengths applied to the parthenogenetic activation.  相似文献   

9.
Tian JH  Wu ZH  Liu L  Cai Y  Zeng SM  Zhu SE  Liu GS  Li Y  Wu CX 《Theriogenology》2006,66(2):439-448
The objective was to determine the effects of various methods of oocyte activation and sperm pretreatment on development of porcine embryos derived from in vitro-matured oocytes and intracytoplasmic sperm injection (ICSI). The second polar body was extruded in the majority (>78.4%) of in vitro-matured (IVM) oocytes 4h after electrical pulse activation. In embryos generated by ICSI and sham-ICSI, a combination of an electrical pulse, with various chemical activators 4 h later, improved (P < 0.05) blastocyst formation rate compared to activation only with a pulse. Treatment with 6-dimethylaminopurine (DMAP) after electrical activation significantly increased the oocyte activation rate. The effects of exposure of sperm to repeated freeze-thaw cycles (without cryoprotectant) on oocyte activation and the effects of sperm pre-incubated with dithiothreitol (DTT) or Triton X-100 on early embryo development were also examined. Blastocyst formation rates after ICSI did not differ between motile sperm and those rendered immotile by one-time freezing and thawing without cryoprotectant. However, sperm rendered immotile by three cycles of freezing/thawing without cryoprotectant had a significantly lower blastocyst formation rate. Although oocytes injected with sperm pre-incubated with Triton X-100 had a higher normal fertilization rate than those pre-incubated with DTT or one-time frozen/thawed sperm, rates of blastocyst formation and cell numbers were similar among the three groups. In conclusion, various methods of oocyte activation and sperm preparation significantly affected the developmental capacity of early porcine embryos derived from IVM and ICSI.  相似文献   

10.
Using an interspecies microinsemination assay with bovine oocytes, it was examined whether centrosomes of Antarctic minke whale spermatozoa function as the microtubule-organizing centre (MTOC). Bull and rat spermatozoa were used as positive and negative controls, respectively. Vitrified-warmed bovine mature oocytes were subjected to immunostaining against alpha-tubulin 4-6 h after intracytoplasmic injection (ICSI) of 5 mM dithiothreitol-treated spermatozoa. Aster formation occurred from whale spermatozoa (33%) and bull spermatozoa (33%), but very little from rat spermatozoa (3%). Activation treatment for the microinseminated oocytes with 7% ethanol + 2 mM 6-dimethylaminopurine resulted in a similar proportion of oocytes forming a whale sperm aster (35% vs 27% in the non-treated group; 4 h after ICSI) but a significantly larger aster (ratio of aster diameter to oocyte diameter, 0.57 vs 0.30 in the non-treated group). These results indicate that the centrosome introduced into bovine oocytes by whale spermatozoa contributes to the MTOC and that assembly of the microtubule network is promoted by oocyte activation.  相似文献   

11.
The effects of cysteine treatment on fertilization rate, intracellular concentration of glutathione, and embryo development in vitro and after embryo transfer were examined following intracytoplasmic sperm injection (ICSI) of in vitro-matured porcine oocytes using a piezo drive unit. Culture of presumed zygotes after ICSI with 1.71-3.71 mM cysteine for 3-12h improved (P<0.05) fertilization rates as compared to treatment with 0.57 mM cysteine or to controls (0mM) (56 to 68%, 48%, 35%, respectively). Extension of treatment time with cysteine beyond 3h did not further increase fertilization rates, suggesting that cysteine promoted early developmental events after ICSI (e.g. decondensation of sperm chromatin). There was no effect of cysteine supplementation on oocyte glutathione levels after ICSI. Pretreatment of spermatozoa for 3h with 1.71 mM cysteine did not improve fertilization rates. The incidence of blastocysts formation when cultured in 1.71 mM cysteine for 3h after ICSI was 31%, which was higher (P<0.05) than controls (18%). Transfer of 20-38 embryos cultured with 1.71 mM cysteine for 3h after ICSI to each of seven recipients yielded three deliveries with an average litter size of 4.0. We concluded that cysteine supplementation for the first 3h after ICSI improved fertilization and embryo development rates, with no influence on glutathione levels in oocytes, and that the cysteine-treated ICSI embryos developed to full term. The study also showed that porcine oocytes matured in a chemically defined medium had the ability for full-term development after piezo-ICSI without additional treatments for oocyte activation.  相似文献   

12.
13.
Li GP  Seidel GE  Squires EL 《Theriogenology》2003,59(5-6):1143-1155
Five experiments were designed to study the fertilizability and development of bovine oocytes fertilized by intracytoplasmic sperm injection (ICSI) with stallion spermatozoa. Experiment 1 determined the time required for pronuclear formation after ICSI. Equine sperm head decondensation began 3 h after ICSI; 42% were decondensed 6 h after ICSI. Male pronuclei (MPN) began to form 12 h after ICSI. Female pronuclei (FPN), however, formed as early as 6 h after ICSI. In Experiment 2, ionomycin, ionomycin plus 6-dimethylaminopurine (DMAP), and thimerosal were used to activate ICSI ova. None of the ICSI ova cleaved after treatment with thimerosal. Ionomycin activation after 24 and 30 h of oocyte maturation resulted in 29 and 48% cleavage rates, respectively. Ionomycin combined with DMAP resulted in 49, 6 and 3% cleavage, morula and blastocyst rates, respectively, when oocytes were activated after 24 h maturation. In Experiment 3, rates of cleavage (45-60%) and development to morulae (4-13%) and blastocysts (1-5%) stages following ICSI were not different (P>0.05) among three stallions. Treatment of stallion spermatozoa with ionomycin did not affect cleavage or development of ova fertilized by ICSI. The chromosomal constitution of blastocysts derived from ICSI was bovine, not bovine and equine hybrids. In Experiment 4, to make male and FPN form synchronously, colchicine and DMAP were used for 4 h to inhibit oocytes at metaphase during activation; 63% of oocytes were still at metaphase 8h after ICSI when treated with colchicine, and 50% of sperm nuclei were decondensed. About 18 h after ICSI, 21 and 50% male and FPN had formed, respectively, but cleavage rates were low, and only 1% developed to morulae. In Experiment 5, to test if capacitated equine sperm could fuse with the bovine oolemma, capacitated spermatozoa were injected subzonally (SUZI). Of the 182 SUZI oocytes, 49 (27%) contained extruded second polar bodies. After activation of oocytes with second polar bodies, 44, 22 and 15% developed to 2-, 4- and 8-cell stages, respectively, but development stopped at the 8-cell stage. None of the unactivated oocytes cleaved. In conclusion, equine spermatozoa can decondense and form MPN in bovine oocytes after ICSI, but subsequent embryonic development is parthenogenetic with only bovine chromosomes being found.  相似文献   

14.
Intracytoplasmic sperm injection (ICSI) is advantageous when only very few spermatozoa are available for insemination. Bovine spermatozoa were injected individually into matured oocytes using a piezo electric actuator. Spermatozoa were "immobilized", by scoring their tails immediately before injection, or "killed", by repeated freezing and thawing. About 4 h after ICSI, the oocytes with two polar bodies (activated by sperm injection) were selected and treated 5 min with 7% ethanol before further culture. When examined 19-21 h after ICSI, nearly 90% of the oocytes were fertilized normally (two pronuclei and two polar bodies) irrespective of the sperm treatment (immobilization or killing) prior to ICSI, but subsequent preimplantation embryo development was much superior (cleavage 72%: blastocysts 20%) after ICSI with immobilized spermatozoa than by using killed spermatozoa (cleavage 28%; blastocysts 1%). Ethanol activation of bovine oocytes with two polar bodies 4 h after ICSI improved the cleavage (33% versus 72%) and blastocyst (12% versus 20%) rates markedly (P < 0.05). Five normal calves were born after transplantation of ten blastocysts to ten surrogate cows. These results show that piezo-ICSI using immobilized spermatozoa, combined with ethanol treatment of sperm-injected oocytes, is an effective method to produce bovine offspring.  相似文献   

15.
We determined the incidence of activation, male pronuclear formation, and apposition of pronuclei in porcine oocytes following intracytoplasmic injection of various porcine sperm components and foreign species spermatozoa, such as that of cattle, mouse or human. The porcine oocytes were activated by injection of a spermatozoon or an isolated sperm head. In contrast, injection of either sperm tail or a trypsin- or NaOH-treated sperm head failed to induce oocyte activation. Because injection of mouse, bovine, or human spermatozoon activated porcine oocytes, the sperm-borne activation factor(s) is not strictly species-specific. Male pronuclear formation and pronuclear apposition were observed in porcine oocytes following injection of porcine, bovine, mouse or human spermatozoa. Electrical stimulation following sperm cell injection did not enhance the incidence of male pronuclear formation or pronuclear apposition compared with sperm cell injection alone (P > 0.1). Following porcine sperm injection, the microtubular aster was organized from the neck of the spermatozoon, and filled the whole cytoplasm. In contrast, following injection of bovine, mouse, or human spermatozoon, the maternal-derived microtubules were organized from the cortex to the center of the oocytes, which seems to move both pronuclei to the center of oocytes. Cleavage to the two-cell stage was observed at 19-21 hr after injection of porcine spermatozoon. However, none of the oocytes following injection of mouse, bovine, or human spermatozoa developed to the mitotic metaphase or the two-cell stage. These results suggested that the oocyte activating factor(s) is present in the perinuclear material and that it is not species-specific for the porcine oocyte. Self-organized microtubules seemed to move the pronuclei into center of oocytes when foreign species spermatozoa were injected into porcine oocytes.  相似文献   

16.
Intracytoplasmic sperm injection (ICSI) is a popular method used in assisted conception, and live offspring have been born from a variety of species, including humans. In ICSI, sperm chromatin is introduced into the oocyte together with the acrosome, a structure that does not enter the oocyte during normal fertilization. We compared sperm chromatin remodeling, the potential of embryos to develop in vitro, and DNA synthesis in mouse embryos obtained from in vitro fertilization (IVF) and ICSI. We also tested whether sperm pretreatment prior to ICSI (i.e., capacitation, acrosome reaction, membrane removal, and reduction of disulfide bonds in protamines) facilitates chromatin remodeling and affects embryo development. Sperm chromatin was examined on air-dried, Giemsa-stained preparations at 30-min intervals for up to 4.5 h postfertilization. In all experimental groups, the oocytes underwent activation and formed pronuclei with similar rates. However, the dynamics of sperm chromatin remodeling in ICSI and IVF embryos varied. In ICSI, chromatin remodeling was more asynchronous than in IVF. Sperm capacitation prior to injection enhanced remodeling asynchrony and resulted in delayed pronuclei formation and DNA synthesis. The removal of the acrosome prior to injection with calcium ionophore A23187 but not with detergent Triton X-100 allowed more synchronous chromatin remodeling, timely DNA synthesis, and good embryo development. Our data have significance for the refinement of the molecular and biologic mechanisms associated with ICSI for current and future applications.  相似文献   

17.
In amphibian oocytes, it is known that germinal vesicle (GV) materials are essential for sperm head decondensation but not for activation of MPF (CDK1 and cyclin B). However, in large animals, the role of GV materials in maturation and fertilization is not defined. In this study, we prepared enucleated pig oocytes at the GV stage and cultured them to examine the activation and inactivation of CDK1 and MAP kinase during maturation and after electro-activation. Moreover, enucleated GV-oocytes after maturation culture were inseminated or injected intracytoplasmically with spermatozoa to examine their ability to decondense the sperm chromatin. Enucleated oocytes showed similar activation/inactivation patterns of CDK1 and MAP kinase as sham-operated oocytes during maturation and after electro-stimulation or intracytoplasmic sperm injection. During the time corresponding to MI/MII transition of sham-operated oocytes, enucleated oocytes inactivated CDK1. However, penetrating sperm heads in enucleated oocytes did not decondense enough to form male pronuclei. To determine whether the factor(s) involved in sperm head decondensation remains associated with the chromatin after GV breakdown (GVBD), we did enucleation soon after GVBD (corresponding to pro-metaphase I, pMI) to remove only chromosomes. The injected sperm heads in pMI-enucleated oocytes decondensed and formed the male pronuclei. These results suggest that in pig oocytes, GV materials are not required for activation/inactivation of CDK1 and MAP kinase, but they are essential for male pronucleus formation.  相似文献   

18.
This study was conducted to investigate the possibility of using bovine oocytes for a heterologous fertility test by intracytoplasmic sperm injection (ICSI) and to compare the pronuclear formation of ram, bull and minke whale spermatozoa after injection into bovine oocytes. Bovine oocytes were cultured in vitro for 24 h and those with a polar body were selected for ICSI. Frozen-thawed semen from the three species were treated with 5 mM dithiothreitol for 1 h and spermatozoa were killed by storing them in a -20 degrees C refrigerator before use. ICSI was performed using a Piezo system. Three experiments were designed. In experiment 1, a higher (p < 0.05) male pronuclear formation rate was found in the oocytes injected with ram (52.6%) or bull (53.4%) spermatozoa than with minke whale spermatozoa (39.1%). In experiment 2, sperm head decondensation was detected at 2 h after ICSI in the oocytes injected with a spermatozoon of each species. Male pronuclei were first observed at 4 h in the oocytes injected with ram or bull spermatozoa and at 6 h in oocytes injected with minke whale spermatozoa. The mean diameters of male pronuclei derived from both whale and bull spermatozoa were larger than those from ram spermatozoa (30.4 microm and 28.3 microm vs 22.4 microm, p < 0.005). The mean diameter of female pronuclei in the oocytes injected with whale spermatozoa was also larger than with ram spermatozoa (29.3 microm vs 24.7 microm, p < 0.05). The development of male and female pronuclei was synchronous. In experiment 3, ethanol-activated oocytes injected with a spermatozoon from any of the three species achieved significantly higher (p < 0.05-0.001) cleavage rates than control oocytes. Blastocyst formation was only observed when bull spermatozoa were used. The results of this study indicate that dead foreign spermatozoa can participate in fertilisation activities in bovine oocytes after ICSI.  相似文献   

19.
After injury or death of a valuable male, recovery of epididymal spermatozoa may be the last chance to ensure preservation of its genetic material. The objective of this research was to study the effect of sperm storage, at 4 °C up to 96 h, in the epididymides obtained from castrated horses and its effect on different functional sperm parameters. Aims were to study the effect of (1) sperm storage on viability and chromatin condensation; (2) pre-incubation of recovered epididymal sperm in the freezing extender, prior cryopreservation, on viability and chromatin condensation; and (3) freezing–thawing on viability, chromatin condensation, ROS generation, protein tyrosine phosphorylation and heterologous fertilization rate (ICSI and IVF using bovine oocytes) of sperm recovered from the epididymis up to 96 h post castration. The average volume (720 ± 159 μL) and the concentration (6.5 ± 0.4 × 109 spermatozoa/mL) of sperm recovered from the epididymis were not affected by storage. Sperm viability after refrigeration at 4 °C for up to72 h was similar (P < 0.01). The effect of sperm dilution in the freezing media showed similar values up to 48 h, while viability was preserved up to 72 h (P < 0.01). Cryopreserved spermatozoa show similar viability between different storage times. Chromatin condensation was not affected by storage time; however, incubation for 30 min in freezing medium and freezing–thawing process induced an increase in the chromatin decondensation. ROS generation was not affected by storage up to 96 h. Epididymal storage did not affect sperm protein tyrosine phosphorylation patterns; although the pattern of phosphorylation changed to strong staining of the equatorial segment when the sperm where capacitated in sperm–TALP. Finally, successful and similar pronuclear formation (analyzed by ICSI) and in vitro penetration (evaluated with bovine zone free oocyte) was observed using cryopreserved sperm obtained from prolong epididymal storage at 4 °C. In conclusion, cryopreservation of epididymal stallion sperm stored for up to 72 h in the epididymis at 4 °C, maintain both viability and ability to fertilize in vitro.  相似文献   

20.
To elucidate the effects of ooplasmic factors on the early morphological changes in hamster sperm heads within the ooplasm, immature ovarian oocytes at the germinal vesicle stage (GV oocytes), ovulated fully mature oocytes, and fertilized eggs at anaphase II or the pronuclear stage (PN eggs) were examined in detail 15–30 min after insemination or reinsemination. Thin-sectioning studies demonstrated distinct materials released from the sperm nucleus over the entire postacrosomal nuclear surface immediately after disappearance of the sperm nuclear envelope. The release occurred in all of the oocytes and eggs prior to or even in the absence of subsequent chromatin decondensation. Depending upon the stage of the penetrated oocyte or egg, however, the materials varied in morphology: several hemispherical projections of amorphous material within mature oocytes; a number of electron-dense globules within GV oocytes and PN eggs; and both forms within eggs at anaphase II-telophase II. These observations and the fact that only the release of the amorphous material was accompanied by sperm chromatin decondensation indicate that this release was the initial process of chromatin decondensation, whereas the release of the globules resulted from a deficiency or lack of ooplasmic factors affecting the sperm nucleus. Restriction of the release in both forms of material to the late meiotic phase suggests changes in the factors associated with progression of meiosis. To approach an understanding of the mechanism of successful decondensation of sperm chromatin, the ooplasmic factors considered responsible for the stage-dependent release of nuclear materials are discussed. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号