首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The goal of this study was to determine if fecal metabolite and microbiota profiles can serve as biomarkers of human intestinal diseases, and to uncover possible gut microbe–metabolite associations. We employed proton nuclear magnetic resonance to measure fecal metabolites of healthy children and those diagnosed with diarrhea-predominant irritable bowel syndrome (IBS-D). Metabolite levels were associated with fecal microbial abundances. Using several ordination techniques, healthy and irritable bowel syndrome (IBS) samples could be distinguished based on the metabolite profiles of fecal samples, and such partitioning was congruent with the microbiota-based sample separation. Measurements of individual metabolites indicated that the intestinal environment in IBS-D was characterized by increased proteolysis, incomplete anaerobic fermentation and possible change in methane production. By correlating metabolite levels with abundances of microbial genera, a number of statistically significant metabolite–genus associations were detected in stools of healthy children. No such associations were evident for IBS children. This finding complemented the previously observed reduction in the number of microbe–microbe associations in the distal gut of the same cohort of IBS-D children.  相似文献   

2.
Dysregulation of the gut microbiota/gut hormone axis contributes to the pathogenesis of irritable bowel syndrome (IBS). Melatonin plays a beneficial role in gut motility and immunity. However, altered expression of local mucosal melatonin in IBS and its relationship with the gut microbiota remain unclear. Therefore, we aimed to detect the colonic melatonin levels and microbiota profiles in patients with diarrhea-predominant IBS (IBS-D) and explore their relationship in germ-free (GF) rats and BON-1 cells. Thirty-two IBS-D patients and twenty-eight healthy controls (HCs) were recruited. Fecal specimens from IBS-D patients and HCs were separately transplanted into GF rats by gavage. The levels of colon mucosal melatonin were assessed by immunohistochemical methods, and fecal microbiota communities were analyzed using 16S rDNA sequencing. The effect of butyrate on melatonin synthesis in BON-1 cells was evaluated by ELISA. Melatonin levels were significantly increased and negatively correlated with visceral hypersensitivity in IBS-D patients. GF rats inoculated with fecal microbiota from IBS-D patients had high colonic melatonin levels. Butyrate-producing Clostridium cluster XIVa species, such as Roseburia species and Lachnospira species, were positively related to colonic mucosal melatonin expression. Butyrate significantly increased melatonin secretion in BON-1 cells. Increased melatonin expression may be an adaptive protective mechanism in the development of IBS-D. Moreover, some Clostridium cluster XIVa species could increase melatonin expression via butyrate production. Modulation of the gut hormone/gut microbiota axis offers a promising target of interest for IBS in the future.  相似文献   

3.
Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by visceral hypersensitivity and altered bowel function. There are increasing evidences suggested that VSL#3 probiotics therapy has been recognized as an effective method to relieve IBS-induced symptoms. The aim of this study was to examine the effects of VSL#3 probiotics on visceral hypersensitivity (VH), nitric oxide (NO), fecal character, colonic epithelium permeability, and tight junction protein expression. IBS model was induced by intracolonic instillation of 4% acetic acid and restraint stress in rats. After subsidence of inflammation on the seventh experimental day, the rats were subjected to rectal distension, and then the abdominal withdrawal reflex and the number of fecal output were measured, respectively. Also, colonic permeability to Evans blue was measured in vivo, and tight junction protein expression was studied by immunohistochemistry and immunoblotting method. Rats had been pretreated with VSL#3 or aminoguanidine (NOS inhibitor) or VSL#3+ aminoguanidine before measurements. The rats at placebo group showed hypersensitive response to rectal distension (P < 0.05) and defecated more stools than control rats (P < 0.05), whereas VSL#3 treatment significantly attenuated VH and effectively reduced defecation. Aminoguanidine reduced the protective effects of VSL#3 on VH. A pronounced increase in epithelial permeability and decreased expression of tight junction proteins (occludin, ZO-1) in placebo group were prevented by VSL#3, but not aminoguanidine. VSL#3 treatment reduce the hypersensitivity, defecation, colonic permeability and increase the expression of tight junction proteins (occludin, ZO-1). As the part of this effect was lowered by NOS inhibitor, NO might play a role in the protective effect of VSL#3 to some extent.  相似文献   

4.
Alterations in the intestinal microbiota have been suggested as an etiological factor in the pathogenesis of irritable bowel syndrome (IBS). This study used a molecular fingerprinting technique to compare the composition and biodiversity of the microbiota within fecal and mucosal niches between patients with diarrhea-predominant IBS (D-IBS) and healthy controls. Terminal-restriction fragment (T-RF) length polymorphism (T-RFLP) fingerprinting of the bacterial 16S rRNA gene was used to perform microbial community composition analyses on fecal and mucosal samples from patients with D-IBS (n = 16) and healthy controls (n = 21). Molecular fingerprinting of the microbiota from fecal and colonic mucosal samples revealed differences in the contribution of T-RFs to the microbiota between D-IBS patients and healthy controls. Further analysis revealed a significantly lower (1.2-fold) biodiversity of microbes within fecal samples from D-IBS patients than healthy controls (P = 0.008). No difference in biodiversity in mucosal samples was detected between D-IBS patients and healthy controls. Multivariate analysis of T-RFLP profiles demonstrated distinct microbial communities between luminal and mucosal niches in all samples. Our findings of compositional differences in the luminal- and mucosal-associated microbiota between D-IBS patients and healthy controls and diminished microbial biodiversity in D-IBS fecal samples further support the hypothesis that alterations in the intestinal microbiota may have an etiological role in the pathogenesis of D-IBS and suggest that luminal and mucosal niches need to be investigated.  相似文献   

5.
(1)H NMR spectroscopy of aqueous fecal extracts has been used to investigate differences in metabolic activity of gut microbiota in patients with ulcerative colitis (UC) (n = 13), irritable bowel syndrome (IBS) (n = 10), and healthy controls (C) (n = 22). Up to four samples per individual were collected over 2 years giving a total of 124 samples. Multivariate discriminant analysis, based on NMR data from all three groups, was able to predict UC and C group membership with good sensitivity and specificity; classification of IBS samples was less successful and could not be used for diagnosis. Trends were detected toward increased taurine and cadaverine levels in UC with increased bile acid and decreased branched chain fatty acids in IBS relative to controls; changes in short chain fatty acids and amino acids were not significant. Previous PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of the same fecal material had shown alterations of the gut microbiota when comparing UC and IBS groups with controls. Hierarchical cluster analysis showed that DGGE profiles from the same individual were stable over time, but NMR spectra were more variable; canonical correlation analysis of NMR and DGGE data partly separated the three groups and revealed a correlation between the gut microbiota profile and metabolite composition.  相似文献   

6.
Irritable bowel syndrome (IBS) is a common intestinal disorder that includes continuous or recurrent intestinal pain and discomfort and altered bowel habits. The pathophysiology of IBS is incompletely understood, but it may involve an altered intestinal microbiota. The aim of the present study was to compare the composition and temporal stability of faecal microbiota of IBS patients and healthy controls by applying culture-based techniques and PCR-DGGE analysis. No difference in the prevalence or mean culturable manners of bacteroides, bifidobacteria, spore-forming bacteria, lactobacilli, enterococci or yeasts were observed between the IBS and the control groups, whereas slightly higher numbers of coliforms as well as an increased aerobe:anaerobe ratio was observed in the IBS group. PCR-DGGE revealed more temporal instability in the predominant bacterial population of IBS subjects than in controls. In 9 out of 21 IBS subjects and 5 out of 17 controls the PCR-DGGE profiles obtained from the samples of the same individual on different occasions (sampling points 0, 3 and 6 months) were clearly different. However, the instability in some of the IBS subjects could partly be explained by the antibiotic consumption during the study. The present study suggests that instability of intestinal microbiota may be involved in IBS. However, further studies are needed to associate the instability with specific IBS symptoms or with specific bacterial groups and species.  相似文献   

7.

Objective

Previous studies have reported that patients with irritable bowel syndrome (IBS) show high neuroticism. However, the precise association between the IBS subtypes and the degree of neuroticism in younger populations is largely unknown. We tested our hypothesis that subjects with diarrhea-predominant IBS may have a higher degree of neuroticism than subjects without IBS or those with other subtypes of IBS. We also verified the additional hypothesis that the severity of neuroticism might be correlated with the severity of IBS in younger populations.

Methods

We conducted a cross-sectional survey of 557 university students, ranging in age from 18 to 21 years. Presence/ absence of IBS and determination of the IBS subtype was by the Rome II Modular Questionnaire, while the severity of IBS was determined by the IBS severity index (IBS-SI). The degree of neuroticism was evaluated using the Maudsely Personality Inventory (MPI). The presence/absence of psychological distress was measured with the K6 scale.

Results

Neuroticism scores in the subjects with diarrhea-predominant IBS were significantly higher than those in the non-IBS subjects or subjects with constipation-predominant IBS. The neuroticism scores were significantly correlated with the IBS-SI scores in all subjects with IBS.

Conclusion

These results suggest that neuroticism is involved in the pathophysiology of IBS in young subjects, especially in that of the diarrhea-predominant subtype.
  相似文献   

8.
Epidemiological data confirms a strong negative association between regular coffee consumption and the prevalence of type 2 diabetes. Coffee is initially absorbed in the stomach and small intestine but is further fermented in the colon by gut microbiota. The bioavailability, production and biological activity of coffee polyphenols is modulated, in part, by gut microbiota. The purpose of this study was to determine if chronic coffee consumption could mitigate negative gut microbiota and metabolomic profile changes induced by a high-fat diet. Male Sprague–Dawley rats were randomized to chow (12% kcal fat) or high-fat (60% kcal fat) diet. Each group was further divided into water or caffeinated coffee for 10 weeks. Coffee consumption in high-fat-fed rats was associated with decreased body weight, adiposity, liver triglycerides and energy intake. Despite a more favorable body composition, rats displayed profound systemic insulin resistance, likely due to caffeine. Coffee consumption attenuated the increase in Firmicutes (F)-to-Bacteroidetes (B) ratio and Clostridium Cluster XI normally associated with high-fat feeding but also resulted in augmented levels of Enterobacteria. In the serum metabolome, coffee had a distinct impact, increasing levels of aromatic and circulating short-chain fatty acids while lowering levels of branched-chain amino acids. In summary, coffee consumption is able to alter gut microbiota in high-fat-fed rats although the role of these changes in reducing diabetes risk is unclear given the increased insulin resistance observed with coffee in this study.  相似文献   

9.
The intestinal microbiota is increasingly recognized as a complex signaling network that impacts on many systems beyond the enteric system modulating, among others, cognitive functions including learning, memory and decision-making processes. This has led to the concept of a microbiota-driven gut–brain axis, reflecting a bidirectional interaction between the central nervous system and the intestine. A deficit in synaptic plasticity is one of the many changes that occurs with age. Specifically, the archetypal model of plasticity, long-term potentiation (LTP), is reduced in hippocampus of middle-aged and aged rats. Because the intestinal microbiota might change with age, we have investigated whether the age-related deficit in LTP might be attenuated by changing the composition of intestinal microbiota with VSL#3, a probiotic mixture comprising 8 Gram-positive bacterial strains. Here, we report that treatment of aged rats with VSL#3 induced a robust change in the composition of intestinal microbiota with an increase in the abundance of Actinobacteria and Bacterioidetes, which was reduced in control-treated aged rats. VSL#3 administration modulated the expression of a large group of genes in brain tissue as assessed by whole gene expression, with evidence of a change in genes that impact on inflammatory and neuronal plasticity processes. The age-related deficit in LTP was attenuated in VSL#3-treated aged rats and this was accompanied by a modest decrease in markers of microglial activation and an increase in expression of BDNF and synapsin. The data support the notion that intestinal microbiota can be manipulated to positively impact on neuronal function.  相似文献   

10.
The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R?=?0.462, P?=?0.046?<?0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.  相似文献   

11.
A T4‐like coliphage cocktail was given with different oral doses to healthy Bangladeshi children in a placebo‐controlled randomized phase I safety trial. Fecal phage detection was oral dose dependent suggesting passive gut transit of coliphages through the gut. No adverse effects of phage application were seen clinically and by clinical chemistry. Similar results were obtained for a commercial phage preparation (Coliproteus from Microgen/Russia). By 16S rRNA gene sequencing, only a low degree of fecal microbiota conservation was seen in healthy children from Bangladesh who were sampled over a time interval of 7 days suggesting a substantial temporal fluctuation of the fecal microbiota composition. Microbiota variability was not associated with the age of the children or the presence of phage in the stool. Stool microbiota composition of Bangladeshi children resembled that found in children of other regions of the world. Marked variability in fecal microbiota composition was also seen in 71 pediatric diarrhea patients receiving only oral rehydration therapy and in 38 patients receiving coliphage preparations or placebo when sampled 1.2 or 4 days apart respectively. Temporal stability of the gut microbiota should be assessed in case‐control studies involving children before associating fecal microbiota composition with health or disease phenotypes.  相似文献   

12.
We propose the “microbiota‐inflammasome” hypothesis of major depressive disorder (MDD, a mental illness affecting the way a person feels and thinks, characterized by long‐lasting feelings of sadness). We hypothesize that pathological shifts in gut microbiota composition (dysbiosis) caused by stress and gut conditions result in the upregulation of pro‐inflammatory pathways mediated by the Nod‐like receptors family pyrin domain containing 3 (NLRP3) inflammasome (an intracellular platform involved in the activation of inflammatory processes). This upregulation exacerbates depressive symptomatology and further compounds gut dysbiosis. In this review we describe MDD/chronic stress‐induced changes in: 1) NLRP3 inflammasome; 2) gut microbiota; and 3) metabolic pathways; and how inflammasome signaling may affect depressive‐like behavior and gut microbiota composition. The implication is that novel therapeutic strategies could emerge for MDD and co‐morbid conditions. A number of testable predictions surface from this microbiota‐gut‐inflammasome‐brain hypothesis of MDD, using approaches that modulate gut microbiota composition via inflammasome modulation, fecal microbiota transplantation, psychobiotics supplementation, or dietary change.  相似文献   

13.
Some compounds originating from the human gut microbial metabolism of exogenous and endogenous substrates may have properties that profoundly affect the host's physiological processes. The influence of these metabolites on differences in disease risk among individuals could be mediated by metabolism specific to the gut microbial community composition. In this study, we evaluated the effectiveness of terminal restriction fragment polymorphism (TRFLP) as a biomarker of the fecal microbial community (as a surrogate of gut microbiota) for application in human population-based studies. We tested the effects of experimental conditions on DNA quality, DNA quantity, and TRFLP patterns derived from gut bacterial communities. Genomic DNA was extracted from fecal slurries and the bacterial 16S rDNA genes were amplified and analyzed by TRFLP. We found that the composition of the TRFLP fingerprints varied by different extraction procedure. The best quality and quantity of community DNA extracted from fecal material was obtained by using the QIAamp DNA stool minikit (Qiagen, Valencia, CA) with 95 degrees C incubation and moderate bead beating treatment during the cell-lysis step. Homogenization of fecal samples reduced variation among replicates. Once the TRFLP procedure was optimized, we assessed the methodological and inter-individual variation in gut microbial community fingerprints. The methodological variation ranged from 4.5-8.1% and inter-individual variation was 50.3% for common peaks. In conclusion, standardized TRFLP is a robust, reproducible, and high-throughput method that will provide a useful biomarker for characterizing gut microbiota in human fecal samples.  相似文献   

14.
Consumption of lysozyme-rich milk can alter microbial fecal populations   总被引:2,自引:0,他引:2  
Human milk contains antimicrobial factors such as lysozyme and lactoferrin that are thought to contribute to the development of an intestinal microbiota beneficial to host health. However, these factors are lacking in the milk of dairy animals. Here we report the establishment of an animal model to allow the dissection of the role of milk components in gut microbiota modulation and subsequent changes in overall and intestinal health. Using milk from transgenic goats expressing human lysozyme at 68%, the level found in human milk and young pigs as feeding subjects, the fecal microbiota was analyzed over time using 16S rRNA gene sequencing and the G2 Phylochip. The two methods yielded similar results, with the G2 Phylochip giving more comprehensive information by detecting more OTUs. Total community populations remained similar within the feeding groups, and community member diversity was changed significantly upon consumption of lysozyme milk. Levels of Firmicutes (Clostridia) declined whereas those of Bacteroidetes increased over time in response to the consumption of lysozyme-rich milk. The proportions of these major phyla were significantly different (P < 0.05) from the proportions seen with control-fed animals after 14 days of feeding. Within phyla, the abundance of bacteria associated with gut health (Bifidobacteriaceae and Lactobacillaceae) increased and the abundance of those associated with disease (Mycobacteriaceae, Streptococcaceae, Campylobacterales) decreased with consumption of lysozyme milk. This study demonstrated that a single component of the diet with bioactivity changed the gut microbiome composition. Additionally, this model enabled the direct examination of the impact of lysozyme on beneficial microbe enrichment versus detrimental microbe reduction in the gut microbiome community.  相似文献   

15.
This study developed a new statistical strategy for analyzing clone library data to observe whether there is a defined pattern in structural responses of gut microbiota to environmental perturbations. A large clone library of genus Bacteroides was constructed with fecal samples for each subject in rotavirus-infected (Group R) and healthy children (Group H). In all, 665 clones of the 12 Group H subjects and 284 clones of the nine Group R subjects were sequenced and classified into 34 operational taxonomic units (OTUs) with a similarity cutoff at 98%. Partial least squares-discriminant analysis was used to observe the change of the Bacteroides spp. composition caused by rotavirus infection and to identify the most relevant species contributing to this shift. It was revealed that H subjects and R subjects were well separated. Bacteroides vulgatus, Bacteroides stercoris and Bacteroides fragilis were identified as the most important discriminating OTUs between two groups. The increased abundance of B. fragilis and the decreased populations of B. vulgatus and B. stercoris in infected guts observed in this study were in agreement with previous culture-based studies. The strategy developed in this work can be used to reveal patterns in structural responses of gut microbiota to environmental perturbations from large-scale 16S rRNA gene-based sequencing data.  相似文献   

16.

Background

The human gut microbiota has profound influence on host metabolism and immunity. This study characterized the fecal microbiota in patients with nonalcoholic steatohepatitis (NASH). The relationship between microbiota changes and changes in hepatic steatosis was also studied.

Methods

Fecal microbiota of histology-proven NASH patients and healthy controls was analyzed by 16S ribosomal RNA pyrosequencing. NASH patients were from a previously reported randomized trial on probiotic treatment. Proton-magnetic resonance spectroscopy was performed to monitor changes in intrahepatic triglyceride content (IHTG).

Results

A total of 420,344 16S sequences with acceptable quality were obtained from 16 NASH patients and 22 controls. NASH patients had lower fecal abundance of Faecalibacterium and Anaerosporobacter but higher abundance of Parabacteroides and Allisonella. Partial least-square discriminant analysis yielded a model of 10 genera that discriminated NASH patients from controls. At month 6, 6 of 7 patients in the probiotic group and 4 of 9 patients in the usual care group had improvement in IHTG (P = 0.15). Improvement in IHTG was associated with a reduction in the abundance of Firmicutes (R2 = 0.4820, P = 0.0028) and increase in Bacteroidetes (R2 = 0.4366, P = 0.0053). This was accompanied by corresponding changes at the class, order and genus levels. In contrast, bacterial biodiversity did not differ between NASH patients and controls, and did not change with probiotic treatment.

Conclusions

NASH patients have fecal dysbiosis, and changes in microbiota correlate with improvement in hepatic steatosis. Further studies are required to investigate the mechanism underlying the interaction between gut microbes and the liver.  相似文献   

17.
The irritable bowel syndrome (IBS) is a common chronic functional gastrointestinal disorder world wide that lasts for decades. The human gut harbors a diverse population of microbial organisms which is symbiotic and important for well being. However, studies on conventional, germ-free, and obese animals have shown that alteration in normal commensal gut microbiota and an increase in pathogenic microbiota—termed “dysbiosis”, impact gut function, homeostasis, and health. Diarrhea, constipation, visceral hypersensitivity, and abdominal pain arise in IBS from the gut-induced dysfunctional metabolic, immune, and neuro-immune communication. Dysbiosis in IBS is associated with gut inflammation. Gut-related inflammation is pivotal in promoting endotoxemia, systemic inflammation, and neuroinflammation. A significant proportion of IBS patients chronically consume alcohol, non-steroidal anti-inflammatories, and fatty diet; they may also suffer from co-morbid respiratory, neuromuscular, psychological, sleep, and neurological disorders. The above pathophysiological substrate is underpinned by dysbiosis, and dysfunctional bidirectional “Gut-Brain Axis” pathways. Pathogenic gut microbiota-related systemic inflammation (due to increased lipopolysaccharide and pro-inflammatory cytokines, and barrier dysfunction), may trigger neuroinflammation enhancing dysfunctional brain regions including hippocampus and cerebellum. These as well as dysfunctional vago-vagal gut-brain axis may promote cognitive impairment. Indeed, inflammation is characteristic of a broad spectrum of neurodegenerative diseases that manifest demntia. It is argued that an awareness of pathophysiological impact of IBS and implementation of appropriate therapeutic measures may prevent cognitive impairment and minimize vulnerability to dementia.  相似文献   

18.
The aim of this study was to determine the relationship between the composition and function of gut microbiota. Here, we compared the bacterial compositions and fermentation metabolites of human and chicken gut microbiotas. Results generated by quantitative PCR (qPCR) and 454 pyrosequencing of the 16S rRNA gene V3 region showed the compositions of human and chicken microbiotas to be markedly different, with chicken cecal microbiotas displaying more diversity than human fecal microbiotas. The nutrient requirements of each microbiota growing under batch and chemostat conditions were analyzed. The results showed that chicken cecal microbiotas required simple sugars and peptides to maintain balanced growth in vitro but that human fecal microbiotas preferred polysaccharides and proteins. Chicken microbiotas also produced higher concentrations of volatile fatty acids than did human microbiotas. Our data suggest that the availability of different fermentable substrates in the chicken cecum, which exist due to the unique anatomical structure of the cecum, may provide an environment favorable to the nourishment of microbiotas suited to the production of the higher-energy metabolites required by the bird. Therefore, gut structure, nutrition, immunity, and life-style all contribute to the selection of an exclusive bacterial community that produces types of metabolites beneficial to the host.  相似文献   

19.

Background

To systematically develop dietary strategies based on resistant starch (RS) that modulate the human gut microbiome, detailed in vivo studies that evaluate the effects of different forms of RS on the community structure and population dynamics of the gut microbiota are necessary. The aim of the present study was to gain a community wide perspective of the effects of RS types 2 (RS2) and 4 (RS4) on the fecal microbiota in human individuals.

Methods and Findings

Ten human subjects consumed crackers for three weeks each containing either RS2, RS4, or native starch in a double-blind, crossover design. Multiplex sequencing of 16S rRNA tags revealed that both types of RS induced several significant compositional alterations in the fecal microbial populations, with differential effects on community structure. RS4 but not RS2 induced phylum-level changes, significantly increasing Actinobacteria and Bacteroidetes while decreasing Firmicutes. At the species level, the changes evoked by RS4 were increases in Bifidobacterium adolescentis and Parabacteroides distasonis, while RS2 significantly raised the proportions of Ruminococcus bromii and Eubacterium rectale when compared to RS4. The population shifts caused by RS4 were numerically substantial for several taxa, leading for example, to a ten-fold increase in bifidobacteria in three of the subjects, enriching them to 18–30% of the fecal microbial community. The responses to RS and their magnitudes varied between individuals, and they were reversible and tightly associated with the consumption of RS.

Conclusion

Our results demonstrate that RS2 and RS4 show functional differences in their effect on human fecal microbiota composition, indicating that the chemical structure of RS determines its accessibility by groups of colonic bacteria. The findings imply that specific bacterial populations could be selectively targeted by well designed functional carbohydrates, but the inter-subject variations in the response to RS indicates that such strategies might benefit from more personalized approaches.  相似文献   

20.
Several studies have stressed the importance of the microbiota in the maintenance of the gastrointestinal epithelium. Administration of probiotic bacteria, supplements composed of microbiota constituents, was previously shown to diminish symptoms in patients suffering from inflammatory bowel diseases. This raises the possibility that probiotics may play an active role in enhancing the intestinal barrier at the mucosal surface. In this study, we investigated whether the clinically tested VSL#3 probiotic formula and/or its secreted components can augment the protective mucus layer in vivo and in vitro. For in vivo studies, Wistar rats were orally administered the probiotic mixture VSL#3 on a daily basis for seven days. After treatment, basal luminal mucin content increased by 60%. In addition, we exposed isolated rat colonic loops to the VSL#3 probiotic formula, which significantly stimulated colonic mucin (MUC) secretion and MUC2 gene expression; however, MUC1 and MUC3 gene expression were only slightly elevated. The effect of the VSL#3 mucin secretagogue was also tested in vitro by use of LS 174T colonic epithelial cells. In contrast to the animal studies, cultured cells incubated with VSL#3 bacteria did not exhibit increased mucin secretion. However, the bacterial secreted products contained in the conditioned media stimulated a remarkable mucin secretion effect. Among the three bacterial groups (Lactobacilli, Bifidobacteria, and Streptococci) contained in VSL#3, the Lactobacillus species were the strongest potentiator of mucin secretion in vitro. A preliminary characterization of the putative mucin secretagogue suggested that it was a heat-resistant soluble compound, which is not sensitive to protease and DNase treatment. These findings contribute to a better understanding of the complex and beneficial interaction between colonic epithelial cells and intestinal bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号