首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The protein encoded by glnB of Rhodobacter capsulatus is part of a nitrogen-sensing cascade which regulates the expression of nitrogen fixation genes (nif). The expression of glnB was studied by using lacZ fusions, primer extension analysis, and in vitro DNase I footprinting. Our results suggest that glnB is transcribed from two promoters, one of which requires the R. capsulatus ntrC gene but is rpoN independent. Another promoter upstream of glnB is repressed by NtrC; purified R. capsulatus NtrC binds to sites that overlap this distal promoter region.  相似文献   

4.
5.
Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with L-alanine, L-serine, L-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol.L-1 ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol x L-1 urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.  相似文献   

6.
7.
8.
Using whole genome arrays, we systematically investigated nitrogen regulation in the plant symbiotic bacterium Sinorhizobium meliloti. The use of glutamate instead of ammonium as a nitrogen source induced nitrogen catabolic genes independently of the carbon source, including two glutamine synthetase genes, various aminoacid transporters and the glnKamtB operon. These responses depended on both the ntrC and glnB nitrogen regulators. Glutamate repressible genes included glutamate synthase and a H+-translocating pyrophosphate synthase. The smc01041-ntrBC operon was negatively autoregulated in a glnB-dependent fashion, indicating an involvement of phosphorylated NtrC. In addition to the nitrogen response, glutamate remodelled expression of carbon metabolism by inhibiting expression of the Entner-Doudoroff and pentose phosphate pathways, and by stimulating gluconeogenetic genes independently of ntrC.  相似文献   

9.
10.
The phototrophic bacterium Rhodobacter capsulatus is able to reduce 2,4-dinitrophenol (DNP) to 2-amino-4-nitrophenol enzymatically and thus can grow in the presence of this uncoupler. DNP reduction was switched off by glutamine or ammonium, but this short-term regulation did not take place in a draTG deletion mutant. Nevertheless, the target of DraTG does not seem to be the nitrophenol reductase itself since the ammonium shock did not inactivate the enzyme. In addition to this short-term regulation, ammonium or glutamine repressed the DNP reduction system. Mutants of R. capsulatus affected in ntrC or rpoN exhibited a 10-fold decrease in nitroreductase activity in vitro but almost no DNP activity in vivo. In addition, mutants affected in rnfA or rnfC, which are also under NtrC control and encode components involved in electron transfer to nitrogenase, were unable to metabolize DNP. These results indicate that NtrC regulates dinitrophenol reduction in R. capsulatus, either directly or indirectly, by controlling expression of the Rnf proteins. Therefore, the Rnf complex seems to supply electrons for both nitrogen fixation and DNP reduction.  相似文献   

11.
12.
13.
14.
15.
The inducible glnA promoter 2 of the E. coli glutamine synthetase gene is suitable as an expression unit for the production of recombinant proteins at low and high cell densities. It is active when the concentration of ammonium as the sole nitrogen source in the culture medium is below 1 mM. This nitrogen regulatory system was optimized by introduction of expression cassettes consisting of additional elements of the ntr-system. These artificial constructions result in enhanced recombinant gene expression in the production phase. Furthermore, the basic recombinant protein level during the growth phase is reduced due to a tighter promoter control. A three- to four-fold higher accumulation of chloramphenicol-acetyltransferase (as reporter protein) and of anti-EGF-receptor miniantibodies was achieved by increasing the amount of the final regulator molecule NtrC approximately P via plasmidal co-expression of the ntrC gene. The introduction of a modified glnA promoter 1 inverse to glnAp2 lowered the basic activity of glnAp2 to about one half. It is assumed that under nitrogen excess conditions sigma 70-RNA polymerase binds at glnAp1 and thereby prevents most of the binding of sigma 54-RNA polymerase at glnAp2. The optimized expression systems were successfully applied in low and high cell density cultivations. In the fed-batch phase of high cell density cultivations recombinant protein formation was induced through external nitrogen limitation under FIA-controlled concentration of glucose as carbon source.  相似文献   

16.
17.
B Keuntje  B Masepohl    W Klipp 《Journal of bacteriology》1995,177(22):6432-6439
Four Rhodobacter capsulatus mutants unable to grow with proline as the sole nitrogen source were isolated by random Tn5 mutagenesis. The Tn5 insertions were mapped within two adjacent chromosomal EcoRI fragments. DNA sequence analysis of this region revealed three open reading frames designated selD, putR, and putA. The putA gene codes for a protein of 1,127 amino acid residues which is homologous to PutA of Salmonella typhimurium and Escherichia coli. The central part of R. capsulatus PutA showed homology to proline dehydrogenase of Saccharomyces cerevisiae (Put1) and Drosophila melanogaster (SlgA). The C-terminal part of PutA exhibited homology to Put2 (pyrroline-5-carboxylate dehydrogenase) of S. cerevisiae and to aldehyde dehydrogenases from different organisms. Therefore, it seems likely that in R. capsulatus, as in enteric bacteria, both enzymatic steps for proline degradation are catalyzed by a single polypeptide (PutA). The deduced amino acid sequence of PutR (154 amino acid residues) showed homology to the small regulatory proteins Lrp, BkdR, and AsnC. The putR gene, which is divergently transcribed from putA, is essential for proline utilization and codes for an activator of putA expression. The expression of putA was induced by proline and was not affected by ammonia or other amino acids. In addition, putA expression was autoregulated by PutA itself. Mutations in glnB, nifR1 (ntrC), and NifR4 (ntrA encoding sigma 54) had no influence on put gene expression. The open reading frame located downstream of R. capsulatus putR exhibited strong homology to the E. coli selD gene, which is involved in selenium metabolism. R. capsulatus selD mutants exhibited a Put+ phenotype, demonstrating that selD is required neither for viability nor for proline utilization.  相似文献   

18.
19.
20.
An in vitro urease enzyme assay was developed for the marine diatoms Thalassiosira pseudonana Hasle et Heimdal (clone 3H) and T. weissflogii (Grunow) Fryxell et Hasle (clone Actin). This assay involves the colorimetric measurement of ammonium following the hydrolysis of urea in crude cell homogenates and it is the first assay to account for the rate of nitrogen assimilation in both species grown on urea as the sole nitrogen source. Urease activity was found to be present regardless of nitrogen source, although activities showed distinctly different patterns depending on the species examined and form of nitrogen supplied. Under nitrogen-replete conditions, urease activity in T. pseudonana was present constitutively when grown on NH4+ and upregulated when grown on NO3 or urea. In nitrogen-replete T. weissflogii , urease activity was present at high constitutive levels regardless of the nitrogen source and showed no upregulation. Nitrogen starvation did not upregulate activity in either species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号