首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目的:研究川芎嗪对辐射所致小鼠肾脏氧化损伤的预防和治疗作用。方法:采用60Co-γ射线5 Gy全身单次照射小鼠造模,在照射前和照射后分别于每天腹腔注射川芎嗪130 mg/kg,连续给药10 d,进行预防和治疗,并设对照组,观察肾组织中丙二醛(MDA)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、还原型谷胱甘肽(GSH)、谷胱甘肽过氧化物酶(GSH-Px)及总抗氧化力(T-AOC)的变化。结果:与阴性对照组比较,照射可显著增加肾组织中MDA的含量(P<0.05),降低SOD、CAT的活性(P<0.05),升高GSH-Px活性(P<0.05),降低GSH含量(P<0.05),使肾组织T-AOC下降(P<0.05),。与照射组比较,给予川芎嗪预防和治疗后,均可降低肾组织MDA含量(P<0.05),升高肾组织T-AOC(P<0.05),且治疗组优于预防组,与阴性对照组无显著性差异。同时,预防组可使SOD活性和GSH含量升高(P<0.05),治疗组可使SOD和CAT活性增高(P<0.05),但均对GSH-Px活性无显著影响(P>0.05)。结论:川芎嗪具有很好的抗氧化作用,无论预防和治疗均可降低辐射所致小鼠肾脏的氧化应激损伤,并且治疗效果优于预防效果。  相似文献   

2.
该研究以低剂量(5 mg·kg~(-1))、中剂量(30 mg·kg~(-1))和高剂量(60 mg·kg~(-1))的辣木叶乙醇提取物(EE-MO)干预高脂饮食诱导的非酒精性脂肪肝(NAFLD)小鼠动物模型。结果表明:(1)高剂量的EE-MO显著降低NAFLD小鼠的体重和肝湿重; EE-MO剂量依赖性地降低NAFLD小鼠血清TC、TG、HDL-C和LDLC含量;高剂量的EE-MO除降低上述生化指标外,还显著降低血清中FFA含量。(2) HE和苏丹红Ⅲ染色发现,EE-MO处理后,模型组小鼠的肝脂肪病变和细胞损伤得到显著改善。(3) EE-MO对NAFLD小鼠模型的血脂代谢具有改善作用。(4)高脂饮食诱导小鼠肝脏和血清的ROS和MDA的含量,诱导SOD、POD和CAT活性增加,降低GSH-Px活性。(5)低剂量、中剂量和高剂量的EE-MO依赖性地降低NAFLD小鼠肝脏和血清的ROS和MDA的含量,缓解氧化胁迫。(6)低剂量的EE-MO对SOD、POD、CAT和GSH-Px酶活性无显著影响;中剂量和高剂量的EE-MO处理后,NAFLD小鼠的SOD、POD和CAT酶活性显著下降,GSH-Px活性显著增加; EE-MO可能通过GSH-Px抗氧化酶途径缓解NAFLD小鼠的氧化胁迫。  相似文献   

3.
目的:研究金叶女贞果实花青素抗炎镇痛的作用,为进一步开发新药提供理论依据。方法:实验动物共240只,分为6项实验,每项实验40只,分为5组(n=8):生理盐水对照组,阿司匹林对照组,花青素高、中、低剂量组。通过小鼠热板法和醋酸扭体法观察花青素镇痛作用;通过二甲苯至耳廓肿胀法、腹腔毛细血管通透性及棉球肉芽肿实验观察花青素的抗炎作用。测定小鼠血清中超氧化物歧化酶(SOD)、一氧化氮(NO)、总抗氧化能力(TAOC)和前列腺素E2(PGE2)水平和小鼠肝脏匀浆的SOD、T-AOC及谷胱甘肽过氧化物酶(GSH-Px)酶活力,观察肝脏组织学变化。结果:中、高浓度的花青素能提高小鼠痛阈,减少扭体次数;花青素处理组小鼠血清SOD活性增高,NO和PGE2含量降低。高浓度花青素可抑制小鼠耳廓肿胀、腹腔毛细血管通透性的增加和肉芽肿增生,同时提高血清SOD和T-AOC活性,降低血清PGE2含量。肝脏SOD、T-AOC、GSH-PX酶活力有所提高,肝脏组织学切片在各组中未见明显变化。结论:金叶女贞果实花青素具有抗炎镇痛作用,其机制可能与提高小鼠抗氧化能力,减少NO和炎性因子PGE2的生成有关,在实验浓度范围内连续给药7 d对肝脏无明显损伤作用。  相似文献   

4.
祁平  樊惠  刘林  林军 《蛇志》2012,24(1):5-7,10
日的研究4一羟基苯并恶唑-2-酮(4-hydroxy-2-benzoxazolone,HBOA)对四氯化碳所致小鼠急性肝损伤的保护作用,并探讨其疗效机制。方法采用腹腔注射四氯化碳(carbonte trachloride,cch)制备小鼠急性肝损伤模型,HBOA灌胃给药,检测小鼠血清中的乳酸脱氢酶(LDH)活性以及肝组织中过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)含量,并用免疫组化法观察肿瘤坏死因子(TNF-a)的表达情况。结果HBOA能明显降低CCh致急性肝损伤小鼠血清LDH活性,同时升高肝组织中CAT、GSH-Px的活性并降低肝组织中TNF-a的表达。结论HBOA对CCh所致小鼠急性肝损伤有一定的保护作用。  相似文献   

5.
探究龙井茶多酚提取物对C57BL/6J小鼠肝脏氧化应激水平的影响,及其对小鼠肝脏内代谢酶系和转运蛋白的作用。灌胃给予C57BL/6J小鼠三个剂量龙井茶多酚提取物,采用病理切片、血清中谷草转氨酶(alanine aminotransferase, ALT)和谷丙转氨酶(aspartate aminotransferase, AST)含量来评价龙井茶多酚提取物对小鼠肝脏的损伤情况,通过测定小鼠肝脏谷胱甘肽(glutathione, GSH)、谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)、超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)来评价其对小鼠肝脏内氧化应激水平的影响,Western blotting分析其对小鼠肝脏中代谢酶系的影响。结果显示龙井茶多酚提取物可以通过增加肝脏中GSH-Px和CAT的含量来增强肝脏的氧化防御;通过诱导细胞色素450酶系2E1/3A11(cytochrome P450 2E1/3A1,CYP2E1/3A11),硫酸转移酶1A1(sulfate transferase 1A1,SULT1A1),葡萄糖醛酸转移酶1A6(UDP-glucuronosyltransferases1A6,UGT1A6),多药耐药相关蛋白家族2(multi-drug resistance associated protein 2,MRP2)的蛋白表达,抑制P-糖蛋白(P-glycoprotein, P-gp)的蛋白表达来调节代谢。  相似文献   

6.
为探究低氧-复氧胁迫对鲢(Hypophthalmichthys molitrix)抗氧化酶活性及Cu/Zn-SOD和Mn-SOD基因表达的影响, 对鲢进行急性低氧、持续低氧及复氧实验, 进而分析血清、心脏和肝脏中不同抗氧化酶和SODs基因表达的变化特征。结果表明: 在急性低氧胁迫后, 血清中总抗氧化能力(T-AOC)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)活性随着氧浓度的降低均呈上升趋势, 但超氧化物歧化酶(SOD)活性呈先升后降的趋势。在持续低氧胁迫后, 血清中T-AOC和GSH-PX活性随着低氧胁迫时间的增加显著升高(P<0.05); 心脏中SOD活性显著高于常氧水平(P<0.05), 但Cu/Zn-SOD和Mn-SOD基因表达在低氧胁迫24h时显著低于常氧水平(P<0.05); 肝脏中SOD活性在低氧胁迫24h时显著高于常氧水平(P<0.05), 且Cu/Zn-SOD和Mn-SOD基因表达在低氧胁迫24h时也显著高于常氧水平(P<0.05)。复氧后, 血清、心脏和肝脏中T-AOC、SOD、CAT和GSH-PX活性均能恢复至常氧水平, 且心脏和肝脏中Cu/Zn-SOD和Mn-SOD基因表达的也能恢复至常氧水平, 但肝脏中Mn-SOD基因表达恢复至常氧水平较在心脏中所需时间更少。因而, 鲢可以通过调节抗氧化酶的活性来保护自身免受氧化应激造成的损伤。研究为解析低氧胁迫下鲢抗氧化应激机制提供了基础。  相似文献   

7.
目的:观察α-亚麻酸(ALA)对糖尿病大鼠体内炎症介质和氧化应激的影响,探讨ALA在糖尿病防治中的作用。方法:雄性SD大鼠高脂饮食喂养4周后,腹腔注射链脲佐菌素(STZ)30 mg/kg建立2型糖尿病(T2DM)模型。将大鼠随机分为3组(n=10):正常对照组、糖尿病模型组和ALA治疗组(500μg/kg.d)。4周后测定大鼠血清中肿瘤坏死因子(TNF-α)、可溶性P-选择素(sP-selectin)、可溶性细胞间黏附分子(sICAM-1)、一氧化氮(NO)、丙二醛(MDA)的含量以及超氧化物岐化酶(SOD)和过氧化氢酶(CAT)的活性。结果:与正常对照组相比,糖尿病大鼠血清中炎症介质TNF-α、sP-selectin和sICAM-1的含量增加,血清NO含量下降而MDA升高,同时抗氧化酶SOD和CAT的活性降低;ALA治疗可显著降低糖尿病大鼠血清中TNF-α、sP-selectin和sICAM-1的含量(与STZ+vehicle组相比,P<0.01),增加血清NO水平并减少MDA含量,升高抗氧化酶SOD和CAT的活性(与STZ+vehicle组相比,均P<0.05)。结论:ALA可显著降低糖尿病大鼠血清炎症介质的生成,减轻氧化应激水平,具有抗炎和抗氧化作用。提示ALA对糖尿病及糖尿病并发症的发生发展可能具有一定的防治作用。  相似文献   

8.
目的:探讨茶多酚对营养性肥胖大鼠肝脏自由基代谢的影响。方法:采用高脂饲料喂养,体重(200±20)g的雄性SD大鼠32只,随机分为4组(n=8),测定各组大鼠肝脏细胞O自由基和N自由基。结果:高脂饲料组大鼠肝脏超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性显著提高,茶多酚补充组丙二醛(MDA)含量比对照组及高脂饲料组显著下降;高脂饲料组大鼠肝脏TNOS、iNOS活性及NO含量显著升高,茶多酚降低了总-氧化氮合酶(TNOS)、诱导型一氧化氮合酶(iNOS)活性及NO含量。结论:高脂饲料诱导了大鼠肝脏细胞的氧化应激状态,茶多酚提高了营养性肥胖大鼠肝脏的抗氧化能力,对营养性肥胖大鼠肝脏有一定的保护作用。  相似文献   

9.
考察人参中提取的寡糖粗提物(CGOS)在体外对小鼠巨噬细胞的激活作用。首先用水提的方法获得人参寡糖粗提物,并确定了最佳提取工艺。通过研究CGOS对巨噬细胞吞噬功能、分泌一氧化氮(NO)、活性氧(ROS)的水平、诱导型一氧化氮合酶(iNOS)活性的影响,研究其对巨噬细胞激活作用。结果显示,CGOS在10-100μg/ml能够增强巨噬细胞的吞噬功能,并呈现良好的剂量依赖关系;在该浓度范围内iNOS活性增强,导致NO的产量显著增加,最佳作用浓度为100μg/ml;CGOS在10~200μg/ml浓度范围促进ROS的释放。上述结果表明,CGOS对腹腔巨噬细胞有激活功能。  相似文献   

10.
目的:研究玉米爽对高脂血症大鼠血管壁的保护作用及其作用机制。方法:将30只Wistar大鼠随机分为对照组、模型组和实验组(n=10)。根据实验要求喂养15周后,测定各组大鼠血脂、血清超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、丙二醛(MDA)、一氧化氮(NO)和一氧化氮合酶(NOS)的含量,采用光镜观察各组大鼠主动脉壁组织形态学改变。结果:模型组血清中总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白(LDL-C)和MDA的含量均明显升高(P<0.01),高密度脂蛋白(HDL-C)、SOD、GSH-Px、NO和NOS显著下降(P<0.01);玉米爽可降低高脂血症大鼠血清TC、TG、LDL-C和MDA的浓度(P<0.01),提高HDL-C、SOD、GSH-Px、NO和NOS的含量(P<0.01);模型组主动脉壁出现典型粥样硬化病变,实验组动脉壁受损程度明显减轻。结论:玉米爽对血管壁具有明显的保护作用,其作用机制可能与调血脂、抗氧化和维护NO代谢有关。  相似文献   

11.
Free radicals are believed to be involved in postsurgery-related complications. We studied whether cardiopulmonary bypass (CPB) operation has any immediate impact on the initiation of oxidative stress and inflammatory response by measuring isoprostanes and prostaglandin F2alpha during and 24 h following CPB. The levels of 8-iso-PGF2alpha (a major F2-isoprostane and biomarker of oxidative stress) and 15-keto-dihydro-PGF2alpha (a major metabolite of PGF2alpha and biomarker of inflammatory response) were measured in frequently collected plasma samples before, during, and up to 24 h postsurgery in 21 patients. 8-Iso-PGF2alpha levels significantly increased within 3 min (p <.0001) and continued until 50 min (p <.0001) during CPB. On the contrary, no significant increase of inflammatory response indicator, 15-keto-dihydro-PGF2alpha was found during and up to 24 h postoperatively. These findings establish an increased free radical-induced oxidative stress activity rather than inflammatory response after CPB.  相似文献   

12.
Cells are armed with a vast repertoire of antioxidant defence mechanisms to prevent the accumulation of oxidative damage. The cellular adaptive response is an important antioxidant mechanism against physiological and pathophysiological oxidative alterations in a cell's microenvironment. The aim of this paper was to study, in the rat aorta, whether this adaptive response and the inflammation associated with oxidative stress were expressed throughout the aging process. We examined the rat aorta, as it is a very sensitive tissue to oxidative stress. Male Wistar rats of 1.5, 3, 12, 18 and 24 months of age were used. Superoxide anion (O2(-)) generation; levels of two antioxidant enzymes, superoxide dismutase (SOD) and catalase; and the levels of prostaglandin E2 (PGE2), an inflammatory marker, were measured. The results for rats at different ages were compared with those for 3 months of age. A balance between production of O2(-) and SOD activity was found in the aorta of rats from 1.5 to 12 months old. Oxidative stress was present in the aorta of old animals (18-24 months), due to a failure in the mechanisms of adaptation to oxidative stress. The observed increase in PGE2 levels in these rats reflected an inflammatory response. All together suggest that vascular oxidative stress and the inflammatory process observed in the old groups of rats could be closely related to vascular aging. Our results also remark the importance of the adaptative response to oxidative stress.  相似文献   

13.
Ischaemia-reperfusion injury resulting from interruption and restoration of blood flow might be related to free radical mediated oxidative stress and inflammation, and subsequently to post-surgery related complications. We studied the impact of renal transplantation on oxidative stress and inflammation by measuring F(2)-isoprostanes and prostaglandin F(2alpha), respectively, during transplantation and post-surgery. Additionally, due to earlier observations, two dissimilar anaesthetic agents (thiopentone and propofol) were compared to determine their antioxidative capacity rather than their anaesthetic properties. Blood samples were collected before, post-intubation, immediately, 30, 60,120, 240 min, and 12 and 24 h after reperfusion. Oxidative stress and inflammatory response were detected by measuring 8-iso-PGF(2alpha) (a major F(2)-isoprostane and a biomarker of oxidative stress) and 15-keto-dihydro-PGF(2alpha) (a major metabolite of PGF(2alpha) and a biomarker of COX-mediated inflammatory response), respectively. Reperfusion of the transplanted graft significantly increased plasma levels of 8-iso-PGF(2alpha). PGF(2alpha) metabolite levels, although elevated, did not reach statistical significance. In addition, significantly lower levels of 8-iso-PGF(2a) were observed in the propofol group compared to the thiopentone group. Together, these findings underline an augmented oxidative stress activity following an inflammatory response after human renal transplantation. Furthermore, propofol a well-known anaesthetic, counteracted oxidative stress by lowering the formation of a major F(2)-isoprostane.  相似文献   

14.
Objective: In order to illustrate the hypoxia-induced changes of neural cells in inflammatory response, oxidative stress, and energy metabolism process and to compare the sensitivity of neural cells’ responses to hypoxia. Methods: Different types of neural cells (BV2, N9, Gl261, HT22) were treated with hypoxia (0.1% O2, 5% CO2) for 0-24 hours. Cell proliferation was detected by Cell Counting Kit-8 method and cell viability was assayed by CellTiter-Glo Luminescent Cell Viability Assay. Total RNA was extracted by Trizol reagent, and the inflammation, oxidative stress, and energy metabolism-related genes expression were measured by quantitative real-time PCR and Western blot. The ROS production was detected by flow cytometer with fluorescence probe. Results: Hypoxia stimulation decreased cell proliferation and cell viability. The hypoxia-induced changes of microglial cells (BV2 and N9) were mainly involved in inflammatory response and glucose metabolism process. The changes of astrocytes Gl261 and neural cell HT22 were mainly involved in glucose metabolism process. Hypoxia stimulation significantly increased oxidative stress in microglia and astrocytes. Conclusion: Different types of neural cells have different degrees of sensitivity in response to hypoxic stimulation. In terms of energy metabolism and inflammatory response, microglia are more sensitive to hypoxia treatment, which is manifested as a significant up-regulation of glycolytic enzymes and inflammation genes, whereas microglia and astrocytes are more sensitive to hypoxia treatment in terms of oxidative stress, which is indicated by their quick response and significant increase of ROS production.  相似文献   

15.
Severe burns induce a state of immunosuppression, and the inflammatory response after burn injury may play a role in this phenomenon. This study examined the effect of the inflammatory response to endotoxin on burn-induced immunosuppression and oxidative stress. An endotoxin-resistant mouse strain (C3H/HeJ) and a normally responding mouse strain (C3H/HeN) were compared. The mice were separated into three groups of five animals for each experimental day: (1) saline, (2) buprenorphine, and (3) buprenorphine and 20% total body surface area burn. All animals were fed ad libitum. The inflammatory response was studied at 1, 4, 7, 10, and 14 days postburn. Proliferation of activated splenocytes in burn mice was significantly lower on days 7, 10, and 14 for the C3H/HeJ strain and on days 4 and 10 for the C3H/HeN strain. Globally, C3H/HeJ presented stronger immune suppression than C3H/HeN. Oxidative stress parameters (liver malonaldehyde, spleen metabolic activity, and thiol concentrations) were higher in endotoxin-resistant mice than in the control strain. Impairment of the inflammatory response was more pronounced and oxidative stress was greater in endotoxin-resistant burn mice than in normal burn controls. Buprenorphine administration was not related to depression of these immune parameters. The inflammatory response following burn injury may be beneficial to the immune system.  相似文献   

16.
Abstract

Ischaemia-reperfusion injury resulting from interruption and restoration of blood flow might be related to free radical mediated oxidative stress and inflammation, and subsequently to post-surgery related complications. We studied the impact of renal transplantation on oxidative stress and inflammation by measuring F2-isoprostanes and prostaglandin F, respectively, during transplantation and post-surgery. Additionally, due to earlier observations, two dissimilar anaesthetic agents (thiopentone and propofol) were compared to determine their antioxidative capacity rather than their anaesthetic properties. Blood samples were collected before, post-intubation, immediately, 30, 60,120, 240 min, and 12 and 24 h after reperfusion. Oxidative stress and inflammatory response were detected by measuring 8-iso-PGF (a major F2-isoprostane and a biomarker of oxidative stress) and 15-keto-dihydro-PGF (a major metabolite of PGF and a biomarker of COX-mediated inflammatory response), respectively. Reperfusion of the transplanted graft significantly increased plasma levels of 8-iso-PGF. PGF metabolite levels, although elevated, did not reach statistical significance. In addition, significantly lower levels of 8-iso-PGF2a were observed in the propofol group compared to the thiopentone group. Together, these findings underline an augmented oxidative stress activity following an inflammatory response after human renal transplantation. Furthermore, propofol a well-known anaesthetic, counteracted oxidative stress by lowering the formation of a major F2-isoprostane.  相似文献   

17.
"It has been well known that both oxidative stress and inflammatory activity play crucial roles in the pathogenesis of type 1 diabetes mellitus (T1DM). Resveratrol (RSV), a naturally occurring polyphenol found in grapes and red wine, has recently been shown to exert potent anti-diabetic, anti-oxidative and anti-inflammatory actions. In the present study, we investigated the effect of RSV on oxidative stress and inflammatory response in the liver and spleen of streptozotocin (STZ)-induced type 1 diabetic animal models. Male Long-Evans rats were injected with 65 mg/kg STZ to induce diabetes for 2 weeks, and subsequently administrated with the dosage of 0.1 or 1 mg/kg/day RSV for 7 consecutive days. Hepatic and splenic tissues were dissected for evaluation of oxidative and inflammatory stress. Oxidative stress was assessed by quantification of oxidative indicators including superoxide anion content, lipid and protein oxidative products, as well as manganese superoxide dismutase (Mn-SOD) and nitro-tyrosine protein expression levels. Inflammatory stress was evaluated by the levels of nuclear factor κB (NF-κB) and the proinflammatory cytokine tumor necrosis factorα (TNF-α), interleukin 1 β (IL-1 β ) and IL-6. The experimental results indicated that RSV significantly decreased oxidative stress (superoxide anion content, protein carbonyl level and Mn-SOD expression) in both tissues and hepatic inflammation (NF- κB and IL-1 β ), but implicated proinflammatory potential of RSV in diabetic spleen (TNF-α and IL-6). The results of this study suggest that RSV may serve as a potent antioxidant, but RSV possesses a proinflammatory potential in certain circumstances in diabetes."  相似文献   

18.
19.
Intense exercise induces inflammatory-like changes and oxidative stress in immune cells. Our aim was to study the effects of antioxidant diet supplementation on the neutrophil inflammatory response and on the tocopherol associated protein (TAP) expression after exhaustive exercise. Fourteen male-trained amateur runners were randomly divided in two placebo and supplemented groups. Vitamins C (152 mg/d) and E (50 mg/d) supplementation were administrated to the athletes for a month, using an almond based isotonic and energetic beverage. Non-enriched beverage was given to the placebo group. After one month, the subjects participated in a half-marathon race (21 km-run). Neutrophil TAP mRNA expression and markers of the inflammatory response were determined before, immediately after, and 3 h after finishing the half-marathon race. TAP expression increased after exercise mainly in the neutrophils of the placebo group. Exercise induced an inflammatory response in both placebo and supplemented groups, manifested with neutrophilia, increased creatine kinase and lactate dehydrogenase serum activities, neutrophil luminol chemiluminescence and myeloperoxidase release. Plasma malondialdehyde only increased in the placebo group after exercise. Diet supplementation with moderate levels of antioxidant vitamins avoids plasma damage in response to exhaustive exercise without the effects on the inflammatory process. Neutrophil degranulation and increased tocopherol associated protein could contribute to the neutrophil protection from the oxidative stress.  相似文献   

20.
Inflammation and oxidative stress play a crucial role in the development of diabetic cardiomyopathy (DCM). We previously had synthesized an Aza resveratrol–chalcone derivative 6b, of which effectively suppressing lipopolysaccharide (LPS)‐induced inflammatory response in macrophages. This study aimed to investigate the potential protective effect of 6b on DCM and underlying mechanism. In H9c2 myocardial cells, 6b potently decreased high glucose (HG)‐induced cell fibrosis, hypertrophy and apoptosis, alleviating inflammatory response and oxidant stress. In STZ‐induced type 1 diabetic mice (STZ‐DM1), orally administration with 6b for 16 weeks significantly attenuated cardiac hypertrophy, apoptosis and fibrosis. The expression of inflammatory cytokines and oxidative stress biomarkers was also suppressed by 6b distinctly, without affecting blood glucose and body weight. The anti‐inflammatory and antioxidative activities of 6b were mechanistic associated with nuclear factor‐kappa B (NF‐κB) nucleus entry blockage and Nrf2 activation both in vitro and in vivo. The results indicated that 6b can be a promising cardioprotective agent in treatment of DCM via inhibiting inflammation and alleviating oxidative stress. This study also validated the important role of NF‐κB and Nrf2 taken in the pathogenesis of DCM, which could be therapeutic targets for diabetic comorbidities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号