首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To investigate the use of fusion systems to aid the purification of recombinant proteins for structure/function studies and potential uses as diagnostic reagents, the measles virus (MV) gene encoding the nucleoprotein was cloned and expressed in Escherichia coli in three forms: as a full-length intact protein and as two fusion proteins. Expression of the intact N gene under the control of the tac promoter in the pTrc99c plasmid produced a protein of the correct size (60 kDa) which represented approx. 4% of the total cellular protein, and was recognised by known measles positive human sera. ‘Herringbone’ structures characteristic of paramyxovirus nucleocapsids (NuC) were identified in fractured cells examined by electron microscopy. The production of NuC-like structures in a prokaryotic cell indicates folding of the nucleoprotein can occur in the absence of MV genomic RNA, other MV-encoded gene products and eukaryotic cell proteins or RNA, to produce structures which are morphologically and antigenically similar to those seen in virus-infected cells. Conversely, synthesis of N protein as a fusion protein with either E. coli β-galactosidase or the E. coli maltose-binding protein resulted in the production of fused proteins which could not be assembled into NuC-like structures or readily used as diagnostic reagents. However, the ability of MV N protein to form NuC-like structures in E. coli will facilitate structure/function and mutational analysis of the NuC protein.  相似文献   

3.
A superior novel recombinant strain, E. coli BL21(DE3)/pETNHM, containing the start codon mutation of the subunit, was constructed and selected as an overexpression and high efficient mutation platform for the genetic manipulation of the nitrile hydratase (NHase). Under optimal conditions, the specific activity of the recombinant strain reached as high as 452 U/mg dry cell. Enzymatic characteristics studies showed that the reaction activation energy of the recombinant NHaseM was 24.4 ± 0.5 kJ/mol, the suited pH range for catalysis was 5.5–7.5, and the Km value was 4.34 g/L (82 mM). To assess the feasibility of the NHase improvement by protein rational design using this E. coli, site-directed mutagenesis of S122A, S122C, S122D and βW47E of the NHaseM were carried out. The NHaseM (S122A) and NHaseM (S122D) mutants were entirely inactive due to the charge change of the side-chain group. The product tolerance of the NHaseM (S122C) mutant was enhanced while its activity decreased by 30%. The thermo-stability of the NHaseM (βW47E) mutant was significantly strengthened, while its activity reduced by nearly 50%. These results confirmed that the specific activity of the mutant NHase expressed by the recombinant E. coli BL21(DE3)/pETNHM can reasonably change with and without mutations. Therefore, this recombinant E. coli can be efficiently and confidently used for the further rational/random evolution of the NHase to simultaneously improve the activity, thermo-stability and product tolerance of the target NHase.  相似文献   

4.
A total of 177 naturally contaminated water samples were analyzed by membrane filtration according to the Standard Methods for the Examination of Water and Wastewater published by the American Public Health Association. Filters were incubated in parallel on mHPC-agar and 3M™ Petrifilm™ Aerobic Count Plates (Petrifilm™ AC plates) for heterotrophic counts. Fecal coliforms and Escherichia coli were enumerated on mFC-agar and 3M™ Petrifilm™ E. coli/Coliform Count Plates (Petrifilm™ EC plates). Typical colonies on each media type were confirmed following standard procedures. Heterotrophic counts were between 103 and 104 CFU/mL and the average log10 counts obtained on Petrifilm™ AC plates were about two-fold lower than on mHPC-agar. Counts for fecal coliforms and E. coli were between 102 and 103 CFU/mL. Average log10 counts for confirmed fecal coliforms obtained on Petrifilm™ EC plates were slightly lower than on mFC agar with a correlation coefficient of 0.949. The average log10 counts for confirmed E. coli on Petrifilm™ EC plates and on mFC agar were statistically not different (P=0.126) with a correlation coefficient of 0.879. Specificity of Petrifilm™ EC plates and mFC agar was evaluated by comparing typical colony counts with confirmed counts. On mFC agar, counts for typical colonies were by 2 log10 CFU higher than the actual confirmed counts. In contrast, on Petrifilm™ EC plates typical colony counts were almost identical to confirmed colony counts for both fecal coliforms and E. coli. This comparison illustrates the high specificity of Petrifilm™ EC plates for enumeration of both fecal coliforms and E. coli in water.  相似文献   

5.
To obtain a recombinant Rhodococcus or Nocardia with not only higher enzymatic activity but also better operational stability and product-tolerance ability for bioconversion of acrylamide from acrylonitrile, an active and stable expression system of nitrile hydratase (NHase) was tried to construct as the technical platform of genetic manipulations. Two NHase genes, NHBA and NHBAX, from Nocardia YS-2002 were successfully cloned, based on bioinformatics design of PCR primers, and inserted into plasmid pUC18 and pET32a, respectively. Then, two recombinant Escherichia coli strains, JM105 (pUC18-NHBA) and BL21 (DE3) (pET32a-NHBAX) were constructed and their expressions of NHase were focused. The induction results showed that there was either no NHase activity in JM105 (pUC18-NHBA), or as low as 0.04 U (1 U=1 μmol acrylamide min−1 mg−1 dry cell) in BL21 (DE3) (pET32a-NHBAX). SDS-PAGE results showed that the -subunit of NHBA and NHBAX could not be efficiently expressed in both recombinant E. coli strains. The novel Pichia pastoris system was also applied to express NHase, but the expression level remained quite low (0.5–0.6 U) and the protein was unstable. For solving this problem, a possible genetic strategy, site-directed mutagenesis of the -subunit of the NHase was carried out. After the successful mutagenesis of the original rare start codon gtg into atg, a new recombinant strain, E. coli XL1-Blue (pUC18-NHBAM), was screened and the NHase activity stably reached as high as 51 U under the same induction conditions.  相似文献   

6.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

7.
Al-Walid A. Mohsen  Jerry Vockley   《Gene》1995,160(2):263-267
Isovaleryl-CoA dehydrogenase (IVD) catalyzes the conversion of isovaleryl-CoA to 3-methylcrotonyl-CoA in the leucine catabolism pathway. The cDNA encoding the mature human IVD polypeptide was cloned in a prokaryotic expression vector, but the level of expression in Escherichia coli was extremely low and attempts to purify the enzyme to homogeneity were unsuccessful. To enhance expression, the nucleotide sequence of 22 codons within the 111-bp region at the 5′-end of the cDNA was altered to accommodate E. coli codon usage without altering the amino-acid coding sequence. The altered IVD cDNA was synthesized by PCR, using a primer containing the desired modifications. Following overnight induction of the E. coli transformed with this cDNA, the enzyme was purified to homogeneity using diethylaminoethyl agarose and high-pressure ceramic hydroxyapatite resins. IVD activity was increased 165-fold in the crude extract of cells containing the modified cDNA, as compared to that containing the wild-type cDNA.  相似文献   

8.
9.
Site-specific transposition in Escherichia coli was used to introduce foreign genes into the Autographica californica nuclear polyhedrosis baculovirus genome. Using a temperature-sensitive donor plasmid and an E. coli host strain with an occupied Tn7 attachment site it was possible to select directly for ‘bacmid’ recombinants at 44°C. A blue to white color screen provided further confirmation of insertion at the correct site in the baculovirus genome. After cloning the gene of interest into a donor plasmid, a single transformation and plating on selective medium resulted in homogeneous baculovirus DNA which could immediately be transfected into insect cells. The utility of the host-vector system for expression in insect cells was illustrated using three heterologous genes encoding β-glucuronidase, human N-myristoyl transferase and murine preproguanylin. Using this approach, bacmid recombinants could be produced at a frequency of 105 per pg input DNA. This system should not only greatly enhance the ability to obtain recombinant viruses for heterologous protein production, but should also be useful for protein engineering applications and expression cloning in insect cells.  相似文献   

10.
11.
12.
A bacterial flavin-containing monooxygenase (FMO) gene was cloned from Methylophaga aminisulfidivorans MPT, and a plasmid pBlue 2.0 was constructed to express the bacterial fmo gene in E. coli. To increase the production of bio-indigo, upstream sequence size of fmo gene was optimized and response surface methodology was used. The pBlue 1.7 plasmid (1686 bp) was prepared by the deletion of upstream sequence of pBlue 2.0. The recombinant E. coli harboring the pBlue 1.7 plasmid produced 662 mg l−1 of bio-indigo in tryptophan medium after 24 h of cultivation in flask. The production of bio-indigo was optimized using a response surface methodology with a 2n central composite design. The optimal combination of media constituents for the maximum production of bio-indigo was determined as tryptophan 2.4 g l−1, yeast extract 4.5 g l−1 and sodium chloride 11.4 g l−1. In addition, the optimum culture temperature and pH were 30 °C and pH 7.0, respectively. Under the optimized conditions mentioned above, the recombinant E. coli harboring pBlue 1.7 plasmid produced 920 mg of bio-indigo per liter in optimum tryptophan medium after 24 h of cultivation in fermentor. The combination of truncated insert sizes and culture optimization resulted in a 575% increase in the production of bio-indigo.  相似文献   

13.
The ability of two different ferredoxin reductases from Streptomyces coelicolor, to enhance the amount of active recombinant Streptomyces griseus soyC (CYP105D1) was investigated in both Escherichia coli and Streptomyces lividans. In E. coli a two-plasmid system and a single operon construct were used for expression of the CYP105D1 and the ferredoxin reductase(s) under the control of T7 promoters. Expression levels of CYP105D1 were found to range between 85 and 280 nmol l−1 cell culture after prolonged growth. In S. lividans the CYP105D1 and its ferredoxin were cloned downstream of the Pact1 promoter in the E. coli/Streptomyces shuttle vector pBW160. The recombinant E. coli and S. lividans cells converted 7-ethoxycoumarin into 7-hydroxycoumarin efficiently. Expression of a ferredoxin reductase as an operon with CYP105D1 and its ferredoxin enhances the o-dealkylation of 7-ethoxycoumarin. Ferredoxin NADPH reductase was found to enhance the level of the active form of CYP105D1 monooxygenase when no substrate was present.  相似文献   

14.
E. coli possesses an efficient repair mechanism able to remove pyrimidine dimers from UV-irradiated DNA, which is catalyzed by UvrABC endonuclease. In E. coli B/r Hcr+ cells transformed with a multicopy plasmid harboring a gene coding for UvrA, the excision capacity was greatly reduced. The course of thymine dimer excision was investigated using the enzymatic as well as the radiochromatographic method and the results are discussed in term of nonspecific interaction between the excess of UvrA protein and undamaged DNA duplex.  相似文献   

15.
The gene encoding the meso-diaminopimelate dehydrogenase of Bacillus sphaericus was cloned into E. coli cells and its complete DNA sequence was determined. The meso-diaminopimelate dehydrogenase gene consisted of 978 nucleotides and encoded 326 amino acid residues corresponding to the subunit of the dimeric enzyme. The amino acid sequence deduced from the nucleotide sequence of the enzyme gene of B. sphaericus showed 50% identity with those of the enzymes from Corynebacterium glutamicum and Brevibacterium flavum. The enzyme gene from B. sphaericus was highly expressed in E. coli cells. We purified the enzyme to homogeneity from a transformant with 76% recovery. The N-terminal amino acid of both the enzyme from B. sphaericus and the transformant were serine, indicating that the N-terminal methionine is removed by post-translational modification in B. sphaericus and E. coli cells.  相似文献   

16.
Magnetic field-dependent recombination measurements together with magnetic field-dependent triplet lifetimes (Chidsey, E.D., Takiff, L., Goldstein, R.A. and Boxer, S.G. (1985) Proc. Natl. Acad. Sci USA 82, 6850–6854) yield a free energy change ΔG(P+H3P*) = 0.165 eV ±0.008 at 290 K. This does not depend on whether nuclear spin relaxation in the state 3P* is assumed to be fast or slow compared to the lifetime of this state. This value, being (almost) temperature independent, indicates ΔG(P+H3P*) ΔH(P+H3P*) and is consistent with ΔG(1P* − P+H) and ΔH(1P* − 3P*) from previous delayed fluorescence and phosphorescence data, implying ΔG ΔH for all combinations of these states.  相似文献   

17.
An efficient production method for recombinant flounder growth hormone (r-fGH) from Escherichia coli was developed and the biological activity of purified r-fGH was examined using juvenile flounder. The use of bicistronic construction in the expression plasmid resulted in the production of over 40% of the E. coli cellular protein as r-fGH. The r-fGH was recovered from cell lysates following inclusion body washing, solubilization and refolding in sodium dodecylsulfate (SDS) solution, and removal of contaminated proteins with secondary butanol treatment. The SDS content in purified r-fGH solution was adjusted to appropriate levels by diafiltration. More than 47% of the r-fGH was recovered from the E. coli cell lysates and the purity of recovered r-fGH was 98%. The oral administration of purified r-fGH to juvenile flounder, once a week for 4 weeks at a dosage of 40 μg r-fGH g−1 fish body weight, resulted in significant increases both in weight and length. These results of overexpression, simple purification with high recovery yield and purity, and good growth-promoting activity of the r-fGH suggest that the production scheme described in this study is useful for the potential application of r-fGH in fish farming.  相似文献   

18.
The binding of fibronectin and fibronectin fragments to the enterotoxigenic strain E. coli B34289c was studied. E. coli cells bound to two distinct sites of fibronectin, one being the N-terminal domain, which also contains the binding sites for staphylococci and streptococci, and the other located within the central heparin binding region. In addition, the N-terininal and the heparin binding domain mediated the attachment of bacteria in a solid phase binding assay. E. coli cells expressed two classes of receptors, the first, a 17 kDa protein, recognized by the N-terminal fragment and the second, having a mol. mass of 55 kDa, which interacts with the internal heparin binding domain. Bacterial receptors, which bind the N-terminal end of fibronectin, may be structurally related.  相似文献   

19.
20.
The structure of the K40 antigenic capsular polysaccharide (K40 antigen) of E. coli O8:K40:H9 was elucidated by determination of the composition, 1H- and 13C-n.m.r. spectroscopy, periodate oxidation and Smith degradation, and methylation analysis. The K40 polysaccharide consists of [(O-β- -glucopyranosyluronic acid)-(1→4)-O-(2-acetamido-2-deoxy-- -glucopyranosyl)-(1→6)-O-(2-acetamido-2-deoxy-- -glucopyranosyl)-(1→4)] repeating units. All of the glucuronic acid residues are substituted amidically with -serine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号