首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 423 毫秒
1.
2.
We have studied the molecular basis of the Pax2 and Pax6 function in the establishment of visual system territories. Loss-of-function mutants have revealed crucial roles for Pax2 in the generation of the optic stalk and for Pax6 in the development of the optic cup. Ectopic expression of Pax6 in the optic stalk under control of Pax2 promoter elements resulted in a shift of the optic cup/optic stalk boundary indicated by the presence of retinal pigmented cells on the optic stalk. By studying mouse embryos at early developmental stages we detected an expansion of Pax2 expression domain in the Pax6(-/-) mutant and of Pax6 expression domain in the Pax2(-/-) embryo. These results suggest that the position of the optic cup/optic stalk boundary depends on Pax2 and Pax6 expression, hinting at a possible molecular interaction. Using gel shift experiments, we confirmed the presence of Pax2- and Pax6-binding sites on the retina enhancer of the Pax6 gene and on the Pax2 upstream control region, respectively. Co-transfection experiments revealed a reciprocal inhibition of Pax2 promoter/enhancer activity by Pax6 protein and vice versa. Based on our findings, we propose a model for Pax gene regulation that establishes the proper spatial regionalization of the mammalian visual system.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Binding of JNK/SAPK to MEKK1 is regulated by phosphorylation   总被引:2,自引:0,他引:2  
We sought to characterize the role of upstream kinases in the regulation of the MAP3 kinase MEKK1 and the potential impact on signaling to MAP kinase cascades. We find that the MAP4 kinase PAK1 phosphorylates the amino terminus of MEKK1 on serine 67. We show that serine 67 lies in a D domain, which binds to the c-Jun-NH(2)-terminal kinase/stress-activated protein kinases (JNK/SAPK). Serine 67 is constitutively phosphorylated in resting 293 cells, but is dephosphorylated following exposure to stress stimuli such as anisomycin and UV irradiation. Phosphorylation of this site inhibits binding of JNK/SAPK to MEKK1. Thus, we propose a mechanism by which the MEKK1-dependent JNK/SAPK pathway is negatively regulated by PAK through phosphorylation of serine 67.  相似文献   

13.
MAPK/ERK kinase kinase 3 (MEKK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that functions upstream of the MAP kinases and IkappaB kinase. Phosphorylation is believed to be a critical component for MEKK3-dependent signal transduction, but little is known about the phosphorylation sites of this MAP3K. To address this question, point mutations were introduced in the activation loop (T-loop), substituting alanine for serine or threonine, and the mutants were transfected into HEK293 Epstein-Barr virus nuclear antigen cells. MEKK3-dependent activation of an NF-kappaB reporter gene as well as ERK, JNK, and p38 MAP kinases correlated with a requirement for serine at position 526. Constitutively active mutants of MEKK3, consisting of S526D and S526E, were capable of activating a NF-kappaB luciferase reporter gene as well as ERK and MEK, suggesting that a negative charge at Ser526 was necessary for MEKK3 activity and implicating Ser526 as a phosphorylation site. An antibody was developed that specifically recognized phospho-Ser526 of MEKK3 but did not recognize the S526A point mutant. The catalytically inactive (K391M) mutant of MEKK3 was not phosphorylated at Ser526, indicating that phosphorylation of Ser526 occurs via autophosphorylation. Endogenous MEKK3 was phosphorylated on Ser526 in response to osmotic stress. In addition, phosphorylation of Ser526 was required for MKK6 phosphorylation in vitro, whereas dephosphorylation of Ser526 was mediated by protein phosphatase 2A and sensitive to okadaic acid and sodium fluoride. Finally, the association between MEKK3 and 14-3-3 was dependent on Ser526 and prevented dephosphorylation of Ser526. In summary, Ser526 of MEKK3 is an autophosphorylation site within the T-loop that is regulated by PP2A and 14-3-3 proteins.  相似文献   

14.
Src homology 3 domain-containing proline-rich kinase (SPRK)/mixed lineage kinase-3 is a serine/threonine kinase that has been identified as an upstream activator of the c-Jun NH(2)-terminal kinase (JNK) pathway. SPRK is capable of activating MKK4 by phosphorylation of serine and threonine residues, and mutant forms of MKK4 that lack the phosphorylation sites Ser(254) and Thr(258) block SPRK-induced JNK activation. A region of 63 amino acids following the kinase domain of SPRK is predicted to form a leucine zipper. The leucine zipper domain of SPRK has been shown to be necessary and sufficient for SPRK oligomerization, but its role in regulating activation of SPRK and downstream signaling remains unclear. In this study, we substituted a proposed stabilizing leucine residue in the zipper domain with a helix-disrupting proline to abrogate zipper-mediated SPRK oligomerization. We demonstrate that constitutively activated Cdc42 fully activates this monomeric SPRK mutant in terms of both autophosphorylation and histone phosphorylation activity and induces the same in vivo phosphorylation pattern as wild type SPRK. However, this catalytically active SPRK zipper mutant is unable to activate JNK. Our data show that the monomeric SPRK mutant fails to phosphorylate one of the two activating phosphorylation sites, Thr(258), of MKK4. These studies suggest that zipper-mediated SPRK oligomerization is not required for SPRK activation by Cdc42 but instead is critical for proper interaction and phosphorylation of a downstream target, MKK4.  相似文献   

15.
16.
Pax2 is essential for the development of the urogenital system, neural tube, otic vesicle, optic cup and optic tract [Dressler, G.R., Deutsch, U., et al., 1990. PAX2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109 (4), 787-795; Nornes, H.O., Dressler, G.R., et al., 1990. Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109 (4), 797-809; Eccles, M.R., Wallis, L.J., et al., 1992. Expression of the PAX2 gene in human fetal kidney and Wilms’ tumor. Cell Growth Differ 3 (5), 279-289]. Within the visual system, a loss-of-function leads to lack of choroid fissure closure (known as a coloboma), a loss of optic nerve astrocytes, and anomalous axonal pathfinding at the optic chiasm [Favor, J., Sandulache, R., et al., 1996. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc. Natl. Acad. Sci. U. S. A. 93 (24), 13870-13875; Torres, M., Gomez-Pardo, E., et al., 1996. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122 (11), 3381-3391]. This study is directed at determining the effects of ectopic Pax2 expression in the chick ventral optic cup past the normal developmental period when Pax2 is found. In ovo electroporation of Pax2 into the chick ventral optic cup results in the formation of colobomas, a condition typically associated with a loss of Pax2 expression. While the overexpression of Pax2 appears to phenocopy a loss of Pax2, the mechanism of the failure of choroid fissure closure is associated with a cell fate switch from ventral retina and retinal pigmented epithelium (RPE) to an astrocyte fate. Further, ectopic expression of Pax2 in RPE appears to have non-cell autonomous effects on adjacent RPE, creating an ectopic neural retina in place of the RPE.  相似文献   

17.
18.
19.
Despite their essential role in vertebrate development, the function of Pax proteins in gene regulation is not well understood. To identify potential genes regulated by the Pax2 protein, we screened embryonic kidney cells transformed with Pax2-expressing retroviruses for genes activated in response to Pax2 expression. In this system, the gene encoding the secreted frizzled related protein, Sfrp2, was strongly activated in all Pax2b-expressing cells. This activation of Sfrp2 expression correlated with changes in chromatin structure at the Sfrp2 locus, particularly in and around regions of Pax2 binding. Although the amount of Pax2-dependent transactivation was low in transient assays, the data suggests that local alterations of chromatin structure by Pax proteins can greatly enhance expression when presented in the right cellular context.  相似文献   

20.
ARK5 is a tumor progression-associated factor that is directly phosphorylated by AKT at serine 600 in the regulatory domain, but phosphorylation at the conserved threonine residue on the active T loop has been found to be required for its full activation. In this study, we identified serine/threonine protein kinase NDR2 as a protein kinase that phosphorylates and activates ARK5 during insulin-like growth factor (IGF)-1 signaling. Upon stimulation with IGF-1, NDR2 was found to directly phosphorylate the conserved threonine 211 on the active T loop of ARK5 and to promote cell survival and invasion of colorectal cancer cell lines through ARK5. During IGF-1 signaling, phosphorylation at three residues (threonine 75, serine 282, and threonine 442) was also found to be required for NDR2 activation. Among these three residues, phosphorylation of serine 282 seemed to be the most important for NDR2 activation (the same as for the mouse homologue) because its aspartic acid-converted mutant (NDR2/S282D) induced ARK5-mediated cell survival and invasion activities even in the absence of IGF-1. As in the mouse homologue, threonine 75 in NDR2 was required for interaction with S100B, and binding was in a calcium ion- and phospholipase C-gamma-dependent manner. We also found that PDK-1 plays an important role in NDR2 activation especially in the phosphorylation of threonine 442. Based on the results of this study, we report here that NDR2 is an upstream kinase of ARK5 that plays an essential role in tumor progression through ARK5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号