首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorinated double-chain (poly)cationic lipids (one or both of these chains being ended by a highly fluorinated tail) which are close analogues of DOTMA, DMRIE or DPPES were designed as synthetic vectors for gene delivery. For N/P ratios (N=number of amine functions of the lipid; P=number of DNA phosphates) from 0.8 to 5, these fluorinated cationic lipids condensed DNA, with or without the use of DOPE, to form fluorinated lipoplexes. No specific cell toxicity was evidenced for these new fluorinated lipoplexes. The efficiency of some of the fluorinated lipoplexes to transfect lung epithelial A549 cells was comparable to that of the first generation of fluorinated lipoplexes made from fluorinated analogues of DOGS (Transfectam) [Bioconjug. Chem. 12 (2001) 114]. These results, combined with the higher in vivo transfection potential found for fluorinated lipoplexes than for conventional lipoplexes or PEI polyplexes [J. Gene Med. 3 (2001) 109], confirm that fluorinated lipoplexes are very promising gene transfer systems.  相似文献   

2.
Fluorinated double-chain (poly)cationic lipids (one or both of these chains being ended by a highly fluorinated tail) which are close analogues of DOTMA, DMRIE or DPPES were designed as synthetic vectors for gene delivery. For N/P ratios (N=number of amine functions of the lipid; P=number of DNA phosphates) from 0.8 to 5, these fluorinated cationic lipids condensed DNA, with or without the use of DOPE, to form fluorinated lipoplexes. No specific cell toxicity was evidenced for these new fluorinated lipoplexes. The efficiency of some of the fluorinated lipoplexes to transfect lung epithelial A549 cells was comparable to that of the first generation of fluorinated lipoplexes made from fluorinated analogues of DOGS (Transfectam) [Bioconjug. Chem. 12 (2001) 114]. These results, combined with the higher in vivo transfection potential found for fluorinated lipoplexes than for conventional lipoplexes or PEI polyplexes [J. Gene Med. 3 (2001) 109], confirm that fluorinated lipoplexes are very promising gene transfer systems.  相似文献   

3.
There is a need for the development of nonviral gene transfer systems with improved and original properties. "Fluorinated" lipoplexes are such candidates, as supported by the remarkably higher in vitro and in vivo transfection potency found for such fluorinated lipoplexes as compared with conventional ones or even with PEI-based polyplexes (Boussif, O., Gaucheron, J., Boulanger, C., Santaella, C., Kolbe, H. V. J., Vierling, P. (2001) Enhanced in vitro and in vivo cationic lipid-mediated gene delivery with a fluorinated glycerophosphoethanolamine helper lipid. J. Gene Med. 3, 109-114). Here, we describe the synthesis of fluorinated glycerophosphoethanolamines (F-PEs), close analogues of dioleoylphosphatidylethanolamine (DOPE), and report on their lipid helper properties vs that of DOPE, as in vitro gene transfer components of fluorinated lipoplexes based on pcTG90, DOGS (Transfectam), or DOTAP. To evaluate the contribution of the F-PEs to in vitro lipoplex-mediated gene transfer, we examined the effect of including the F-PEs in lipoplexes formulated with these cationic lipids (CL) for various CL:DOPE:F-PE molar ratios [1:(1 - x):x with x = 0, 0.5 and 1; 1:(2 - y):y with y = 0, 1, 1.5, and 2], and various N/P ratios (from 10 to 0.8, N = number of CL amines, P = number of DNA phosphates). Irrespective of the F-PE chemical structure, of the colipid F-PE:DOPE composition, and of the N/P ratio, comparable transfection levels to those of their respective control DOPE lipoplexes were most frequently obtained when using one of the F-PEs as colipid of DOGS, pcTG90, or DOTAP in place of part of or of all DOPE. However, a large proportion of DOGS-based lipoplexes were found to display a higher transfection efficiency when formulated with the F-PEs rather than with DOPE alone while the opposite tendency was evidenced for the DOTAP-based lipoplexes. The present work indicates that "fluorinated" lipoplexes formulated with fluorinated helper lipids and conventional cationic lipids are very attractive candidates for gene delivery. It confirms further that lipophobicity and restricted miscibility of the lipoplex lipids with the endogenous lipids does not preclude efficient gene transfer and expression. Their transfection potency is rather attributable to their unique lipophobic and hydrophobic character (resulting from the formulation of DNA with fluorinated lipids), thus preventing to some extent DNA from interactions with lipophilic and hydrophilic biocompounds, and from degradation.  相似文献   

4.
In vitro gene transfer with a novel galactosylated spermine bolaamphiphile.   总被引:2,自引:0,他引:2  
We describe the synthesis of a alpha-galacto-omega-spermine bolaamphiphile (GalSper) and report on the gene transfer mediated with lipoplexes it forms either when used alone or in conjunction with DOPE or with DOGS (Transfectam). Lipofection with GalSper was investigated with human HepG2 or murine BNL-CL2 hepatocytes expressing the asialo-glycoprotein (ASGP) receptor, which displays a high affinity for galactosyl residues, or with A549 cells which do not express ASGP. Although lower luciferase expression levels in BNL-CL2 and in HepG2 cells were obtained with GalSper/DOPE N/P 2.5 lipoplexes as compared with control DOGS/DOPE N/P 2.5 particles or with the more positively charged N/P 5 particles (yet through a different mechanism), specific receptor-mediated endocytosis of DNA can be achieved with this targeted cationic GalSper bolaamphiphile presenting a single galactose residue. The present work suggests that GalSper-based DNA formulations appear as promising synthetic vectors for specific gene delivery to ASGP(+) cells.  相似文献   

5.
In a previous study, we developed a novel cationic lipid consisting of polyamidoamine dendron of third generation and two dodecyl chains, designated as DL-G3, which in combination with a fusogenic lipid dioleoylphosphatidylethanolamine (DOPE) achieves efficient transfection of CV1 cells by synergetic action of the proton sponge effect and membrane fusion. This study examines the effect of serum on the transfection activity of the DL-G3-DOPE-plasmid DNA lipoplexes. The transfection activity of a lipoplex with a composition optimized in the absence of serum decreased markedly in the presence of serum. However, the lipoplexes that induce efficient transfection in the presence of serum were obtainable by controlling the charge ratio of the primary amine of the DL-G3 to the phosphate group (N/P ratio) and DOPE content. The complex, which exhibited the highest transfection activity in the presence of serum, has a lower N/P ratio and higher DOPE content than that optimized in the absence of serum. Whereas disintegration of these complexes was induced by addition of heparin, which is a polysaccharide with negatively charged groups, the complex that retained transfection activity in the presence of serum required more negative charges of heparin for complex disintegration. That result implies its higher stability against negatively charged serum proteins. Comparison of the serum-resistant complex with some commercially available transfection reagents, such as Lipofectamine and SuperFect, indicates that the DL-G3 complex achieved more efficient transfection of these cells in the presence of serum.  相似文献   

6.
We describe the synthesis of a series of alpha-galacto-omega-polyamine double-chain bolaamphiphiles (Gal-CL) and report on the gene transfer mediated with lipoplexes they form either when used in conjunction with DOPE or with pcTG90:DOPE. Lipofection was investigated with human HepG2 and murine BNL-CL2 hepatocytes expressing the asialoglycoprotein (ASGP) receptor which displays a high affinity for galactosyl residues, and with A549 cells which do not express ASGP. Our results show that cationic N/P = 5 and 2.5 Gal-CL lipoplexes constitute very efficient nonspecific gene transfer systems. Lipofection experiments performed in the presence of asialofetuin (a high affinity ligand of ASGP) led us to evidence also the involvement of a specific receptor-mediated endocytosis pathway for the transfection of the ASGP(+) HepG2 or BNL-CL2 hepatocytes with some Gal-CL formulations. This work suggests that targetable lipopolyamines presenting a single galactose residue appear as promising synthetic vectors for specific gene delivery to ASGP(+) cells.  相似文献   

7.
At present, a number of transfection techniques are available to introduce foreign DNA into cells, but still minimal intrusion or interference with normal cell physiology, low toxicity, reproducibility, cost efficiency and successful creation of stable transfectants are highly desirable properties for improved transfection techniques. For all previous transfection experiments done in our labs, using serum-free cultivated host cell lines, an efficiency value of ∼0.1% for selection of stable cell lines has not been exceeded, consequently we developed and improved a transfection system based on defined liposomes, so-called large unilamellar vesicles, consisting of different lipid compositions to facilitate clone selection and increase the probability for creation of recombinant high-production clones. DNA and DOTAP/DOPE or CHEMS/DOPE interact by electrostatic means forming so-called lipoplexes (Even-Chen and Barenholz 2000) and the lipofection efficiency of those lipoplexes has been determined via confocal microscopy. In addition, the expression of the EGFP was determined by FACS to investigate transient as well as stable transfection and the transfection efficiency of a selection of different commercially available transfection reagents and kits has been compared to our tailor-made liposomes.  相似文献   

8.
In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.  相似文献   

9.
The synthesis of two fluorinated cationic lipids, which are analogues of frequently used synthetic gene carrier agents (including the cationic 2,3-dioleoyloxy-N-[2-(spermine-carboxamido)ethyl]-N,N-dimethyl-1-propanaminium (DOSPA) component of the commercially available liposomal Lipofectamine), and the disintegration and DNA accessibility (evaluated by the ethidium bromide (BET) intercalation assay) as well as the in vitro transfection efficacy of cationic lipoplexes formulated with these new lipids in conjunction with conventional or fluorinated helper lipids, in the absence or presence of sodium taurocholate (STC), a powerful anionic bile salt detergent, is reported. A higher stability, with respect to the STC lytic activity and DNA accessibility, of the fluorinated cationic lipoplexes as compared with their respective lipofectamine-based ones was demonstrated. Indeed, while the Lipofectamine lipoplexes were fully disintegrated at a [STC]/[lipid] molar ratio of 2000, only 40-60% of the DNA intercalation sites of the lipoplexes based on the fluorinated analogue of DOSPA were accessible to ethidium bromide. A higher transfection potential in the presence of STC was further found for the lipoplexes formulated with the fluorinated analogue of DOSPA as compared with the Lipofectamine preparation. For a STC concentration of 7.5 mM, lipofection mediated with these fluorinated lipoplexes was significantly higher (nearly 30- to 50-fold, p < 0.05) than with the Lipofectamine ones. These results confirm the remarkable transfection potential of fluorinated lipoplexes.  相似文献   

10.
Novel N,N'-diacyl-1,2-diaminopropyl-3-carbamoyl[bis-(2-dimethylaminoethane)] bivalent cationic lipids were synthesized and evaluated for in vitro transfection activity against a murine melanoma cell line. In the absence of the helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), only the dioleoyl derivative 22 (1,2lb5) elicited transfection activity. The transfection activity of this lipid was reduced when formulated with DOPE. Contrary to that, the dimyristoyl derivative 19 (1,2lb2) mediated no activity when used alone but induced the highest levels of marker gene expression in the presence of DOPE. In an effort to correlate the transfection activity with cationic lipid structures, the physicochemical properties of cationic lipids in isolation and of lipoplexes were studied with surface tensiometry, photon correlation spectroscopy, gel electrophoresis mobility shift assay, and fluorescence techniques. In regard to the lipoplex properties, gel electrophoresis mobility shift assay and EtBr exclusion fluorescence assay revealed that the 1,2lb5 was the only lipid to associate and condense plasmid DNA, respectively. Photon correlation spectroscopy analysis found that 1,2lb5/DNA complexes were of relatively small size compared to all other lipoplexes. With respect to the properties of isolated lipids, Langmuir monolayer studies and fluorescence anisotropy on cationic lipid dispersions verified high two-plane elasticity and increased fluidity of the transfection competent dioleoyl derivative 1,2lb5, respectively. The results indicate that high transfection activity is mediated by cationic lipids characterized by an expanded mean molecular area, high molecular elasticity, and increased fluidity.  相似文献   

11.
Lipoplexes, which are formed spontaneously between cationic liposomes and negatively charged nucleic acids, are commonly used for gene and oligonucleotide delivery in vitro and in vivo. Being assemblies, lipoplexes can be characterized by various physicochemical parameters, including size distribution, shape, physical state (lamellar, hexagonal type II and/or other phases), sign and magnitude of electrical surface potential, and level of hydration at the lipid-DNA interface. Only after all these variables will be characterized for lipoplexes with a broad spectrum of lipid compositions and DNA/cationic lipid (L(+)) mole (or charge) ratios can their relevance to transfection efficiency be understood. Of all these physicochemical parameters, hydration is the most neglected, and therefore the focus of this study. Cationic liposomes composed of DOTAP without and with helper lipids (DOPC, DOPE, or cholesterol) or of DC-Chol/DOPE were complexed with pDNA (S16 human growth hormone) at various DNA(-)/L(+) charge ratios (0.1-3.2). (DOTAP=N-(1-(2,3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride; DC-Chol=(3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholester ol; DOPC=1, 2-dioleoyl-sn-glycero-3-phosphocholine; DOPE=1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine). The hydration levels of the different cationic liposomes and the DNA separately are compared with the hydration levels of the lipoplexes. Two independent approaches were applied to study hydration. First, we used a semi-quantitative approach of determining changes in the 'generalized polarization' (GP) of laurdan (6-dodecanoyl-2-dimethylaminonaphthalene). This method was recently used extensively and successfully to characterize changes of hydration at lipid-water interfaces. Laurdan excitation GP at 340 nm (GP(340)DOTAP. The GP(340) of lipoplexes of all lipid compositions (except those based on DC-Chol/DOPE) was higher than the GP(340) of the cationic liposomes alone and increased with increasing DNA(-)/L(+) charge ratio, reaching a plateau at a charge ratio of 1. 0, suggesting an increase in dehydration at the lipid-water interface with increasing DNA(-)/L(+) charge ratio. Confirmation was obtained from the second method, differential scanning calorimetry (DSC). DOTAP/DOPE lipoplexes with charge ratio 0.44 had 16.5% dehydration and with charge ratio 1.5, 46.4% dehydration. For DOTAP/Chol lipoplexes with these charge ratios, there was 17.9% and 49% dehydration, respectively. These data are in good agreement with the laurdan data described above. They suggest that the dehydration occurs during lipoplex formation and that this is a prerequisite for the intimate contact between cationic lipids and DNA.  相似文献   

12.
Here we present a quantitative mechanism-based investigation aimed at comparing the cell uptake, intracellular trafficking, endosomal escape and final fate of lipoplexes and lipid–protamine/deoxyribonucleic acid (DNA) (LPD) nanoparticles (NPs) in living Chinese hamster ovary (CHO) cells. As a model, two lipid formulations were used for comparison. The first formulation is made of the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and the zwitterionic lipid dioleoylphosphocholine (DOPC), while the second mixture is made of the cationic 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) and the zwitterionic helper lipid dioleoylphosphatidylethanolamine (DOPE). Our findings indicate that lipoplexes are efficiently taken up through fluid-phase macropinocytosis, while a less efficient uptake of LPD NPs occurs through a combination of both macropinocytosis and clathrin-dependent pathways. Inside the cell, both lipoplexes and LPD NPs are actively transported towards the cell nucleus, as quantitatively addressed by spatio-temporal image correlation spectroscopy (STICS). For each lipid formulation, LPD NPs escape from endosomes more efficiently than lipoplexes. When cells were treated with DOTAP–DOPC-containing systems the majority of the DNA was trapped in the lysosome compartment, suggesting that extensive lysosomal degradation was the rate-limiting factors in DOTAP–DOPC-mediated transfection. On the other side, escape from endosomes is large for DC-Chol–DOPE-containing systems most likely due to DOPE and cholesterol-like molecules, which are able to destabilize the endosomal membrane. The lipid-dependent and structure-dependent enhancement of transfection activity suggests that DNA is delivered to the nucleus synergistically: the process requires both the membrane-fusogenic activity of the nanocarrier envelope and the employment of lipid species with intrinsic endosomal rupture ability.  相似文献   

13.
Pyridinium amphiphiles, abbreviated as SAINT, are highly efficient vectors for delivery of DNA into cells. Within a group of structurally related compounds that differ in transfection capacity, we have investigated the role of the shape and structure of the pyridinium molecule on the stability of bilayers formed from a given SAINT and dioleoylphosphatidylethanolamine (DOPE) and on the polymorphism of SAINT/DOPE-DNA complexes. Using electron microscopy and small angle x-ray scattering, a relationship was established between the structure, stability, and morphology of the lipoplexes and their transfection efficiency. The structure with the lowest ratio of the cross-sectional area occupied by polar over hydrophobic domains (SAINT-2) formed the most unstable bilayers when mixed with DOPE and tended to convert into the hexagonal structure. In SAINT-2-containing lipoplexes, a hexagonal topology was apparent, provided that DOPE was present and complex assembly occurred in 150 mm NaCl. If not, a lamellar phase was obtained, as for lipoplexes prepared from geometrically more balanced SAINT structures. The hexagonal topology strongly promotes transfection efficiency, whereas a strongly reduced activity is seen for complexes displaying the lamellar topology. We conclude that in the DOPE-containing complexes the molecular shape and the nonbilayer preferences of the cationic lipid control the topology of the lipoplex and thereby the transfection efficiency.  相似文献   

14.

Background

A promising strategy to create stimuli-responsive gene delivery systems is to exploit the redox gradient between the oxidizing extracellular milieu and the reducing cytoplasm in order to disassemble DNA/cationic lipid complexes (lipoplexes). On these premises, we previously described the synthesis of SS14 redox-sensitive gemini surfactant for gene delivery. Although others have attributed the beneficial effects of intracellular reducing environment to reduced glutathione (GSH), these observations cannot rule out the possible implication of the redox milieu in its whole on transfection efficiency of bioreducible transfectants leaving the determinants of DNA release largely undefined.

Methodology/Principal Findings

With the aim of addressing this issue, SS14 was here formulated into binary and ternary 100 nm-extruded liposomes and the effects of the helper lipid composition and of the SS14/helper lipids molar ratio on chemical-physical and structural parameters defining transfection effectiveness were investigated. Among all formulations tested, DOPC/DOPE/SS14 at 25∶50∶25 molar ratio was the most effective in transfection studies owing to the presence of dioleoyl chains and phosphatidylethanolamine head groups in co-lipids. The increase in SS14 content up to 50% along DOPC/DOPE/SS14 liposome series yielded enhanced transfection, up to 2.7-fold higher than that of the benchmark Lipofectamine 2000, without altering cytotoxicity of the corresponding lipoplexes at charge ratio 5. Secondly, we specifically investigated the redox-dependent mechanisms of gene delivery into cells through tailored protocols of transfection in GSH-depleted and repleted vs. increased oxidative stress conditions. Importantly, GSH specifically induced DNA release in batch and in vitro.

Conclusions/Significance

The presence of helper lipids carrying unsaturated dioleoyl chains and phosphatidylethanolamine head groups significantly improved transfection efficiencies of DOPC/DOPE/SS14 lipoplexes. Most importantly, this study shows that intracellular GSH levels linearly correlated with transfection efficiency while oxidative stress levels did not, highlighting for the first time the pivotal role of GSH rather than oxidative stress in its whole in transfection of bioreducible vectors.  相似文献   

15.
The DNA complexation and condensation properties of two established cationic liposome formulations, CDAN/DOPE (50:50, m/m; Trojene) and DC-Chol/DOPE (60:40, m/m), were investigated by using a combination of isothermal titration calorimetry (ITC), circular dichroism (CD), photon correlation spectroscopy (PCS), and turbidity assays. Plasmid DNA (7528 bp) was titrated with extruded liposomes (90 +/- 15 nm) and a thermodynamic profile established. ITC data revealed that the two liposome formulations differ substantially in their DNA complexation characteristics. Equilibrium dissociation constants for CDAN/DOPE (K(d) = 19 +/- 3 microM) and DC-Chol/DOPE liposomes (K(d) = 2 +/- 0.5 microM) were obtained by fitting the experimental data in a one-site binding model. Both CDAN/DOPE and DC-Chol/DOPE binding events take place with a negative binding enthalpy (DeltaH degrees = -0.5 and -1.7 kcal/mol, respectively) and increasing system entropy (TDeltaS = 6 +/- 0.3 and 6.2 +/- 0.3 kcal/mol, respectively). Interestingly, CDAN/DOPE liposomes undergo substantial rehydration and protonation prior to complexation with pDNA, which is observed as two discrete exothermic signals during titration. No such biphasic effects are seen with respect to the binding between DC-Chol/DOPE and pDNA that appears to be otherwise instantaneous with no rehydration effects. The rehydration and protonation characteristics of CDAN/DOPE liposomes in comparison with those of DC-Chol/DOPE cationic liposomes are confirmed by ITC; CDAN/DOPE liposomes have strongly exothermic dilution characteristics and DC-Chol/DOPE liposomes only mildly endothermic characteristics. Furthermore, analysis of cationic liposome-pDNA binding by CD spectroscopy reveals that CDAN/DOPE-pDNA lipoplexes are more structurally fluid than DC-Chol/DOPE-pDNA lipoplexes. CDAN/DOPE liposomes induced considerable fluctuation in the DNA structure for at least 60 min, whereas liposomes obtained from DC-Chol/DOPE lack the same effect on the DNA structure. Turbidity studies show that DC-Chol/DOPE lipoplexes exhibit greater resistance to serum than CDAN/DOPE lipoplexes, which showed substantial precipitation after incubation for 100 min with serum. Transfection studies on HeLa and Panc-1 cells reveal that CDAN/DOPE lipoplexes are superior in efficacy to DC-Chol/DOPE lipoplexes. CDAN/DOPE liposomes tend to transfect best in normal growth medium (including 10% serum and antibiotics), whereas DC-Chol/DOPE lipoplexes transfect best under serum free transfection conditions.  相似文献   

16.
Abstract

Multilamellar vesicles (MLVs) containing the cationic lipid DOTAP were used as vectors to lipofect a number of culture cell lines in the presence of serum. The lipofection efficiency of lipoplexes made of MLVs and the plasmid pSV-β galactosidase are much less sensitive to the lipofection-inhibitory effect of serum than the conventionally used lipoplexes made of sonicated small unilamellar vesicles (SUVs). In order to determine the factors favoring the lipofection efficiency of MLVs, we measured the size, as well as the cellular association and uptake of MLV and SUV lipoplexes containing DOTAP alone or DOTAP:DOPE (1:1). Electron microscope images of these complexes were taken to confirm their structure and size. The single most important factor that correlates with transfection efficiency in serum is the size of the lipoplex. SUV lipoplexes remain smaller than 300 nm in the presence of serum, and the lipofection efficiencies are low. MLV lipoplexes are larger (>300 nm) and the lipofection efficiency, as well as cellular association and uptake, are much higher than those of SUV lipoplexes. Exceptions are those lipoplexes made of MLVs of DOTAP and DOPE (1:1) combined with DNA at higher charge ratios, which form hexagonal structures and show poor lipofection as well as cellular association and uptake, even if their lipoplex size exceeds 300 nm. This finding lends credence to our theory of the serum inhibition effect upon lipofection, and suggests ways to improve the transfection efficiency in the presence of serum, by fabricating lipoplexes of defined sizes.  相似文献   

17.
Guo W  Lee RJ 《Bioscience reports》2000,20(5):419-432
Synthetic gene transfer vectors based on polyplexes complexed to anionic liposomes (LPDII vectors) were characterized for their transfection efficiency in cultured mammalian cells. The effects of polycation to DNA ratio, lipid to DNA ratio, choice of polycation and lipid composition were systematically evaluated in human oral carcinoma KB cells, using a luciferase reporter gene. For LPDII formulations containing poly-L-lysine and dioeoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) anionic liposomes, at a constant lipid to DNA ratio, an increase in the polycation/DNA (N/P) ratio resulted in an increase in transfection activity. Meanwhile, the optimal lipid to DNA ratio for efficient gene delivery was influenced by the N/P ratio used, and was increased at higher N/P ratios. For the DNA condensing agent, poly-L-lysine could be replaced by polyethylenimine (PEI) as the DNA condensing agent in the formulations. For the lipidic components, CHEMS could be replaced by other anioniclipids including oleic acid, dicetylphosphate and phosphatidylserine, but DOPE, a fusogenic helper lipid, could not be replaced by dioleolyphosphatidylcholine. LPDII formulation showed significantly less cytotoxicity compared to the commonly used cationic lipsomes or PEI mediated transfection and several cell lines were transfected with high efficiency. LPDII vectors avoid the use of toxic cationic lipids and may have potential application in gene therapy.  相似文献   

18.
Transfection of NIH-3T3 cells by a human growth hormone expression vector complexed with liposomes composed of N-(1-(2, 3-dioleoyloxy)propyl)-N,N,N-trimethylammonium chloride (DOTAP) with or without helper lipids was studied. The transfection efficiency was dependent on the lamellarity of the liposomes used to prepare the lipoplexes. Multilamellar vesicles (MLV) were more effective than large unilamellar vesicles (LUV) of approximately 100 nm, irrespective of lipid composition. The optimal DNA/DOTAP mole ratio for transfection was 相似文献   

19.
For injectable-sized liposome complexed with DNA (lipoplexes) with high transfection efficiency of genes, we initially prepared small-sized liposomes by addition of biosurfactant. For selectivity of gene expression, the thymidine kinase (MK-tk) gene controlled by midkine was used for herpes simplex virus thymidine kinase (HSV-tk) gene therapy. Liposomes composed of 3([N-(N′,N′–dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol), L-dioleoylphosphatidylethanolamine (DOPE), and a biosurfactant, such as β-sitosterol β-D-glucoside (Sit-G) for Sit-G-liposomes and mannosylerythrytol lipid A (MEL) for MEL-liposomes, produced about 300-nm-sized lipoplexes. Sit-G- and MEL-liposomes showed higher transfection efficiency of the luciferase marker gene and thymidine kinase activity in the presence of serum in the cells. The treatment with transfection of MK-tk gene by Sit-G-liposome and injection of ganciclovir significantly reduced tumor growth in a solid tumor model, compared with that by Sit-G-liposome alone. This finding suggested that Sit-G-liposome is a potential vector for HSV-tk gene therapy.  相似文献   

20.
Recently, we developed a new type of cationic lipid that consists of an amine-terminated poly(amidoamine) dendron and two long alkyl groups. These dendron-bearing lipids achieved efficient gene transfection of cells through synergetic action of the proton sponge effect and membrane fusion in combination with fusogenic lipid dioleoylphosphatidylethanolamine. Using those dendron-bearing lipids as a base material, we developed in this study a functional component of gene vectors that stabilizes lipoplexes by multiple PEG chains and promotes gene transfection through the proton sponge effect. We combined a poly(ethylene glycol) (PEG, 550 Da) graft to each of four chain ends of the G2 dendron-bearing lipid (P4-DL). An analogous molecule having single PEG graft was also synthesized using the G0 dendron-bearing lipid (P1-DL). Inclusion of P4-DL decreased the size of the G3 dendron-bearing lipid-based lipoplexes more efficiently than P1-DL. In addition, P4-DL-containing lipoplexes exhibited two-orders-higher transfection efficiency than P1-DL-containing lipoplexes with the same PEG graft density. These results indicate the superiority of multiple attachments of PEG graft chains to a lipid for heightened ability to increase colloidal stability of lipoplexes while retaining their transfection activity. The lipoplexes stabilized by P4-DL were small, around 250 nm, and achieved efficient transfection in the presence of serum. Therefore, P4-DL and its analogues will form the basis for production of efficient nonviral vectors for in vivo use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号