首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
The interphotoreceptor retinoid-binding protein (IRBP) has been isolated from monkey interphotoreceptor matrix (IPM). Following gentle washing of the IPM from the retinal surface, the protein was purified to homogeneity by concanavalin A-Sepharose affinity chromatography, ion-exchange high-performance liquid chromatography (HPLC), and size-exclusion HPLC. Bovine IRBP was purified similarly and compared with the monkey protein. Sedimentation equilibrium analysis yielded a molecular weight of 106 000 +/- 2900 for the native monkey protein. Sedimentation velocity analysis gave a sedimentation coefficient of 5.4 +/- 0.3 S and a frictional ratio of 1.59, indicating an asymmetrical molecular shape. IRBP contains neutral sugar, including fucose, and sialic acid; the glycoprotein nature of the proteins probably accounts for the microheterogeneity observed in the electrofocusing pattern of both bovine and monkey IRBP. Both IRBPs have isoelectric points between 6.0 and 7.0. The fluorescence emission lambda max of the bound ligand was 470 nm with excitation at 340 nm, while the excitation lambda max was 333 nm with emission at 470 nm, for monkey IRBP incubated with exogenous all-trans-retinol. The amino acid compositions of the monkey and bovine proteins are similar; nonpolar amino acids account for over 50% of the residues, which may explain the apparent hydrophobic nature of the isolated proteins. The amino-terminal analyses indicated considerable homology between the monkey and bovine IRBPs in this region and verified the purity of the isolated proteins. IRBP thus appears to be a unique, conserved glycoprotein of the retinal extracellular matrix that could serve as a retinoid-transport vehicle.  相似文献   

2.
Uptake, transport and stabilization of xanthophylls in the human retina are important components of a complex multistep process that culminates in a non-uniform distribution of these important nutrients in the retina. The process is far from understood; here, we consider the potential role of interphotoreceptor retinoid-binding protein (IRBP) in this process. IRBP is thought to facilitate the exchange of 11-cis-retinal, 11-cis-retinol and all-trans-retinol between the retinal pigment epithelium (RPE), photoreceptors and Müller cells in the visual cycle. Structural and biochemical studies suggest that IRBP has a variety of nonequivalent ligand binding sites that function in this process. IRBP is multifunctional, being able to bind a variety of physiologically significant molecules including fatty acids in the subretinal space. This wide range of binding activities is of particular interest because it is unknown whether the lutein and zeaxanthin found in the macula originate from the choroidal or retinal circulations. If from the choroidal circulation, then IRBP is a likely mediator for their transport across the interphotoreceptor matrix. In this report, we explore the binding interactions of retinoids, fatty acids, and carotenoids with IRBP using surface plasmon resonance (SPR)-based biosensors. IRBP showed similar affinity toward retinoids and carotenoids (1–2 μM), while fatty acids had approximately 10 times less affinity. These results suggest that further studies should be carried out to evaluate whether IRBP has a physiologically relevant role in binding lutein and zeaxanthin in the interphotoreceptor matrix.  相似文献   

3.
Vitamin A and fatty acids are critical to photoreceptor structure, function, and development. The transport of these nutrients between the pigment epithelium and neural retina is mediated by interphotoreceptor retinoid-binding protein (IRBP). IRBP, a 133-kDa (human) glycolipoprotein, is the major protein component of the extracellular matrix separating these two cell layers. In amphibians and mammals, IRBP consists of four homologous repeats of about 300 amino acids which form two retinol and four fatty acid-binding sites. Here we show that IRBP in teleosts is a simpler protein composed of only two repeats. Western blot analysis shows that goldfish IRBP is half the size (70 kDa) of IRBP in higher vertebrates. Metabolic labeling studies employing Brefeldin A taken together with in situ hybridization studies and the presence of a signal peptide show that goldfish IRBP is secreted by the cone photoreceptors. The translated amino acid sequence has a calculated molecular weight of 66.7 kDa. The primary structure consists of only two homologous repeats with a similarity score of 52.5%. The last repeats of human and goldfish IRBPs are 69.1% similar with hydrophobic regions being the most similar. These data suggest that two repeats were lost during the evolution of the ray-finned fish (Actinopterygii), or that the IRBP gene duplicated between the emergence of bony fish (Osteichthyes) and amphibians. Acquisition of a multirepeat structure may reflect evolutionary pressure to efficiently transport higher levels of hydrophobic molecules within a finite space. Quadruplication of an ancestral IRBP gene may have been an important event in the evolution of photoreceptors in higher vertebrates. Correspondence to: F. Gonzalez-Fernandez  相似文献   

4.
Interstitial retinoid-binding protein (IRBP) is synthesized and secreted by rod photoreceptor cells into the interphotoreceptor matrix and is known to bind retinoids and fatty acids. We have used cDNA clones encoding human IRBP to isolate a 15-kilobase genomic fragment that encompasses the complete human IRBP gene. The IRBP gene spans more than 11 kilobases and is interrupted by three introns, all of which are positioned near the 3'-end of the coding sequence. The 3741-base pair coding region of IRBP appears to have been generated by quadruplication of an approximately 900 base pair long ancestral gene. The deduced amino acid sequence predicts a mature protein of 1,230 residues (calculated molecular weight 133,000). The protein sequence can be aligned into four homologous segments, each consisting of about 300 residues. Sequence similarity between segments is as high as 60% when conservative substitutions are taken into account. Two putative N-linked glycosylation sites are located in highly conserved domains in the center of the first and second segment of IRBP. A domain consisting of 41 residues at the COOH-terminal end of the third segment has 15 matching residues (38%) with an intradiscal loop of rhodopsin, a retinal-binding protein in rod photoreceptors.  相似文献   

5.
A retinol-binding glycoprotein ( IRBP ) was purified in milligram quantities from the extracellular matrix ( interphotoreceptor matrix) that occupies the subretinal space in bovine eyes. IRBP binds 2.2 molecules of all-trans retinol with a KD of approximately 10(-6) M. The holoprotein has lambda max at 280 nm (E1%1 cm = 10.99) and at 330 nm (E1%1 cm = 7.88). When freshly isolated from light-exposed eyes, IRBP contains up to 0.6 molecule of all-trans retinol, together with small amounts of the 11-cis and 13-cis isomers. IRBP also binds exogenous cholesterol, alpha-tocopherol, and all-trans retinoic acid, all of which are completely displaced by all trans retinol. The affinity of alpha-tocopherol for IRBP was at least several orders of magnitude less than that of all-trans retinol. IRBP contains 8.4% by weight of carbohydrate, which consists of sialic acid, neutral hexoses, and glucosamine in the molar ratio of approximately 1:3:2. No galactosamine was detected. Observations on the binding of 125I-labeled lectins to IRBP in sodium dodecyl sulfate-polyacrylamide gels before and after desialosylation suggest that at least one oligosaccharide chain is of the sialated biantennary complex type and contains fucose. The Mr of IRBP on calibrated size-exclusion columns averaged 249,000; on sodium dodecyl sulfate-polyacrylamide gels (with or without dithiothreitol) the apparent Mr was 144,000. IRBP exists in at least four isoelectric forms that bind concanavalin A and have pI values ranging from 4.4 to 4.8. Rabbit anti-bovine IRBP antiserum gave a single precipitin line against purified bovine IRBP , which showed a line of complete identity with crude bovine interphotoreceptor matrix and a line of partial identity with human interphotoreceptor matrix. The human material contains a prominent protein with lectin-binding properties similar to bovine IRBP but with a somewhat faster electrophoretic mobility. When isolated bovine neural retinas were incubated with 3H-labeled fucose, glucosamine, or leucine, a solitary labeled protein identified as IRBP was secreted into the medium. Labeled IRBP could not be detected in the medium when retinal pigment epithelium was incubated with these precursors under the same conditions. Neural retinas incubated with 3H-labeled leucine in the presence of tunicamycin secreted a form of IRBP that did not bind concanavalin A and had an Mr reduced by approximately 5,000.  相似文献   

6.
The regeneration of visual pigment in rod photoreceptors of the vertebrate retina requires an exchange of retinoids between the neural retina and the retinal pigment epithelium (RPE). It has been hypothesized that interphotoreceptor retinoid-binding protein (IRBP) functions as a two-way carrier of retinoid through the aqueous compartment (interphotoreceptor matrix) that separates the RPE and the photoreceptors. The first part of this review summarizes the cellular and molecular biology of IRBP. Work on the IRBP gene indicates that the protein contains a four-fold repeat structure that may be involved in binding multiple retinoid and fatty acid ligands. These repeats and other aspects of the gene structure indicate that the gene has had an active and complex evolutionary history. IRBP mRNA is detected only in retinal photoreceptors and in the pineal gland; expression is thus restricted to the two photosensitive tissues of vertebrate organisms. In the second part of this review, we consider the results obtained in experiments that have examined the activity of IRBP in the process of visual pigment regeneration. We also consider the results obtained on the bleaching and regeneration of rhodopsin in the acutely detached retina, as well as in experiments testing the ability of IRBP to protect its retinoid ligand from isomerization and oxidation. Taken together, the findings provide evidence that, in vivo, IRBP facilitates both the delivery of all-trans retinol to the RPE and the transfer of 11-cis retinal from the RPE to bleached rod photoreceptors, and thereby directly supports the regeneration of rhodopsin in the visual cycle.  相似文献   

7.
Acylation of cellular proteins with endogenously synthesized fatty acids   总被引:14,自引:0,他引:14  
D Towler  L Glaser 《Biochemistry》1986,25(4):878-884
A number of cellular proteins contain covalently bound fatty acids. Previous studies have identified myristic acid and palmitic acid covalently linked to protein, the former usually attached to proteins by an amide linkage and the latter by ester or thio ester linkages. While in a few instances specific proteins have been isolated from cells and their fatty acid composition has been determined, the most frequent approach to the identification of protein-linked fatty acids is to biosynthetically label proteins with fatty acids added to intact cells. This procedure introduces possible bias in that only a selected fraction of proteins may be labeled, and it is not known whether the radioactive fatty acid linked to the protein is identical with that which is attached to the protein when the fatty acid is derived from endogenous sources. We have examined the distribution of protein-bound fatty acid following labeling with [3H]acetate, a general precursor of all fatty acids, using BC3H1 cells (a mouse muscle cell line) and A431 cells (a human epidermoid carcinoma). Myristate, palmitate, and stearate account for essentially all of the fatty acids linked to protein following labeling with [3H]acetate, but at least 30% of the protein-bound palmitate in these cells was present in amide linkage. In BC3H1 cells, exogenous palmitate becomes covalently bound to protein such that less than 10% of the fatty acid is present in amide linkage. These data are compatible with multiple protein acylating activities specific for acceptor protein fatty acid chain length and linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Interstitial retinol-binding protein (IRBP) is a soluble glycoprotein in the interphotoreceptor matrix of bovine, human, monkey, and rat eyes. It may transport retinol between the retinal pigment epithelium and the neural retina. In light-reared Royal College of Surgeons (RCS) and RCS retinal dystrophy gene (rdy)+ rats, the amount of IRBP in the interphotoreceptor matrix increased in corresponding proportion to the amount of total rhodopsin through postnatal day 22 (P22). In the RCS-rdy+ rats, the amount increased slightly after P23. However, in the RCS rats there was a rapid fall in the quantity of IRBP as the photoreceptors degenerated between P23 and P29. No IRBP was detected by immunocytochemistry in rats at P28. The amount of rhodopsin fell more slowly. Although retinas from young RCS and RCS-rdy+ rats were able to synthesize and secrete IRBP, this ability was lost in retinas from older RCS rats (P51, P88) but not their congenic controls. The photoreceptor cells have degenerated at these ages in the RCS animals, and may therefore be the retinal cells responsible for IRBP synthesis. The putative function of IRBP in the extracellular transport of retinoids during the visual cycle is consistent with a defect in retinol transport in the RCS rat reported by others.  相似文献   

9.
Interphotoreceptor retinoid binding protein (IRBP), the major soluble component of the interphotoreceptor matrix, is critical to the function, integrity, and development of the vertebrate retina. Although its role is poorly understood, IRBP has been thought to protect 11-cis retinal and all-trans retinol while facilitating their exchange between the photoreceptors and retinal-pigmented epithelium. We determined the X-ray structure of one of the functional units, or modules, of Xenopus laevis IRBP to 1.8 A resolution by multiwavelength anomalous dispersion. The monomeric protein consists of two domains separated by a hydrophobic ligand binding site. A structural homology to the recently solved photosystem II D1 C-terminal-processing protease and the enoyl-CoA isomerase/hydratase family suggests the utility of a common fold used in diverse settings, ranging from proteolysis to fatty acid isomerization to retinoid transport.  相似文献   

10.
Whole monkey retinas were incubated in short-term organ culture with either radiolabeled amino acids or glucosamine. Soluble retinal proteins and proteins in the culture medium were analyzed by SDS-poly-acrylamide gel electrophoresis. Fluorography showed that the interphotoreceptor retinoid-binding protein (IRBP), a 146,000 Mr glycoprotein localized in the extracellular matrix, is synthesized by the neural retina and rapidly secreted into the medium. Secretion is blocked by 10-5M monensin. No significant IRBP synthesis was observed in the pigment-epithelium-choroid complex. IRBP is thus the major component synthesized and secreted by the neural retina into the interphotoreceptor space. This, and its affinity for retinoid makes it a prime candidate for an extracellular retinoid transport vehicle.  相似文献   

11.
Myelin proteolipid protein (PLP) is an acylated protein which contains approximately 2 mol of ester-bound fatty acids. In this study, the amount and composition of fatty acids covalently bound to human myelin PLP were determined during development and in peroxisomal disorders. Palmitic, oleic, and stearic acids accounted for most of the PLP acyl chains. However, in contrast to PLP in other species, human PLP contains relatively more very long chain fatty acids (VLCFA). The fatty acid composition remained essentially unchanged between 1 day and 74 years of age. The total amount of fatty acid bound to PLP was not altered in any of the pathological cases examined. However, in the peroxisomal disorder adrenoleukodystrophy, the proportions of saturated and, to a lesser extent, monounsaturated VLCFA bound to PLP were increased at the expense of oleic acid. Smaller, but significant, changes were observed in adrenomyeloneuropathy. The reduction in the levels of oleic acid was also observed in two other peroxisomal disorders, the cerebrohepatorenal (Zellweger) syndrome and neonatal adrenoleukodystrophy, as well as in the lysosomal disorder Krabbe globoid cell leukodystrophy. However, in these disorders, the decrease in oleic acid occurred at the expense of stearic acid, and not VLCFA. The results indicate that, although a characteristic PLP fatty acid pattern is normally maintained, changes in the acyl chain pool can ultimately be reflected in the fatty acid composition of the protein. The altered PLP-acyl chain pattern in peroxisomal disorders may contribute to the pathophysiology of these devastating disorders.  相似文献   

12.
Fatty acids bound to alpha-fetoprotein and albumin during rat development   总被引:1,自引:0,他引:1  
The time-course levels and composition of the fatty acids bound to rat alpha-fetoprotein (AFP) and albumin from several sources, were determined throughout development, and related to the intake of lipids from milk and the compositional changes in brain and liver fatty acids. The major fatty acids bound to AFP were acids bound to AFP were polyunsaturated and mainly docosahexaenoic acid (22:6(n-3], either from fetal serum (23.1%) or whole fetuses (21.6%), whereas palmitic (34.1%) and oleic (29.9%) acids were the main acids bound to albumin from the same sources. Amniotic fluid AFP contained less fatty acids (0.8 mol/mol protein) than that of fetal serum (1.4 mol/mol protein), and especially noticeable was a reduced amount of 22:6 (9.6%). Both AFP-concanavalin A microforms showed identical fatty acid composition. Levels of 22:6 bound to AFP decreased quickly after birth until a minimum at 8-10 days, increasing moderately thereafter. This minimum is coincident in time with a maximal accumulation of this fatty acid by brain and a loss of 22:6 by liver. Except for colostrum, levels of 22:6 in milk lipids were low and fairly constant, but always greater than those of its precursor, linolenic acid (18:3 (n-3]. These results support a specialized role of AFP in the plasma transport and tissue delivery of polyunsaturated fatty acids, and mainly docosahexaenoic acid.  相似文献   

13.
beta-Lactoglobulin isolated from milk of cow, sheep, and goat had about 0.5 mol of fatty acids bound per mol of monomer protein. Fatty acids, mainly palmitic and oleic acids, were the major components (about 75% of total lipids). Albumin isolated from the same samples had about 4.5 mol of fatty acids bound per mol of protein. These two proteins were the only whey proteins able to bind labeled fatty acids in vitro. Interaction of beta-lactoglobulin and albumin with insolubilized fatty acids showed some differences, suggesting different structures of the respective fatty acid binding sites.  相似文献   

14.
We have identified and partially purified interstitial retinol-binding protein (IRBP) from the subretinal space of the rat. It appeared to be glycosylated. Its apparent mol. wt was 270,000 by gel-filtration and 144,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Rat IRBP cross-reacted with anti-bovine IRBP sheep and rabbit sera, bound all-trans-[15-3H] retinol and was bound by concanavalin A. IRBP was not detected in the cytosols of the neural retina or retinal pigment epithelium and choroid. This distribution was confirmed by immunocytochemistry using a fluorescence-labeled second antibody. Immunospecific fluorescence was most intense in the interphotoreceptor matrix in a 6.5 μm band adjacent to the retinal pigment epithelium. It was less intense over the remainder of the rod outer segment layer and was comparatively faint over the inner segment region. Its occurrence in the interstitial space between the photoreceptors and retinal pigment epithelium coupled with the fact it bound all-trans-[15-3H] retinol supports the concept that it may be implicated in the transport of retinoids between the retina and the retinal pigment epithelium during the visual cycle. When incubated with [3H]leucine or [3H]glucosamine, isolated retinas (but not retinal pigment epithelium and choroid) secreted labeled IRBP into the medium. This suggests that the retina plays a role in regulating the amount of IRBP in the subretinal space.  相似文献   

15.
Human and bovine vitamin D-binding protein (DBP) have been isolated from serum by a method that does not involve denaturing steps. This method includes Cibacron Blue-Sepharose chromatography, gel filtration, DEAE-Sephadex chromatography and albumin immunoadsorption. Analysis of fatty acids bound to the isolated human and bovine DBP showed molar ratios of fatty acid to protein of 0.4 and 1.3 respectively meanwhile human and bovine albumin have bound 1.8 and 1.5 moles per mol respectively. Most of fatty acids bound to human and bovine DBP are monounsaturated and saturated, mainly oleic and palmitic acids, which together account for 50% of the total of fatty acids in both species. By contrast, polyunsaturated fatty acids represented a minor component, less than 5%.  相似文献   

16.
Proteolipid protein (PLP), the major protein of central nervous system myelin, contains approximately 2 mol of covalently bound fatty acids. In this study, the in vivo turnover rate of the acyl chains bound to PLP was determined in 40-day-old rats after a single intracranial injection of [3H]palmitic acid. The apparent half-life of total fatty acids bound to PLP was approximately 7 days. After correction for acyl chain interconversion, the half-life of palmitate bound to PLP was only 3 days. This turnover rate is much more rapid than that of the protein moiety calculated under the same experimental conditions (t1/2 = 1 month). Additional evidence for the dynamic metabolism of acyl groups was provided by experiments in brain tissue slices which showed that acylation of PLP occurs in adult animals as well as during active myelination. Acylation of endogenous PLP in purified myelin and its subfractions was also studied during rat brain development using either [3H]palmitoyl-CoA or [3H]palmitic acid plus ATP and CoA. Labeling of endogenous PLP with [3H]palmitoyl-CoA was observed as early as 10 days postnatal and continued at the same rate throughout development. When [3H]palmitic acid was used as precursor in the presence of both ATP and CoA, esterification of myelin PLP occurred rapidly in adult animals, indicating that both nonacylated PLP and acyl-CoA ligase are present in myelin. Finally, pulse-chase experiments in a cell-free system showed that PLP-bound fatty acids turn over with a half-life shorter than 10 min. These observations are consistent with the concept that acylation of myelin PLP is a dynamic process involved mainly in myelin maintenance and function.  相似文献   

17.
The hydrophobic myelin proteolipid protein (PLP) contains covalently bound long-chain fatty acids which are attached to intracellular cysteine residues via thioester linkages. To gain insight into the role of acylation in the structure and function of myelin PLP, the amount and pattern of acyl groups attached to the protein during vertebrate evolution was determined. PLP isolated from brain myelin of amphibians, reptiles, birds and several mammals was subjected to alkaline methanolysis and the released methyl esters were analyzed by gas-liquid chromatography. In all species studied, PLP contained approximately the same amount of covalently bound fatty acids (3% w/w), and palmitic, palmitoleic, oleic and stearic acids were always the major acyl groups. Although the relative proportions of these fatty acids changed during evolution, the changes did not necessarily follow the variations in the acyl chain composition of the myelin free fatty acid pool, suggesting fatty acid specificity. The phylogenetic conservation of acylation suggests that this post-translational modification is critical for PLP function.  相似文献   

18.
Alkaline treatment of Pseudomonas aeruginosa type 5 lipopolysaccharide (LPS) resulted in reduced toxicity as measured by both the Limulus amoebocyte assay and the rabbit pyrogenicity test. Chemical analysis of the deacylated LPS (D-LPS) revealed that ester-linked fatty acids were removed while the amide-linked fatty acids remained intact. The neutral and amino sugar compositions for native LPS and D-LPS were identical within experimental error. Antigenic determinants for complement-dependent human opsonic antibody were retained under these deacylation conditions. To enhance its immunogenicity, D-LPS was covalently coupled to Pseudomonas pili and the 1,4-diaminobutyl derivatives of Pseudomonas exotoxin A and tetanus toxoid. Quantitative amino sugar analyses revealed that 2.6 and 3.2 mol of D-LPS were covalently bound to aminobutyl Pseudomonas exotoxin A and aminobutyl tetanus toxoid, respectively. Gel electrophoresis data indicated at least 1 mol of D-LPS covalently bound per pilus subunit protein. Initial immunologic data indicated that antibody against D-LPS could be induced when the D-LPS is covalently attached to protein carriers.  相似文献   

19.
Human erythrocyte membranes which had been thoroughly extracted with organic solvents contained 20 nmol of fatty acids/mg dry wt. The major fatty acids were palmitic and stearic with their monoethenoic derivatives as minor constituents. No other fatty acids were detected. When solvent-extracted membranes were digested with Pronase about 90% of the original content of fatty acids was retained in the insoluble residue. Fatty acids were linked to membrane proteins through alkali-labile bonds of which 30% were of a thiol ester and the remainder of an O-ester type. This conclusion is based on differential liberation of fatty acids by hydroxylamine at pH 7.0 and pH 11.0. Two extracts of membranes enriched in peripheral proteins (bands 1, 2, 5 and 2.1, 4.1, 4.2, 6) were prepared and extracted with organic solvents but each contained about six times less fatty acids than the parent solvent-extracted membranes. Glycophorin A contains little if any covalently bound fatty acids. Anion transporter (band 3) contains about 1 mol of thiol ester of fatty acid. This accounts for about half of the thiol ester-linked fatty acids in the parent solvent-extracted membranes. Most of the O-ester-linked fatty acids are linked to an undisclosed membrane protein.  相似文献   

20.
A method for culturing adult mammalian retinal neurons in serum-free N2 medium supplemented with nerve growth factor (NGF) is described. Identification of neurons in cultures of dispersed human retina was based upon morphology, immunocytochemical localization of bound tetanus toxin, and autoradiographic localization of 3H-neurotransmitter candidates (gamma-aminobutyric acid, glycine, dopamine) accumulated by high-affinity uptake mechanisms. Neurons would not attach to glass or plastic substrates, consequently the present studies were performed using neurons plated upon a feeder layer. Serum was required for the initial phase of attachment. The feeder layer was derived from retinal cells that had been plated on glass or plastic in the presence of serum and had later been passaged. Since these cells exhibited glial fibrillary acidic protein (GFAP) immunoreactivity, they were tentatively identified as being glial in origin. Under these conditions, neuron- and glia-specific properties were retained up to 28 days. The presence of interstitial retinol-binding protein (IRBP) in medium of cultures of neuronal cells on feeder layers was demonstrated by an immunoblot technique using rabbit antibovine IRBP antibodies. No IRBP was detected in medium in which the feeder layers alone had been cultured. IRBP biosynthesis was demonstrated by incubation of the cultures with [35S]methionine. Immunoprecipitable [35S]IRBP was detected only in medium from cultures containing neurons; cells of the feeder layer did not synthesize and secrete this glycoprotein. These findings are consistent with the hypothesis that IRBP, a 135K constituent of the interphotoreceptor matrix, is synthesized in vivo by a neuronal cell, specifically, the photoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号