首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P < 0.05 vs. before bed rest) and reduced the maximal voluntary force of plantar flexion by 15%. In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.  相似文献   

2.
In this report, we examined if the synchronization of muscle sympathetic nerve activity (MSNA) with muscle contraction is enhanced by limb congestion. To explore this relationship, we applied signal-averaging techniques to the MSNA signal obtained during short bouts of forearm contraction (2-s contraction/3-s rest cycle) at 40% maximal voluntary contraction for 5 min. We performed this analysis before and after forearm venous congestion; an intervention that augments the autonomic response to sustained static muscle contractions via a local effect on muscle afferents. There was an increased percentage of the MSNA noted during second 2 of the 5-s contraction/rest cycles. The percentage of total MSNA seen during this particular second increased from minute 1 to 5 of contraction and was increased further by limb congestion (control minute 1 = 25.6 +/- 2.0%, minute 5 = 32.8 +/- 2.2%; limb congestion minute 1 = 29.3 +/- 2.1%, minute 5 = 37.8 +/- 3.9%; exercise main effect <0.005; limb congestion main effect P = 0.054). These changes in the distribution of signal-averaged MSNA were seen despite the fact that the mean number of sympathetic discharges did not increase over baseline. We conclude that synchronization of contraction and MSNA is seen during short repetitive bouts of handgrip. The sensitizing effect of contraction time and limb congestion are apparently due to feedback from muscle afferents within the exercising muscle.  相似文献   

3.
Based on animal studies, it has been speculated that muscle metabolites sensitize muscle mechanoreceptors and increase mechanoreceptor-mediated muscle sympathetic nerve activity (MSNA). However, this hypothesis has not been directly tested in humans. In this study, we tested the hypothesis that in healthy individuals passive stretch of forearm muscles would evoke significant increases in mean MSNA when muscle metabolite concentrations were increased. In 12 young healthy subjects, MSNA, ECG, and blood pressure were recorded. Subjects performed static fatiguing isometric handgrip at 30% maximum voluntary contraction followed by 4 min of postexercise muscle ischemia (PEMI). After 2 min of PEMI, wrist extension (i.e., wrist dorsiflexion) was performed. The static stretch protocol was also performed during 1) a freely perfused condition, 2) ischemia alone, and 3) PEMI after nonfatiguing exercise. Finally, repetitive short bouts of wrist extension were also performed under freely perfused conditions. This last paradigm evoked transient increases in MSNA but had no significant effect on mean MSNA over the whole protocol. During the PEMI after fatiguing handgrip, static stretch induced significant increases in MSNA (552 +/- 74 to 673 +/- 90 U/min, P < 0.01) and mean blood pressure (102 +/- 2 to 106 +/- 2 mmHg, P < 0.001). Static stretch performed under the other three conditions had no significant effects on mean MSNA and blood pressure. The present data verified that in healthy humans mechanoreceptor(s) stimulation evokes significant increases in mean MSNA and blood pressure when muscle metabolite concentrations are increased above a certain threshold.  相似文献   

4.
Six healthy men performed sustained static handgrip exercise for 2 min at 40% maximal voluntary contraction followed by a 6-min recovery period. Heart rate (fc), arterial blood pressures, and forearm blood flow were measured during rest, exercise, and recovery. Potassium ([K+]) and lactate concentrations in blood from a deep forearm vein were analysed at rest and during recovery. Mean arterial pressure (MAP) and fc declined immediately after exercise and had returned to control levels about 2 min into recovery. The time course of the changes in MAP observed during recovery closely paralleled the changes in [K+] (r = 0.800, P < 0.01), whereas the lactate concentration remained elevated throughout the recovery period. The close relationship between MAP and [K+] was also confirmed by experiments in which a 3-min arterial occlusion period was applied during recovery to the exercised arm by an upper arm cuff. The arterial occlusion affected MAP while fc recovered at almost the same rate as in the control experiment. Muscle biopsies were taken from the brachioradialis muscle and analysed for fibre composition and capillary supply. The MAP at the end of static contraction and the [K+] appearing in the effluent blood immediately after contraction were positively correlated to the relative content of fast twitch (% FT) fibres (r = 0.886 for MAP vs % FT fibres, P < 0.05 and r = 0.878 for [K+] vs % FT fibres, P < 0.05). Capillary to fibre ratio showed an inverse correlation to % FT fibres (r = -0.979, P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Nine healthy men, aged between 25 and 35 years, performed sustained maximal voluntary contractions (MVC) of foot plantar, foot dorsal, and finger flexor muscles. Contractions lasted 10 min and were followed by short test contractions at 30% MVC during recovery. Two positions of the working extremity high or low were established by different body postures (supine or sitting). Under these conditions, studies of force, integrated electromyogram (iEMG), blood pressure, and heart rate showed firstly that force decreased throughout the first few minutes of maximal contraction but reached a near steady-state value after 5 to 6 min. Secondly, force decay and steady-state level depended on muscle group and body position. When sitting (low leg), muscles with a high incidence of slow twitch fibres (plantar flexors) showed a slower force decay and a higher relative steady-state force than fast dorsal flexor muscles. When supine (high leg), plantar and dorsal flexor muscles reached about the same low level of relative steady-state force. Changes in iEMG, blood pressure, and heart rate did not differ in the two positions. Thirdly, during recovery, plantar flexor muscles showed higher iEMG values as well as higher values of blood pressure and heart rate when supine than when sitting. Recovery of dorsal flexor muscles was little affected by body posture. Fourthly, force development and recovery of predominantly fast finger flexor muscles were almost independent of arm position. It was concluded that muscle fibre composition was the main factor in determining endurance capacity. However, endurance was influenced by changes in the hydrostatic blood pressure component.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We aimed to investigate the interaction [with respect to the regulation of muscle sympathetic nerve activity (MSNA) and blood pressure] between the arterial baroreflex and muscle metaboreflex in humans. In 10 healthy subjects who performed a 1-min sustained handgrip exercise at 50% maximal voluntary contraction followed by forearm occlusion, arterial baroreflex control of MSNA (burst incidence and strength and total activity) was evaluated by analyzing the relationship between beat-by-beat spontaneous variations in diastolic arterial blood pressure (DAP) and MSNA both during supine rest (control) and during postexercise muscle ischemia (PEMI). During PEMI (vs. control), 1) the linear relationship between burst incidence and DAP was shifted rightward with no alteration in sensitivity, 2) the linear relationship between burst strength and DAP was shifted rightward and upward with no change in sensitivity, and 3) the linear relationship between total activity and DAP was shifted to a higher blood pressure and its sensitivity was increased. The modification of the control of total activity that occurs in PEMI could be a consequence of alterations in the baroreflex control of both MSNA burst incidence and burst strength. These results suggest that the arterial baroreflex and muscle metaboreflex interact to control both the occurrence and strength of MSNA bursts.  相似文献   

7.
We microneurographically recorded the traffic of sympathetic nerves leading to foot volar skin activity (SSA) and leg skeletal muscle activity (MSA) during isometric handgrip and simultaneously determined sweat rate by the ventilated capsule method and skin blood flow by laser-Doppler flowmetry in the innervating area of SSA. SSA increased abruptly and was almost constant during handgrip, accompanied by an increase in sweat rate, whereas skin blood flow showed no significant change during the handgrip. MSA showed a time-dependent increase during the course of handgrip. During arterial occlusion of the working forearm after handgrip, SSA decayed to the precontraction control level, whereas MSA remained at a higher level than during control. During involuntary biceps muscle contraction induced by electrical stimulation, both SSA and MSA increased. The results suggest that the SSA response during voluntary handgrip, which was demonstrated to contain mainly sudomotor activity, might be influenced by central command and input from peripheral mechanoreceptors but be influenced little by input from muscle chemoreceptors.  相似文献   

8.
We studied the effects of a hypocaloric diet (D, n = 24, age: 32.2 +/- 1.4 yr, body mass index: 34.7 +/- 0.5 kg/m2) and a hypocaloric diet associated with exercise training (D + T, n = 25, age: 32.3 +/- 1.3 yr, body mass index: 32.9 +/- 0.4 kg/m2) on muscle metaboreflex control, muscle sympathetic nerve activity (MSNA, microneurography), blood pressure, and forearm blood flow (plethysmography) levels during handgrip exercise at 10% and 30% of maximal voluntary contraction in normotensive obese women. An additional 10 women matched by age and body mass index were studied as a nonadherent group. D or D + T significantly decreased body mass index. D or D + T significantly decreased resting MSNA (bursts/100 heartbeats). The absolute levels of MSNA were significantly lower throughout 10% and 30% exercise after D or D + T, although no change was found in the magnitude of response of MSNA. D + T, but not D, significantly increased resting forearm vascular conductance. D + T significantly increased the magnitude of the response of forearm vascular conductance during 30% exercise. D or D + T significantly increased MSNA levels during posthandgrip circulatory arrest when muscle metaboreflex is isolated. In conclusion, weight loss improves muscle metaboreflex control in obese women. Weight loss reduces MSNA, which seems to be centrally mediated. Weight loss by D + T increases forearm vascular conductance at rest and during exercise in obese individuals.  相似文献   

9.
Ray, Chester A., and Kathryn H. Gracey. Augmentation ofexercise-induced muscle sympathetic nerve activity during muscle heating. J. Appl. Physiol. 82(6):1719-1725, 1997.The muscle metabo- and mechanoreflexes have beenshown to increase muscle sympathetic nerve activity (MSNA) duringexercise. Group III and IV muscle afferents, which are believed tomediate this response, have been shown to be thermosensitive inanimals. The purpose of the present study was to evaluate the effect ofmuscle temperature on MSNA responses during exercise. Eleven subjectsperformed ischemic isometric handgrip at 30% of maximal voluntarycontraction to fatigue, followed by 2 min of postexercise muscleischemia (PEMI), with and without local heating of the forearm. Localheating of the forearm increased forearm muscle temperature from 34.4 ± 0.2 to 38.9 ± 0.3°C(P = 0.001). Diastolic andmean arterial pressures were augmented during exercise in the heat.MSNA responses were greater during ischemic handgrip with local heatingcompared with control (no heating) after the first 30 s. MSNA responsesat fatigue were greater during local heating. MSNA increased by 16 ± 2 and 20 ± 2 bursts per 30 s for control and heating,respectively (P = 0.03). Whenexpressed as a percent change in total activity (total burstamplitude), MSNA increased 531 ± 159 and 941 ± 237% forcontrol and heating, respectively (P = 0.001). However, MSNA was not different during PEMI between trials.This finding suggests that the augmentation of MSNA during exercisewith heat was due to the stimulation of mechanically sensitive muscleafferents. These results suggest that heat sensitizes skeletal muscleafferents during muscle contraction in humans and may play a role inthe regulation of MSNA during exercise.

  相似文献   

10.
The fibres of superficial and deep abductor muscles of the pectoral fins of the stripped weakfish, Cynoscion guatucupa have been studied using histochemical techniques: succinic dehydrogenase (SDH) for mitochondria, periodic acid–Schiff (PAS) for glycogen, myosin‐adenosintriphosphatase (mATPase) to identify different fibre types based on the contraction speed and modified ATPase to identify capillaries. The fibre diameters were measured, and the capillaries of the main fibre types – red, pink and white— were counted. The two muscles showed both macroscopically and microscopically two well‐differentiated zones with predominant white fibres. The area of insertion of muscles into the fin rays had red, pink and white fibres. The origin zone of the muscle into the bone was composed by white fibres only. Both zones of white muscle evidenced a mosaic of small, medium and large polygonal white fibres. Red, pink and white muscles showed a wide histochemical diversity of fibre subtypes. The area per peripheral capillary increased from the red to the white muscles. Due to the predominance of white fibres, the pectoral fins of C. guatucupa were mainly involved in rapid movements to stop/discontinue and stabilize the body during swimming.  相似文献   

11.
The purpose of this study was to determine if abnormalities of sympathetic neural and vascular control are present in mild and/or severe heart failure (HF) and to determine the underlying afferent mechanisms. Patients with severe HF, mild HF, and age-matched controls were studied. Muscle sympathetic nerve activity (MSNA) and forearm vascular resistance (FVR) in the nonexercising arm were measured during mild and moderate static handgrip. MSNA during moderate handgrip was higher at baseline and throughout exercise in severe HF vs. mild HF (peak MSNA 67 +/- 3 vs. 54 +/- 3 bursts/min, P < 0.0001) and higher in mild HF vs. controls (33 +/- 3 bursts/min, P < 0.0001), but the change in MSNA was not different between the groups. The change in FVR was not significantly different between the three groups during static exercise. During isolation of muscle metaboreceptors, MSNA and blood pressure remained elevated in normal controls and mild HF but not in severe HF. During mild handgrip, the increase in MSNA was exaggerated in severe HF vs. controls and mild HF, in whom MSNA did not increase. In summary, the increase in MSNA during static exercise in severe HF appears to be attributable to exaggerated central command or muscle mechanoreceptor control, not muscle metaboreceptor control.  相似文献   

12.
Ten normal healthy subjects performed a rhythmic handgrip at 30% MVC (maximal voluntary contraction) with and without arterial occlusion of the same limb. Contralateral forearm and calf venous capacitance were simultaneously measured by venous occlusion plethysmography. During rhythmic handgrip at 30% MVC contralateral venous capacitance decreased by -7.17% in the forearm and by -5.14% in the calf. With arterial occlusion the decreases in venous capacitance were even more pronounced: contralateral forearm -14.4% and calf -13.1%. In a second set of experiments (n = 5) rhythmic handgrip at 30% MVC with arrest of the forearm circulation 5 s prior to the cessation of contraction was applied to examine the influence of chemically sensitive metaboreceptors per se on the evoked limb venoconstriction. During the postexercise arterial occlusion forearm venous volume decreased further to -30.6% whereas calf venous volume increased slightly but remained below the control value. After the cessation of the arterial occlusion both forearm and calf capacitance returned to baseline values. Thus, this study provided evidence that as well as a chemically generated reflex arising from the working muscle, central command was found to be involved in the increase in venomotor tone in the nonexercising limbs during rhythmic handgrip at 30% MVC.  相似文献   

13.
To test the function of sympathetic vasco-constrictor nerves on blood flow in resting limbs during static muscle contraction, muscle sympathetic nerve activity (MSNA) to the leg muscle was recorded from the tibial nerve microneurographically before, during and after 2 min of static handgrip (SHG). Simultaneously, calf blood flow (CBF) was measured by strain gauge plethysmography. An increase in MSNA, a decrease in CBF and an increase in calf vascular resistance (CVR) in the same resting limb occurred concomitantly during SHG. However, the increase in CVR was blunted in the second minute of handgrip when MSNA was still increasing. The results indicated that the decrease of CBF during SHG reflects the increase in MSNA, while the dissociation between MSNA and CVR at the later period of SHG may be related to metabolic change produced by the vasoconstriction.  相似文献   

14.
To determine the role of muscle chemoreflex in the cardiac response to static exercise the effect of the forearm muscle ischemia on systolic time intervals (STI), heart rate (HR) and blood pressure (BP) recovery following static handgrip was studied in 7 healthy men. During handgrip maintained for 4 min at 30% maximal voluntary contraction HR and BP increased significantly while duration of the pre-ejection period (PEP) and isovolumic contraction time (ICT) were shortened with a significant lowering in the ratio of PEP to the left ventricle ejection time (LVET). Occlusion of the circulation to the forearm muscles for 2 min after cessation of exercise did not prevent a rapid decline of HR or increment in PEP, ICT and PEP-to-LVET ratio while BP remained elevated for as long as blood flow to muscles was restricted. The study failed to demonstrate an appreciable effect of muscle chemoreflex on HR or myocardial contractility, suggesting that input from muscle afferents activated by metabolic stimuli induces the pressor response mainly by the peripheral vasoconstriction.  相似文献   

15.
Recording of the H-reflex was used to study the changes in the reflex excitability of soleus motoneurons during dorsal and plantar flexions of the ipsilateral and contralateral feet performed with different strengths by 15 healthy subjects. The dorsiflexion of the ipsilateral foot was accompanied by the “classic” reciprocal inhibition of the soleus motoneurons, the degree of the inhibition being directly proportional to the strength of the contraction of pretibial muscles and depending on the presence of foot support. The plantar flexion of the ipsilateral foot was accompanied by changes in reflex excitability, which were inversely proportional to the strength of the flexion. This was apparently related to the activation of a mechanism protecting the muscle against excessive contraction. The dorsal and plantar flexions of the contralateral foot were accompanied by similar changes in the reflex excitability of soleus motoneurons, namely, an increase in the case of weak contraction and a decrease in the case of strong contraction. However, the increase in reflex excitability during contralateral dorsiflexion was smaller and its decrease began at a weaker contraction than in the case of contralateral plantar flexion. The changes in the reflex excitability of soleus motoneurons during movements of the contralateral foot, which were also strength-dependent, confirmed the presence of cross-projections that are likely to be part of the generator of the central pattern of lower limb movement coordination.  相似文献   

16.
To identify whether muscle metaboreceptor stimulation alters baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA, beat-by-beat arterial blood pressure (Finapres), and electrocardiogram were recorded in 11 healthy subjects in the supine position. Subjects performed 2 min of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 2.5 min of posthandgrip muscle ischemia. During muscle ischemia, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.001) during posthandgrip muscle ischemia (-201.9 +/- 20.4 units. beat(-1). mmHg(-1)) when compared with control conditions (-142.7 +/- 17.3 units. beat(-1). mmHg(-1)). No significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. However, both curves shifted during postexercise ischemia to accommodate the elevation in blood pressure and MSNA that occurs with this condition. These data suggest that the sensitivity of baroreflex modulation of MSNA is elevated by muscle metaboreceptor stimulation, whereas the sensitivity of baroreflex of modulate heart rate is unchanged during posthandgrip muscle ischemia.  相似文献   

17.
Recording of neural firing from single-unit muscle sympathetic nerve activity (MSNA) is a new strategy offering information about the frequency of pure sympathetic firing. However, it is uncertain whether and when single-unit MSNA would be more useful than multiunit MSNA for analysis of various physiological stresses in humans. In 15 healthy subjects, we measured single-unit and multiunit MSNA before and during handgrip exercise at 30% of maximum voluntary contraction for 3 min and during the Valsalva maneuver at 40 mmHg expiratory pressure for 15 s. Shapes of individual single-unit MSNA were proved to be consistent and suitable for further evaluation. Single-unit and multiunit MSNA exhibited similar responses during handgrip exercise. However, acceleration of neural firing determined from single-unit MSNA became steeper than multiunit MSNA during the Valsalva maneuver. During the Valsalva maneuver, unlike handgrip exercise, the distribution of multiunit burst between 0, 1, 2, 3, and 4 spikes was significantly shifted toward multiple spikes within a given burst (P < 0.05). These results indicated that evaluation of single-unit MSNA could provide more detailed and accurate information concerning the role and responses of neuronal discharges induced by various physiological stresses in humans, especially amid intense sympathetic activity.  相似文献   

18.
The reflex excitability of the soleus spinal motoneurons was assessed in healthy subjects performing different types of motor tasks: voluntary contraction of the flexor (dorsal flexion) and extensor (plantar flexion) muscles of the foot. The effect of the contraction strength of these muscles was also evaluated. During dorsal flexion of the ipsi-and contralateral feet, changes in the reflex ecitability of the soleus motoneurons were unidirectional: the excitability decreased. The decrease in the reflex excitability was more profound during dorsal flexion with the maximum strength than with the half-maximum strength. During the plantar flexion of the ipsi-and contralateral feet, the excitability of the soleus motoneurons changed in opposite directions: in some subjects it increased, while in the others it decreased. The reflex excitability of the soleus motoneurons changed to a greater extent during dorsal or plantar flexion of the ipsilateral foot. In the case of plantar flexion, the soleus motor center is possibly affected by a broader spectrum of influences than in the case of dorsal flexion, which can explain the variations in the reflex excitability changes during plantar flexion.  相似文献   

19.
Sympathetic neural discharge and vascular resistance during exercise in humans   总被引:10,自引:0,他引:10  
The purpose of this study was to determine the relationship between changes in efferent muscle sympathetic nerve activity (MSNA) to the lower leg and calf vascular resistance (CVR) during isometric exercise in humans. We made intraneural (microneurographic) determinations of MSNA in the right leg (peroneal nerve) while simultaneously measuring calf blood flow to the left leg, arterial pressure, and heart rate in 10 subjects before (control), during, and after (recovery) isometric handgrip exercise performed for 2.5 min at 15, 25, and 35% of maximal voluntary contraction (MVC). Heart rate and arterial pressure increased above control within the initial 30 s of handgrip at all levels, and the magnitudes of the increases at end contraction were proportional to the intensity of the exercise. In general, neither MSNA nor CVR increased significantly above control levels during handgrip at 15% MVC. Similarly, neither variable increased above control during the initial 30 s of handgrip at 25 and 35% MVC; however, during the remainder of the contraction period, progressive, parallel increases were observed in MSNA and CVR (P less than 0.05). The correlation coefficients relating changes in MSNA to changes in CVR for the individual subjects averaged 0.63 +/- 0.07 (SE) (range 0.30-0.91) and 0.94 +/- 0.06 (range 0.80-0.99) for the 25 and 35% MVC levels, respectively. During recovery, both MSNA and CVR returned rapidly toward control levels. These findings demonstrate that muscle sympathetic nerve discharge and vascular resistance in the lower leg are tightly coupled during and after isometric arm exercise in humans. Furthermore, the exercise-induced adjustments in the two variables are both contraction intensity and time dependent.  相似文献   

20.
The effect of strength training on muscle pressor reflex responses was investigated. Ten young, healthy volunteers and eight arm wrestling athletes performed forearm exercises at 30% of maximal voluntary effort until exhaustion. The exercises were either static or rhythmic, with alternating 20-s periods of muscle contraction and relaxation, followed by postexercise forearm arterial occlusion (PEAO). Heart rate, blood pressure (BP), and sympathetic nerve activity directed to muscle blood vessels (MSNA) were continuously recorded during the exercises. MSNA recordings were obtained from the peroneal nerve using a microneurographic method. During static exercises followed by PEAO, there were no differences in BP or MSNA between athletes and nonathlets. In contrast, a significant decrease in muscle pressor reflex responses was observed in the athletes during rhythmic exercises followed by PEAO. The possible relationship between this effect and changes in muscle energy supply, increased wash-out of metabolites, and reduced sensitivity of the muscle receptors in athletes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号