首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serpins regulate coagulation and inflammation, binding serine proteases in suicide-inhibitory complexes. Target proteases cleave the serpin reactive center loop scissile P1–P1′ bond, resulting in serpin-protease suicide-inhibitory complexes. This inhibition requires a near full-length serpin sequence. Myxomavirus Serp-1 inhibits thrombolytic and thrombotic proteases, whereas mammalian neuroserpin (NSP) inhibits only thrombolytic proteases. Both serpins markedly reduce arterial inflammation and plaque in rodent models after single dose infusion. In contrast, Serp-1 but not NSP improves survival in a lethal murine gammaherpesvirus68 (MHV68) infection in interferon γ-receptor-deficient mice (IFNγR−/−). Serp-1 has also been successfully tested in a Phase 2a clinical trial. We postulated that proteolytic cleavage of the reactive center loop produces active peptide derivatives with expanded function. Eight peptides encompassing predicted protease cleavage sites for Serp-1 and NSP were synthesized and tested for inhibitory function in vitro and in vivo. In engrafted aorta, selected peptides containing Arg or Arg-Asn, not Arg-Met, with a 0 or +1 charge, significantly reduced plaque. Conversely, S-6 a hydrophobic peptide of NSP, lacking Arg or Arg-Asn with −4 charge, induced early thrombosis and mortality. S-1 and S-6 also significantly reduced CD11b+ monocyte counts in mouse splenocytes. S-1 peptide had increased efficacy in plasminogen activator inhibitor-1 serpin-deficient transplants. Plaque reduction correlated with mononuclear cell activation. In a separate study, Serp-1 peptide S-7 improved survival in the MHV68 vasculitis model, whereas an inverse S-7 peptide was inactive. Reactive center peptides derived from Serp-1 and NSP with suitable charge and hydrophobicity have the potential to extend immunomodulatory functions of serpins.  相似文献   

2.
Complex DNA viruses have tapped into cellular serpin responses that act as key regulatory steps in coagulation and inflammatory cascades. Serp-1 is one such viral serpin that effectively protects virus-infected tissues from host inflammatory responses. When given as purified protein, Serp-1 markedly inhibits vascular monocyte invasion and plaque growth in animal models. We have investigated mechanisms of viral serpin inhibition of vascular inflammatory responses. In vascular injury models, Serp-1 altered early cellular plasminogen activator (tissue plasminogen activator), inhibitor (PAI-1), and receptor (urokinase-type plasminogen activator) expression (p < 0.01). Serp-1, but not a reactive center loop mutant, up-regulated PAI-1 serpin expression in human endothelial cells. Treatment of endothelial cells with antibody to urokinase-type plasminogen activator and vitronectin blocked Serp-1-induced changes. Significantly, Serp-1 blocked intimal hyperplasia (p < 0.0001) after aortic allograft transplant (p < 0.0001) in PAI-1-deficient mice. Serp-1 also blocked plaque growth after aortic isograft transplant and after wire-induced injury (p < 0.05) in PAI-1-deficient mice indicating that increase in PAI-1 expression is not required for Serp-1 to block vasculopathy development. Serp-1 did not inhibit plaque growth in uPAR-deficient mice after aortic allograft transplant. We conclude that the poxviral serpin, Serp-1, attenuates vascular inflammatory responses to injury through a pathway mediated by native uPA receptors and vitronectin.  相似文献   

3.
The serine protease inhibitor (serpin) superfamily is involved in a wide range of cellular processes including fibrinolysis, angiogenesis, apoptosis, inflammation, metastasis and viral pathogenesis. Here, we investigate the unique mousetrap inhibition mechanism of serpins through saturation mutagenesis of the P8 residue for a typical family member, plasminogen activator inhibitor-2 (PAI-2). A number of studies have proposed an important role for the P8 residue in the efficient insertion and stabilisation of the cleaved reactive centre loop (RCL), which is a key event in the serpin inhibitory mechanism. The importance of this residue for inhibition of the PAI-2 protease target urinary plasminogen activator (urokinase, uPA) is confirmed, although a high degree of tolerance to P8 substitution is observed. Out of 19 possible PAI-2 P8 mutants, 16 display inhibitory activities within an order of magnitude of the wild-type P8 Thr species. Crystal structures of complexes between PAI-2 and RCL-mimicking peptides with P8 Met or Asp mutations are determined, and structural comparison with the wild-type complex substantiates the ability of the S8 pocket to accommodate disparate side-chains. These data indicate that the identity of the P8 residue is not a determinant of efficient RCL insertion, and provide further evidence for functional plasticity of key residues within enzyme structures. Poor correlation of observed PAI-2 P8 mutant activities with a range of physicochemical, evolutionary and thermodynamic predictive indices highlights the practical limitations of existing approaches to predicting the molecular phenotype of protein variants.  相似文献   

4.
Plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of the serine proteases tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). To systematically investigate the roles of the reactive center P1 and P1' residues in PAI-1 function, saturation mutagenesis was utilized to construct a library of PAI-1 variants. Examination of 177 unique recombinant proteins indicated that a basic residue was required at P1 for significant inhibitory activity toward uPA, whereas all substitutions except proline were tolerated at P1'. P1Lys variants exhibited lower inhibition rate constants and greater sensitivity to P1' substitutions than P1Arg variants. Alterations at either P1 or P1' generally had a larger effect on the inhibition of tPA. A number of variants that were relatively specific for either uPA or tPA were identified. P1Lys-P1'Ala reacted 40-fold more rapidly with uPA than tPA, whereas P1Lys-P1'Trp showed a 6.5-fold preference for tPA. P1-P1' variants containing additional mutations near the reactive center demonstrated only minor changes in activity, suggesting that specific amino acids in this region do not contribute significantly to PAI-1 function. These findings have important implications for the role of reactive center residues in determining serine protease inhibitor (serpin) function and target specificity.  相似文献   

5.
Poxviruses express highly active inhibitors, including serine proteinase inhibitors (serpins), designed to target host immune defense pathways. Recent work has demonstrated clinical efficacy for a secreted, myxomaviral serpin, Serp-1, which targets the thrombotic and thrombolytic proteases, suggesting that other viral serpins may have therapeutic application. Serp-2 and CrmA are intracellular cross-class poxviral serpins, with entirely distinct functions from the Serp-1 protein. Serp-2 and CrmA block the serine protease granzyme B (GzmB) and cysteine proteases, caspases 1 and 8, in apoptotic pathways, but have not been examined for extracellular anti-inflammatory activity. We examined the ability of these cross-class serpins to inhibit plaque growth after arterial damage or transplant and to reduce leukocyte apoptosis. We observed that purified Serp-2, but not CrmA, given as a systemic infusion after angioplasty, transplant, or cuff-compression injury markedly reduced plaque growth in mouse and rat models in vivo. Plaque growth was inhibited both locally at sites of surgical trauma, angioplasty or transplant, and systemically at non-injured sites in ApoE-deficient hyperlipidemic mice. With analysis in vitro of human cells in culture, Serp-2 selectively inhibited T cell caspase activity and blocked cytotoxic T cell (CTL) mediated killing of T lymphocytes (termed fratricide). Conversely, both Serp-2 and CrmA inhibited monocyte apoptosis. Serp-2 inhibitory activity was significantly compromised either in vitro with GzmB antibody or in vivo in ApoE/GzmB double knockout mice. Conclusions The viral cross-class serpin, Serp-2, that targets both apoptotic and inflammatory pathways, reduces vascular inflammation in a GzmB-dependent fashion in vivo, and inhibits human T cell apoptosis in vitro. These findings indicate that therapies targeting Granzyme B and/or T cell apoptosis may be used to inhibit T lymphocyte apoptosis and inflammation in response to arterial injury.  相似文献   

6.
7.
Blouse GE  Perron MJ  Thompson JH  Day DE  Link CA  Shore JD 《Biochemistry》2002,41(40):11997-12009
The inhibition mechanism of serpins requires a change in structure to entrap the target proteinase as a stable acyl-enzyme complex. Although it has generally been assumed that reactive center loop insertion and associated conformational change proceeds in a concerted manner, this has not been demonstrated directly. Through the substitution of tryptophan with 7-azatryptophan and an analysis of transient reaction kinetics, we have described the formation of an inhibited serpin-proteinase complex as a single concerted transition of the serpin structure. Replacement of the four tryptophans of plasminogen activator inhibitor type-1 (PAI-1) with the spectrally unique analogue 7-azatryptophan permitted observations of conformational changes in the serpin but not those of the proteinase. Formation of covalent acyl-enzyme complexes, but not noncovalent Michaelis complexes, with tissue-type plasminogen activator (t-PA) or urokinase (u-PA) resulted in rapid decreases of fluorescence coinciding with insertion of the reactive center loop and expansion of beta-sheet A. Insertion of an octapeptide consisting of the P14-P7 residues of the reactive center loop into beta-sheet A produced the same conformational change in serpin structure measured by 7-azatryptophan fluorescence, suggesting that introduction of the proximal loop residues induces the structural rearrangement of the serpin molecule. The atom specific modification of the tryptophan indole rings through analogue substitution produced a proteinase specific effect on function. The reduced inhibitory activity of PAI-1 against t-PA but not u-PA suggested that the mechanism of loop insertion is sensitive to the intramolecular interactions of one or more tryptophan residues.  相似文献   

8.
Considerable progress in understanding the mechanism of inhibition of proteinases by serpins has been obtained from different biochemical studies. These studies reveal that stable serpin/proteinase complex formation involves insertion of the reactive-site loop of the serpin and occurs at the acyl-enzyme stage. Even though no three-dimensional structure of a serpin/proteinase complex is resolved, structural information is available on some of the individual compounds. Molecular modeling techniques combined with recently acquired biochemical/biophysical data were used to provide insight into the stable complex formation between plasminogen activator inhibitor-1 (PAI-1) and the target proteinases: tissue-type plasminogen activator, urokinase-type plasminogen activator, and thrombin. This study reveals that PAI-1 initially interacts with its target proteinase when its reactive-site loop is solvent exposed and thereby accessible for the proteinase. Stable complex formation, however, involves the insertion of the reactive-site loop up to P7 and results in a tight binding geometry between PAI-1 and its target proteinase. The influence of different biologically relevant molecules on PAI-1/proteinase complex formation and the differences in inhibition rate constants observed for the different proteinases can be explained from these models.  相似文献   

9.
Headpin (SERPINB13) is a novel member of the serine proteinase inhibitor (Serpin) gene family that was originally cloned from a keratinocyte cDNA library. Western blot analysis using a headpin-specific antiserum recognized a protein with the predicted M(r) of 44kDa in lysates derived from a transformed keratinocyte cell line known to express headpin mRNA. Similarity of the reactive-site loop (RSL) domain of headpin, notably at the P1-P1(') residues, with other serpins that inhibit cysteine and serine proteinases suggests that headpin may inhibit similar proteinases. This study demonstrates that recombinant headpin indeed inhibits cathepsins K and L, but not chymotrypsin, elastase, trypsin, subtilisin A, urokinase-type plasminogen activator, plasmin, or thrombin. The second-order rate constants (k(a)) for the inhibitory reactions of rHeadpin with cathepsins K and L were 5.1+/-0.6x10(4) and 4.1+/-0.8x10(4)M(-1)s(-1), respectively. Headpin formed SDS-stable complexes with cathepsins K and L, a characteristic property of inhibitory serpins. Interactions of the RSL domain of headpin with cathepsins K and L were indicated by cleavage of headpin near the predicted P1-P1(') residues by these proteinases. These results demonstrate that the serpin headpin possesses specificity for inhibiting lysosomal cysteine proteinases.  相似文献   

10.
Vogel LK  Larsen JE 《FEBS letters》2000,473(3):297-302
Corticosteroid binding globulin, a member of the serpin family, was previously shown to be secreted mainly apically from MDCK cells in an N-glycan independent manner [Larsen et al. (1999) FEBS Lett. 451, 19-22]. Apart from N-glycosylation, serpins are not known to carry any other posttranslational modifications, suggesting the presence of a proteinaceous apical sorting signal. In the present study we have expressed four other members of the serpin family: alpha1-antitrypsin, C1 inhibitor, plasminogen activator inhibitor-1 and antithrombin in MDCK cells. Tight monolayers of transfected cells were grown on filters and the amounts of recombinantly expressed serpins in the apical and the basolateral media were determined. alpha1-Antitrypsin and C1 inhibitor were found mainly in the apical medium whereas plasminogen activator inhibitor-1 and antithrombin were found in roughly equal amounts in the apical and basolateral media. Control experiments showed that all four serpins are transported along the exocytotic pathway in an uncomplicated way that does not involve transcytosis or differences in stability on the two sides of the cells. We conclude that some members of the serpin family including corticosteroid binding globulin, alpha1-antitrypsin and C1 inhibitor are secreted mainly apically from MDCK cells whereas plasminogen activator inhibitor-1 and antithrombin are secreted in a non-polarized manner.  相似文献   

11.
12.
Urokinase plasminogen activator (uPA) is a serine protease that catalyzes the conversion of plasminogen to plasmin. The plasminogen/plasmin system includes the uPA, its receptor, and its inhibitor (plasminogen activator inhibitor-1). Interactions between these molecules regulate cellular proteolysis as well as adhesion, cellular proliferation, and migration, processes germane to the pathogenesis of lung injury and neoplasia. In previous studies, we found that uPA regulates cell surface fibrinolysis by regulating its own expression as well as that of the uPA receptor and plasminogen activator inhibitor-1. In this study, we found that uPA alters expression of the tumor suppressor protein p53 in Beas2B airway epithelial cells in both a time- and concentration-dependent manner. These effects do not require uPA catalytic activity because the amino-terminal fragment of uPA lacking catalytic activity was as potent as two chain active uPA. Single chain uPA also enhanced p53 expression to the same extent as intact two chain active uPA and the amino-terminal fragment. Pretreatment of cells with anti-beta1 integrin antibody blocked uPA-induced p53 expression. uPA-induced p53 expression occurs without increased p53 mRNA expression. However, uPA induced oncoprotein MDM2 in a concentration-dependent manner. uPA-induced p53 expression does not require activation of tyrosine kinases. Inactivation of protein-tyrosine phosphatase SHP-2 inhibits both basal and uPA-induced p53 expression. Plasmin did not alter uPA-mediated p53 expression. The induction of p53 expression by exposure of lung epithelial cells to uPA is a newly recognized pathway by which urokinase may influence the proliferation of lung epithelial cells. This pathway could regulate pathophysiologic alterations of p53 expression in the setting of lung inflammation or neoplasia.  相似文献   

13.
Plasminogen activator inhibitor-1 (PAI-1), the primary physiological inhibitor of tissue-type plasminogen activator (t-PA) in plasma, is a serine proteinase inhibitor (serpin) that forms a 1:1 stoichiometric complex with its target proteinase leading to the formation of a stable inactive complex. The active, inhibitory form of PAI-1 spontaneously converts to a latent form that can be reactivated by protein denaturants. In the present study we have isolated another molecular form of intact PAI-1 that, in contrast with active PAI-1, does not form stable complexes with t-PA but is cleaved at the P1-P1' bond (Arg346-Met347). Other serine proteinases, e.g. urokinase-type plasminogen activator and thrombin, also cleaved this "substrate" form of PAI-1. Fluorescence spectroscopy revealed conformational differences between the latent, active, and substrate forms of PAI-1. This observation confirms our hypothesis that the three functionally different forms of PAI-1 are the consequence of conformational transitions. Thus PAI-1 may occur in three interconvertible conformations: latent, inhibitor, and substrate PAI-1. The identification of two distinct conformations of PAI-1 which interact with their target protease either as an inhibitor or as a substrate is a previously unrecognized phenomenon among the serpins. Conversion of substrate PAI-1 to its inactive degradation product may constitute a pathway for the physiological regulation of PAI-1 activity.  相似文献   

14.
Protease inhibitors of the serpin family are ubiquitous in the plant kingdom but relatively little is known about their biological functions in comparison with their counterparts in animals. X-ray crystal structures have provided crucial insights into animal serpin functions. The recently solved structure of AtSerpin1 from Arabidopsis thaliana, which has the highly conserved reactive center P2-P1' Leu-Arg-Xaa (Xaa = small residue), displays both conserved and plant-specific serpin features. Sequence homology suggests that AtSerpin1 belongs to serpin Clade B, composed of intracellular mammalian serpins, which is consistent with the lack of strong evidence for secretion of serpins from plant cells. The major in vivo target protease for AtSerpin1 is the papain-like cysteine RD21 protease, a match reminiscent of the inhibition of cathepsins K, L and S by the Clade-B mammalian serpin, SCCA-1 (SERPINB3). The function of AtSerpin1 and other serpins that contain P2-P1' Leu-Arg-Xaa (the 'LR' serpins) in plants remains unknown. However, based on its homology and interactive partners, AtSerpin1 and perhaps other serpins are likely to be involved in regulating programmed cell death or associated processes such as senescence. Abundant accumulation of serpins in seeds and their presence in phloem sap suggest additional functions in plant defense by irreversible inhibition of digestive proteases from pests or pathogens. Here we review the most recent findings in plant serpin biology, focusing on advances in describing the structure and inhibitory specificity of the LR serpins.  相似文献   

15.
The aim of this study was to determine the effects of hypoxia on mRNA levels, cell-associated and -secreted protein concentration, activity, and protein complex formation of urokinase-type plasminogen activator, its receptor, and plasminogen activator inhibitor type-1 in corneal epithelium. Non-transformed human corneal epithelial cells were cultured in 20% oxygen (normoxic conditions) or 2% oxygen (hypoxic conditions) for 1, 3, 5, or 7 days. Relative changes in mRNA levels of plasminogen activator, receptor, and plasminogen activator inhibitor-1 were determined using a cDNA expression array, chemiluminescence, and densitometry. Protein concentrations were determined using enzyme linked immunosorbent assays. Activity assays were also used. Protein complex formation was assayed using cell surface biotinylation, immunoprecipitation, and Western blot analysis. Hypoxic corneal epithelial cells demonstrated no significant differences in plasminogen activator or receptor mRNA. Cell-associated plasminogen activator and membrane-associated receptor protein levels were unchanged. In contrast decreases in mRNA and secreted plasminogen activator inhibitor-1 protein were observed in hypoxic cells. Concurrently, increased cell-associated plasminogen activator activity was observed in hypoxic cells. The formation of plasminogen activator/receptor/plasminogen activator inhibitor-1 complex at the cell surface was not inhibited by hypoxia. However, in hypoxic cells less plasminogen activator inhibitor-1 was associated with receptor. It is concluded that in corneal epithelium cultured in 2% oxygen plasminogen activator inhibitor-1 may be an important regulatory factor of the plasminogen activator system resulting in increased urokinase plasminogen activator activity.  相似文献   

16.
Degradation of adhesive glycoproteins by plasmin is implicated in cell migration. In this study, we further explored the role of plasminogen activation in cell adhesion and survival and show that uncontrolled plasminogen activation at the cell surface may induce cell detachment and apoptosis. We hypothesized that this process could be prevented in adherent cells by expression of protease nexin-1, a potent serpin able to inhibit thrombin, plasmin, and plasminogen activators. Using two- and three-dimensional culture systems, we demonstrate that Chinese hamster ovary fibroblasts constitutively express tissue-type plasminogen activator and efficiently activate exogenously added plasminogen in a specific and saturable manner (K(m) = 46 nm). The formation of plasmin results in proteolysis of fibronectin and laminin, which is followed by cell detachment and apoptosis. Protease nexin-1 expressed by transfected cells significantly inhibited the activity of plasmin and tissue-type plasminogen activator via the formation of inhibitory complexes and prevented cell detachment and apoptosis. In conclusion, protease nexin-1 may be an important anti-apoptotic factor for adherent cells. This cell model could be a useful tool to evaluate therapeutic agents such as serpins in vascular pathologies involving pericellular protease-protease inhibitor imbalance.  相似文献   

17.
Genes encoding proteins of the serpin superfamily are widespread in the plant kingdom, but the properties of very few plant serpins have been studied, and physiological functions have not been elucidated. Six distinct serpins have been identified in grains of hexaploid bread wheat (Triticum aestivum L.) by partial purification and amino acid sequencing. The reactive centers of all but one of the serpins resemble the glutamine-rich repetitive sequences in prolamin storage proteins of wheat grain. Five of the serpins, classified into two protein Z subfamilies, WSZ1 and WSZ2, have been cloned, expressed in Escherichia coli, and purified. Inhibitory specificity toward 17 proteinases of mammalian, plant, and microbial origin was studied. All five serpins were suicide substrate inhibitors of chymotrypsin and cathepsin G. WSZ1a and WSZ1b inhibited at the unusual reactive center P(1)-P(1)' Gln-Gln, and WSZ2b at P(2)-P(1) Leu-Arg-one of two overlapping reactive centers. WSZ1c with P(1)-P(1)' Leu-Gln was the fastest inhibitor of chymotrypsin (k(a) = 1.3 x 10(6) m(-1) s(-1)). WSZ1a was as efficient an inhibitor of chymotrypsin as WSZ2a (k(a) approximately 10(5) m(-1) s(-1)), which has P(1)-P(1)' Leu-Ser-a reactive center common in animal serpins. WSZ2b inhibited plasmin at P(1)-P(1)' Arg-Gln (k(a) approximately 10(3) m(-1) s(-1)). None of the five serpins inhibited Bacillus subtilisin A, Fusarium trypsin, or two subtilisin-like plant serine proteinases, hordolisin from barley green malt and cucumisin D from honeydew melon. Possible functions involving interactions with endogenous or exogenous proteinases adapted to prolamin degradation are discussed.  相似文献   

18.
Hejgaard J 《FEBS letters》2001,488(3):149-153
Six of seven serpins detected in grains of rye (Secale cereale) were purified and characterized. The amino acid sequence close to the blocked N-terminus, the reactive center loop sequence and the second order association rate constant (k(a)') for irreversible complex formation with chymotrypsin were determined for each serpin. Three of four serpins containing the unusual reactive center P2-P1' QQ/S and one with P2-P1' PQ/M were equally efficient inhibitors of chymotrypsin (k(a)' approximately 10(5) M(-1) s(-1)). One serpin with P2-P1' PY/M was a faster inhibitor (k(a)' approximately 10(6) M(-1) s(-1)). Similar but differently organized glutamine-rich reactive centers were recently found in grain serpins cloned from wheat [Ostergaard et al. (2000) J. Biol. Chem. 275, 33272] but not from barley. The prolamin storage proteins of cereal grains contain similar sequences in their glutamine-rich repeats. A possible adaption of hypervariable serpin reactive centers late in Triticeae cereal evolution as defence against insects feeding on cereal grains is discussed.  相似文献   

19.
Matrix metalloproteinase-14 is required for degradation of fibrillar collagen by mesenchymal cells. Here we show that keratinocytes use an alternative plasminogen and matrix metalloproteinase-13-dependent pathway for dissolution of collagen fibrils. Primary keratinocytes displayed an absolute requirement for serum to dissolve collagen. Dissolution of collagen was abolished in plasminogen-depleted serum and could be restored by the exogenous addition of plasminogen. Both plasminogen activator inhibitor-1 and tissue inhibitor of metalloproteinase blocked collagen dissolution, demonstrating the requirement of both plasminogen activation and matrix metalloproteinase activity for degradation. Cell surface plasmin activity was critical for the degradation process as aprotinin, but not alpha(2)-antiplasmin, prevented collagen dissolution. Keratinocytes with single deficiencies in either urokinase or tissue plasminogen activator retained the ability to dissolve collagen. However, collagen fibril dissolution was abolished in keratinocytes with a combined deficiency in both urokinase and tissue plasminogen activator. Combined, but not single, urokinase and tissue plasminogen activator deficiency also completely blocked the activation of the fibrillar collagenase, matrix metalloproteinase-13, by keratinocytes. The activation of matrix metalloproteinase-13 in normal keratinocytes was prevented by plasminogen activator inhibitor-1 and aprotinin but not by tissue inhibitor of metalloproteinase-1 and -2, suggesting that plasmin activates matrix metalloproteinase-13 directly. We propose that plasminogen activation facilitates keratinocyte-mediated collagen breakdown via the direct activation of matrix metalloproteinase-13 and possibly other fibrillar collagenases.  相似文献   

20.
This study demonstrates that endopin 2 is a unique secretory vesicle serpin that displays cross-class inhibition of cysteine and serine proteases, indicated by effective inhibition of papain and elastase, respectively. Homology of the reactive site loop (RSL) domain of endopin 2, notably at P1-P1' residues, with other serpins that inhibit cysteine and serine proteases predicted that endopin 2 may inhibit similar proteases. Recombinant N-His-tagged endopin 2 inhibited papain and elastase with second-order rate constants (k(ass)) of 1.4 x 10(6) and 1.7 x 10(5) M(-1) s(-1), respectively. Endopin 2 formed SDS-stable complexes with papain and elastase, a characteristic property of serpins. Interactions of the RSL domain of endopin 2 with papain and elastase were indicated by cleavage of endopin 2 near the predicted P1-P1' residues by these proteases. Endopin 2 did not inhibit the cysteine protease cathepsin B, or the serine proteases chymotrypsin, trypsin, plasmin, and furin. Endopin 2 in neuroendocrine chromaffin cells was colocalized with the secretory vesicle component (Met)enkephalin by confocal immunonfluorescence microscopy, and was present in isolated secretory vesicles (chromaffin granules) from chromaffin cells as a glycoprotein of 72-73 kDa. Moreover, regulated secretion of endopin 2 from chromaffin cells was induced by nicotine and KCl depolarization. Overall, these results demonstrate that the serpin endopin 2 possesses dual specificity for inhibiting both papain-like cysteine and elastase-like serine proteases. These findings demonstrate that endopin 2 inhibitory functions may occur in the regulated secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号