首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of defined mutations In the lipopolysaccharide (LPS) and the outer membrane protein OmpA of the recipient cell on mating-pair formation in liquid media by the transfer systems of the F-Iike plasmids pOX38 (F), ColB2 and R100-1 were investigated. Transfer of all three plasmids was affected differently by mutations in the rfa (LPS) locus of the recipient cell, the F plasmid being most sensitive to mutations that affected rfaP gene expression which is responslbie for the addition of pyrophosphorylethanolamine (PPEA) to heptose I of the inner core of the LPS. CoIB2 transfer was more strongly affected by mutations in the heptose II-heptose III region of the LPS (rfaF) whereas R100-1 was not strongly affected by any of the rfa mutations tested. ompA but not rfa mutations further decreased the mating efficiency of an F plasmid carrying a mutation in the mating-pair stabilization protein TraN. An F derivative with a chloramphenicol acetyltransferase (CAT) cassette interrupting the traA pilin gene was constructed and pilin genes from F-like plasmids (F, ColB2, R100-1) were used to complement this mutation. Unexpectediy, the results suggested that the differences in the pilin sequences were not responsible for recognizing specific groups in the LPS, OmpA or the TraT surface exclusion protein. Other corroborating evidence is presented suggesting the presence of an adhesin at the F pilus tip.  相似文献   

2.
Molecular Studies on Entry Exclusion in Escherichia coli Minicells   总被引:11,自引:9,他引:2       下载免费PDF全文
Minicells produced by abnormal cell division in a strain of Escherichia coli (K-12) have been employed here to investigate the phenomenon of "entry exclusion." When purified minicells from strains containing F' or R factors, or both, are mated with radioactive thymidine-labeled Hfr or R(+) donors, the recipient minicells can be conveniently separated from normal-sized donors following mating, and the products of conjugation can be analyzed in the absence of donors and of further growth of the recipients. Transmissible plasmids or episomes are transferred less efficiently to purified minicells derived from strains carrying similar or related elements than to strains without them. Measurement of deoxyribonucleic acid (DNA) degradation and determination of weight-average molecular weights following transfer indicate that degradation of transferred DNA or transfer of smaller pieces cannot account for the comparative reduction in transfer to entry-excluding recipients. Therefore, we conclude that entry exclusion operates to prevent the physical entry of DNA into recipients expressing the exclusion phenotype. The R-produced repressor (product of the drd(+) gene), which represses fertility (i.e., ability to act as donor), reduces exclusion mediated by R or F factor, or both, in matings between strains carrying homologous elements. Furthermore, the data suggest that the presence of the F pilus or F-like R pilus on recipient cells ensures maximum expression of the exclusion phenotype but is not essential for its expression. In contrast to previous suggestions, we found no evidence for a reduction of entry exclusion attributable to the DNA temperature-sensitive chromosomal mutation dnaB(TS).  相似文献   

3.
Mating pair stabilization occurs during conjugative DNA transfer whereby the donor and recipient cells form a tight junction which requires pili as well as TraN and TraG in the donor cell. The role of the outer membrane protein, TraN, during conjugative transfer was examined by introduction of a chloramphenicol resistance cassette into the traN gene on an F plasmid derivative, pOX38, to produce pOX38N1::CAT. pOX38N1::CAT was greatly reduced in its ability to transfer DNA, indicating that TraN plays a greater role in conjugation than previously thought. F and R100-1 traN were capable of complementing pOX38N1::CAT transfer equally well when wild-type recipients were used. F traN, but not R100-1 traN, supported a much lower level of transfer when there was an ompA mutation or lipopolysaccharide (LPS) deficiency in the recipient cell, suggesting receptor specificity. The R100-1 traN gene was sequenced, and the gene product was found to exhibit 82.3% overall similarity with F TraN. The differences were mainly located within a central region of the proteins (amino acids 162 to 333 of F and 162 to 348 of R100-1). Deletion analysis of F traN suggested that this central portion might be responsible for the receptor specificity displayed by TraN. TraN was not responsible for TraT-dependent surface exclusion. Thus, TraN, and not the F pilus, appears to interact with OmpA and LPS moieties during conjugation, resulting in mating pair stabilization, the first step in efficient mobilization of DNA.  相似文献   

4.
The sequence of a region of the F plasmid containing the traLEKBP genes involved in plasmid transfer was compared to the equivalent regions of two IncFII plasmids, R100-1 and ColB2. The traLEK gene products of all three plasmids were virtually identical, with the most changes occurring in TraE. The TraB genes were also nearly identical except for an 11-codon extension at the 3' end of the R100-1 traB gene. The TraP protein of R100-l differed from those of F and ColB2 at its N terminus, while the ColB2 TraP protein contained a change of sequence in a predicted loop which was shown to be exposed in the periplasmic space by TnphoA mutagenesis. The effect of the altered TraP sequences was determined by complementing a traP mutant with clones expressing the traKBP genes of F, R100-1, and ColB2. The traP mutation in pOX38 (pOX38-traP474), a derivative of F, was found to have little effect on pilus production, pilus retraction, and filamentous phage growth and only a moderate effect on transfer. The transfer ability of pOX38-traP474 was shown to be affected by mutations in the rfa (lipopolysaccharide) locus and in ompA in the recipient cell in a manner similar to that for the wild-type pOX38-Km plasmid itself and could be complemented with the traP analogs from R100-1 and ColB2 to give an F-like phenotype. Thus, the TraP protein appears to play a minor role in conjugation and may interact with TraB, which varies in sequence along with TraP, in order to stabilize the proposed transmembrane complex formed by the tra operon products.  相似文献   

5.
PRD1, a lipid-containing double-stranded DNA bacteriophage, uses the mating pair formation (Mpf) complex encoded by conjugative IncP plasmids as a receptor. Functions responsible for conjugative transfer of IncP plasmids are encoded by two distinct regions, Tra1 and Tra2. Ten Tra2 region gene products (TrbB to TrbL) and one from the Tra1 region (TraF) form the Mpf complex. We carried out a mutational analysis of the PRD1 receptor complex proteins by isolating spontaneous PRD1-resistant mutants. The mutations were distributed among the trb genes in the Tra2 region and accumulated predominantly in three genes, trbC, trbE, and trbL. Three of 307 phage-resistant mutants were weakly transfer proficient. Mutations causing a phage adsorption-deficient, transfer-positive phenotype were analyzed by sequencing.  相似文献   

6.
Plasmid conjugation systems are composed of two components, the DNA transfer and replication system, or Dtr, and the mating pair formation system, or Mpf. During conjugal transfer an essential factor, called the coupling protein, is thought to interface the Dtr, in the form of the relaxosome, with the Mpf, in the form of the mating bridge. These proteins, such as TraG from the IncP1 plasmid RP4 (TraG(RP4)) and TraG and VirD4 from the conjugal transfer and T-DNA transfer systems of Ti plasmids, are believed to dictate specificity of the interactions that can occur between different Dtr and Mpf components. The Ti plasmids of Agrobacterium tumefaciens do not mobilize vectors containing the oriT of RP4, but these IncP1 plasmid derivatives lack the trans-acting Dtr functions and TraG(RP4). A. tumefaciens donors transferred a chimeric plasmid that contains the oriT and Dtr genes of RP4 and the Mpf genes of pTiC58, indicating that the Ti plasmid mating bridge can interact with the RP4 relaxosome. However, the Ti plasmid did not mobilize transfer from an IncQ relaxosome. The Ti plasmid did mobilize such plasmids if TraG(RP4) was expressed in the donors. Mutations in traG(RP4) with defined effects on the RP4 transfer system exhibited similar phenotypes for Ti plasmid-mediated mobilization of the IncQ vector. When provided with VirD4, the tra system of pTiC58 mobilized plasmids from the IncQ relaxosome. However, neither TraG(RP4) nor VirD4 restored transfer to a traG mutant of the Ti plasmid. VirD4 also failed to complement a traG(RP4) mutant for transfer from the RP4 relaxosome or for RP4-mediated mobilization from the IncQ relaxosome. TraG(RP4)-mediated mobilization of the IncQ plasmid by pTiC58 did not inhibit Ti plasmid transfer, suggesting that the relaxosomes of the two plasmids do not compete for the same mating bridge. We conclude that TraG(RP4) and VirD4 couples the IncQ but not the Ti plasmid relaxosome to the Ti plasmid mating bridge. However, VirD4 cannot couple the IncP1 or the IncQ relaxosome to the RP4 mating bridge. These results support a model in which the coupling proteins specify the interactions between Dtr and Mpf components of mating systems.  相似文献   

7.
The complete conjugal transfer gene region of the IncW plasmid R388 has been cloned in multicopy vector plasmids and mapped to a contiguous 14.9-kilobase segment by insertion mutagenesis. The fertility of the cloned region could still be inhibited by a coresident IncP plasmid. The transfer region has been dissected into two regions, one involved in pilus synthesis and assembly (PILW), and the other involved in conjugal DNA metabolism (MOBW). They have been separately cloned. PILW also contains the genes involved in entry exclusion. MOBW contains oriT and the gene products required for efficient mobilization by PILW. MOBW plasmids could also be mobilized efficiently by PILN, the specific pilus of the IncN plasmid pCU1, but not by PILP, the specific pilus of the IncP plasmid RP1.  相似文献   

8.
The transfer inhibition systems of 28 Fin+ plasmids have been characterized, using Flac mutants insensitive to inhibition by R100 or R62. All F-like plasmids (except R455) and one N group plasmid determined systems analogous to that of R100; this is designated the FinOP system. None of these plasmids could supply a FinP component of the transfer inhibitor able to replace that of F itself. In addition to the FinOP and R62 transfer inhibition systems described previously, new systems were encoded by the F-like plasmid R455, the I-like plasmid JR66a, and the group X plasmid R485. Besides inhibiting F transfer, JR66a also inhibited F pilus formation and surface exclusion, whereas R485 inhibited only pilus formation and R455 inhibited neither. All three R factors inhibited transfer of J-independent Flac elements, indicating that they act directly on one or more genes (or products) of the transfer operon, rather than directly via traJ. The tral products and transfer origin sequences of two Fin+ F-like plasmids, ColB2 and R124, appear to have similar specificities to those of F itself.  相似文献   

9.
DNA transfer by bacterial conjugation requires a mating pair formation (Mpf) system that specifies functions for establishing the physical contact between the donor and the recipient cell and for DNA transport across membranes. Plasmid RP4 (IncP alpha) contains two transfer regions designated Tra1 and Tra2, both of which contribute to Mpf. Twelve components are essential for Mpf, TraF of Tra1 and 11 Tra2 proteins, TrbB, -C, -D, -E, -F, -G, -H, -I, -J, -K, and -L. The phenotype of defined mutants in each of the Tra2 genes was determined. Each of the genes, except trbK, was found to be essential for RP4-specific plasmid transfer and for mobilization of the IncQ plasmid RSF1010. The latter process did not absolutely require trbF, but a severe reduction of the mobilization frequency occurred in its absence. Transfer proficiency of the mutants was restored by complementation with defined Tra2 segments containing single trb genes. Donor-specific phage propagation showed that traF and each of the genes encoded by Tra2 are involved. Phage PRD1, however, still adsorbed to the trbK mutant strain but not to any of the other mutant strains, suggesting the existence of a plasmid-encoded receptor complex. Strains containing the Tra2 plasmid in concert with traF were found to overexpress trb products as well as extracellular filaments visualized by electron microscopy. Each trb gene and traF are needed for the formation of the pilus-like structures. The trbK gene, which is required for PRD1 propagation and for pilus production but not for DNA transfer on solid media, encodes the RP4 entry-exclusion function. The components of the RP4 Mpf system are discussed in the context of related macromolecule export systems.  相似文献   

10.
11.
The TraT protein is a highly cell-surface-exposed lipoprotein specified by F-like plasmids that confers serum resistance and blocks the conjugative transfer of plasmids to cells bearing identical or closely related plasmids, a process known as surface exclusion. The TraT protein specified by the antibiotic-resistance plasmid R6-5 was purified to apparent homogeneity. When added to mating mixtures, TraT blocked the transfer of plasmids belonging to Surface Exclusion Group IV (Sfx IV) but had no significant effect on the transfer of plasmids belonging to other groups. Additionally, the purified protein has a protective effect on bacterial cells incubated in serum, indicating that it does not have to be located on the cell surface to mediate serum resistance. To localize regions of the protein that were responsible for surface exclusion specificity, the amino acid sequence of the TraT protein specified by CoIB2-K98 (Sfx II) was determined by cloning and sequencing of the corresponding gene. Comparison of the derived sequence with those of the F and R100-1 proteins indicated that surface exclusion specificity of TraT is determined by single alterations in a five-amino-acid region (residues 116-120). This was confirmed by segment swapping experiments in which the specificity of the R6-5 TraT protein (Sfx IV) was switched to that of the CoIB2-K98 protein (Sfx II). Our results suggest that the region defined by residues 116-120 is located on the external face of the outer membrane and interacts specifically with the donor cell in surface exclusion.  相似文献   

12.
Schröder G  Lanka E 《Plasmid》2005,54(1):1-25
The mating pair formation (Mpf) system functions as a secretion machinery for intercellular DNA transfer during bacterial conjugation. The components of the Mpf system, comprising a minimal set of 10 conserved proteins, form a membrane-spanning protein complex and a surface-exposed sex pilus, which both serve to establish intimate physical contacts with a recipient bacterium. To function as a DNA secretion apparatus the Mpf complex additionally requires the coupling protein (CP). The CP interacts with the DNA substrate and couples it to the secretion pore formed by the Mpf system. Mpf/CP conjugation systems belong to the family of type IV secretion systems (T4SS), which also includes DNA-uptake and -release systems, as well as effector protein translocation systems of bacterial pathogens such as Agrobacterium tumefaciens (VirB/VirD4) and Helicobacter pylori (Cag). The increased efforts to unravel the molecular mechanisms of type IV secretion have largely advanced our current understanding of the Mpf/CP system of bacterial conjugation systems. It has become apparent that proteins coupled to DNA rather than DNA itself are the actively transported substrates during bacterial conjugation. We here present a unified and updated view of the functioning and the molecular architecture of the Mpf/CP machinery.  相似文献   

13.
The conjugative transfer region 1 (Tra1) of the IncHI1 plasmid R27 was subjected to DNA sequence analysis, mutagenesis, genetic complementation, and an H-pilus-specific phage assay. Analysis of the nucleotide sequence indicated that the Tra1 region contains genes coding for mating pair formation (Mpf) and DNA transfer replication (Dtr) and a coupling protein. Insertional disruptions of 9 of the 14 open reading frames (ORFs) in the Tra1 region resulted in a transfer-deficient phenotype. Conjugative transfer was restored for each transfer mutant by genetic complementation. An intergenic region between traH and trhR was cloned and mobilized by R27, indicating the presence of an origin of transfer (oriT). The five ORFs immediately downstream of the oriT region are involved in H-pilus production, as determined by an H-pilus-specific phage assay. Three of these ORFs encode proteins homologous to Mpf proteins from IncF plasmids. Upstream of the oriT region are four ORFs required for plasmid transfer but not H-pilus production. TraI contains sequence motifs that are characteristic of relaxases from the IncP lineage but share no overall homology to known relaxases. TraJ contains both an Arc repressor motif and a leucine zipper motif. A putative coupling protein, TraG, shares a low level of homology to the TraG family of coupling proteins and contains motifs that are important for DNA transfer. This analysis indicates that the Mpf components of R27 share a common lineage with those of the IncF transfer system, whereas the relaxase of R27 is ancestrally related to that of the IncP transfer system.  相似文献   

14.
CS1 is one of a limited number of serologically distinct pili found in enterotoxigenic Escherichia coli (ETEC) strains associated with disease in people. The genes for the CS1 pilus are on a large plasmid, pCoo. We show that pCoo is not self-transmissible, although our sequence determination for part of pCoo shows regions almost identical to those in the conjugative drug resistance plasmid R64. When we introduced R64 into a strain containing pCoo, we found that pCoo was transferred to a recipient strain in mating. Most of the transconjugant pCoo plasmids result from recombination with R64, leading to acquisition of functional copies of all of the R64 transfer genes. Temporary coresidence of the drug resistance plasmid R64 with pCoo leads to a permanent change in pCoo so that it is now self-transmissible. We conclude that when R64-like plasmids are transmitted to an ETEC strain containing pCoo, their recombination may allow for spread of the pCoo plasmid to other enteric bacteria.  相似文献   

15.
16.
IncP-type plasmids are broad-host-range conjugative plasmids. DNA translocation requires DNA transfer-replication functions and additional factors required for mating pair formation (Mpf). The Mpf system is located in the cell membranes and is responsible for DNA transport from the donor to the recipient. The Mpf complex acts as a receptor for IncP-specific phages such as PRD1. In this investigation, we quantify the Mpf complexes on the cell surface by a phage receptor saturation technique. Electrochemical measurements are used to show that the Mpf complex increases cell envelope permeability to lipophilic compounds and ATP. In addition it reduces the ability of the cells to accumulate K+. However, the Mpf complex does not dissipate the membrane voltage. The Mpf complex is rapidly disassembled when intracellular ATP concentration is decreased, as measured by a PRD1 adsorption assay.  相似文献   

17.
Mating aggregates during conjugation directed by an F-like R factor in Escherichia coli were measured as the number of Lac+-Lac- sectored colonies present in a mating mixture. There is a high degree of correlation between the concentration of transconjugants produced in a mating mixture and the concentration of mating aggregates observed at several different concentrations of donor and recipient cells. The mating aggregates are sex pilus specific as demonstrated by the ability of donor-specific ribonucleic acid phage MS-2 to decrease both mating aggregates and transconjugants in a mating mixture. During entry exclusion by either a derepressed or a repressed F-like R factor, isogenic to the superinfecting R factor except for a resistance determinant, the number of transconjugants was markedly reduced, but the number of mating aggregates was not decreased. Entry exclusion by F-Gal toward the donor HfrH resembled that of the F-like R factor in that there was a reduction in the number of recombinants but no significant decrease in mating aggregates. These results suggest that entry exclusion inhibits conjugation at a stage after the formation of mating aggregates.  相似文献   

18.
Superinfection immunity was studied by a method which permits the specific labeling of plasmid DNA following its entry into a recipient cell during conjugation. By measuring the incorporation of [3H]thymine during matings between a donor strain of Escherichia coli K12 carrying the R factor, Rl, and various recipients, we found that the presence in the recipient of a plasmid closely related to R1 (F or R factor 222), or isogenic to it (resistance transfer factor, from Rl), resulted in a reduction of 80 to 90% in the rate of [3H]thymine incorporation, relative to a mating with a plasmid-negative (F ?) recipient. The DNA present in these recipients after 60 minutes of mating was further examined by neutral sucrose gradient eentrifugation. The DNA in the F+ and F ? recipients sedimented similarly, in two major peaks at 50 S (relaxed circles) and 75 S (supercoiled circles). However, the DNA in the RTF recipient sedimented at rates intermediate between 50 S and 75 S. Pulse-chase experiments revealed that the DNA species seen after 60 minutes of an R1 × RTF mating are normal replicative intermediates which have disappeared by 60 minutes in the R1 × F? or R1 × F+ matings.These data support genetic evidence suggesting that superinfection immunity is due to two distinct effects—entry exclusion and plasmid incompatibility. Thus, F (related to R1 but genetically compatible with it), as well as the incompatible plasmids, 222 and the RTF of R1 itself, when present in the recipient, greatly reduce the total synthesis of newly introduced R1 DNA in the recipient. We interpret this effect as entry exclusion. Incompatibility, manifested by RTF, but not F, further reduces the efficiency of conjugation by slowing the rate at which a newly acquired plasmid is replicated.  相似文献   

19.
In this study, the DNA sequence of one of the transfer regions of the IncHI1 plasmid R27 was determined. This region, which corresponds to coordinates 0-40 on the R27 map has been called the Tra2 region, and is believed to be involved in mating pair formation. DNA sequence analysis of the transfer region identified 11 open reading frames which showed similarities to the transfer genes from other conjugative systems. The R27 transfer genes appear to most closely resemble the genes from the F plasmid and Sphingomonas aromaticivorans plasmid pNL1, both within the individual genes and in the overall gene order. The Tra2 region is also distinct in that replication, partitioning, and stability genes are found in the middle of the transfer region. The R27 Tra2 region also contains a gene, trhF, which appears to be related to the TraF genes of Agrobacterium and Rhizobium species. This, along with the temperature-sensitive transfer system found in both H plasmids and Agrobacterium, leads to the speculation that the R27 transfer region evolved from both ancestral F-like and P-like plasmids.  相似文献   

20.
The F-pilus has been implicated in recipient cell recognition during the establishment of a stable mating pair before conjugation as well as forming part of the conjugative pore for DNA transfer. The F-pilus is the site of attachment of the filamentous phages (M13, f1 and fd), which attach to the F-pilus tip, and the RNA phages, R17 and Qbeta, which attach to different sites exposed on the sides of the pilus. R17 has been shown to undergo eclipse, or capsid release, outside the cell on pili attached to cells. New and existing mutants of traA combined with natural variants of F-pilin were assayed for pilin stability and processing, pilus elongation, transfer, phage sensitivity and R17 eclipse. Phenotypes of these mutants indicated that the F-pilin subunit contains specific regions that can be associated with pilus assembly, phage sensitivity and DNA transport. Mutations involving lysines and phenylalanines within residues 45-60 suggest that these residues might participate in transmitting a signal down the length of the pilus that initiates DNA transfer or R17 eclipse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号