首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
We have characterized the biochemical activities of purified polyoma (Py) large T antigen (T Ag) that was capable of mediating the replication of a plasmid containing the Py origin (ori(+) DNA) in mouse cell extracts. We report here that like the T Ag encoded by simian virus 40 (SV40), Py T Ag has DNA helicase and double-stranded DNA fragment unwinding activities. Py T Ag displaced DNA fragments greater than 1,600 nucleotides which were annealed to complementary sequences in single-stranded M13 by translocating in the 3' to 5' direction. Both helicase and double-stranded DNA fragment unwinding reactions were completely dependent upon NTP hydrolysis, displaying a strong preference for ATP and dATP. At low T Ag concentrations, significantly more Py ori(+) DNA fragment was unwound compared with a fragment lacking the replication origin. However, at higher ratios of Py T Ag to DNA, equivalent to those used in replication reactions, unwinding of both ori-containing and -lacking fragments was equally efficient. This is in contrast to SV40 T Ag which exhibited a more stringent requirement for SV40 origin sequences under similar conditions. Furthermore, some of the nucleotides that supported the helicase and unwinding activities of Py T Ag were different from those for the same SV40 T Ag reactions. We have also observed that in contrast to the very poor replication of linear SV40 ori(+) DNA by SV40 T Ag in human cell extracts, linear Py ori(+) DNA was replicated efficiently in mouse cell extracts by Py T Ag. However, despite the fact that linear Py ori(+), SV40 ori(+), and ori(-) DNA fragments could be unwound with comparable efficiency by Py T Ag, only fragments containing the Py replication origin were replicated in vitro. These results suggest that the initiation of DNA synthesis at the Py origin of replication requires features in addition to unwinding of the template.  相似文献   

3.
The E1 helicase of papillomaviruses is required for replication of the viral double-stranded DNA genome, in conjunction with cellular factors. DNA replication is initiated at the viral origin by the assembly of E1 monomers into oligomeric complexes that have unwinding activity. In vivo, this process is catalyzed by the viral E2 protein, which recruits E1 specifically at the origin. For bovine papillomavirus (BPV) E1 a minimal DNA-binding domain (DBD) has been identified N-terminal to the enzymatic domain. In this study, we characterized the DBD of human papillomavirus 11 (HPV11), HPV18, and BPV E1 using a quantitative DNA binding assay based on fluorescence anisotropy. We found that the HPV11 DBD binds DNA with an affinity and sequence requirement comparable to those of the analogous domain of BPV but that the HPV18 DBD has a higher affinity for nonspecific DNA. By comparing the DNA-binding properties of a dimerization-defective protein to those of the wild type, we provide evidence that dimerization of the HPV11 DBD occurs only on two appropriately positioned E1 binding-sites and contributes approximately a 10-fold increase in binding affinity. In contrast, the HPV11 E1 helicase purified as preformed hexamers binds DNA with little sequence specificity, similarly to a dimerization-defective DBD. Finally, we show that the amino acid substitution that prevents dimerization reduces the ability of a longer E1 protein to bind to the origin in vitro and to support transient HPV DNA replication in vivo, but has little effect on its ATPase activity or ability to oligomerize into hexamers. These results are discussed in light of a model of the assembly of replication-competent double hexameric E1 complexes at the origin.  相似文献   

4.
Human papillomavirus (HPV) DNA replication requires the viral origin recognition protein E2 and the presumptive viral replicative helicase E1. We now report for the first time efficient DNA unwinding by a purified HPV E1 protein. Unwinding depends on a supercoiled DNA substrate, topoisomerase I, single-stranded-DNA-binding protein, and ATP, but not an origin. Electron microscopy revealed completely unwound molecules. Intermediates contained two single-stranded loops emanating from a single protein complex, suggesting a bidirectional E1 helicase which translocated the flanking DNA in an inward direction. We showed that E2 protein partially inhibited DNA unwinding and that Hsp70 or Hsp40, which we reported previously to stimulate HPV-11 E1 binding to the origin and promote dihexameric E1 formation, apparently displaced E2 and abolished inhibition. Neither E2 nor chaperone proteins were detected in unwinding complexes. These results suggest that chaperones play important roles in the assembly and activation of a replicative helicase in higher eukaryotes. An E1 mutation in the ATP binding site caused deficient binding and unwinding of origin DNA, indicating the importance of ATP binding in efficient helicase assembly on the origin.  相似文献   

5.
Polyomavirus (Py) large T antigen (T Ag) contains two clusters of phosphorylation sites within the amino-terminal half of the protein. To characterize possible regulatory effects of phosphorylation on viral DNA replication, Py T Ag was treated with calf intestinal alkaline phosphatase (CIAP). Incubation of the protein with a range of phosphatase concentrations caused progressive loss of phosphate without affecting its stability. Treatment with smaller quantities of CIAP stimulated the ability of the viral protein to mediate replication of constructs containing the viral replication origin, while higher concentrations of CIAP caused a marked diminution of this replication function. Several biochemical activities of Py T Ag were examined after CIAP treatment. Py T Ag DNA unwinding and nonspecific DNA binding were only slightly affected by dephosphorylation. However, as determined by DNase I footprinting experiments, treatment with smaller amounts of CIAP stimulated specific binding to the Py replication origin by Py T Ag, while treatment with larger amounts of CIAP caused marked inhibition of origin-specific binding by the viral protein. Phosphotryptic maps of Py T Ag before or after treatment with CIAP revealed changes in individual phosphopeptides that were uniquely associated with either the stimulation or the inhibition of replication. Our data therefore suggest that Py T Ag is regulated by both repressing and activating phosphates.  相似文献   

6.
The precursor terminal protein pTP is the primer for the initiation of adenovirus (Ad) DNA replication and forms a heterodimer with Ad DNA polymerase (pol). Pol can couple dCTP to pTP directed by the fourth nucleotide of the viral genome template strand in the absence of other replication proteins, which suggests that pTP/pol binding destabilizes the origin or stabilizes an unwound state. We analyzed the contribution of pTP to pTP/pol origin binding using various DNA oligonucleotides. We show that two pTP molecules bind cooperatively to short DNA duplexes, while longer DNA fragments are bound by single pTP molecules as well. Cooperative binding to short duplexes is DNA sequence independent and most likely mediated by protein/protein contacts. Furthermore, we observed that pTP binds single-stranded (ss)DNA with a minimal length of approximately 35 nt and that random ssDNA competed 25-fold more efficiently than random duplex DNA for origin binding by pTP. Remarkably, short DNA fragments with two opposing single strands supported monomeric pTP binding. pTP did not stimulate, but inhibited strand displacement by the Ad DNA binding and unwinding protein DBP. These observations suggest a mechanism in which the ssDNA affinity of pTP stabilizes Ad pol on partially unwound origin DNA.  相似文献   

7.
The replication initiator protein RepA of the IncB plasmid pMU720 was shown to induce localized unwinding of its cognate origin of replication in vitro. DnaA, the initiator protein of Escherichia coli, was unable to induce localized unwinding of this origin of replication on its own but enhanced the opening generated by RepA. The opened region lies immediately downstream of the last of the three binding sites for RepA (RepA boxes) and covers one turn of DNA helix. A 6-mer sequence, 5'-TCTTAA-3', which lies within the opened region, was essential for the localized unwinding of the origin in vitro and origin activity in vivo. In addition, efficient unwinding of the origin of replication of pMU720 in vitro required the native positioning of the binding sites for the initiator proteins. Interestingly, binding of RepA to RepA box 1, which is essential for origin activity, was not required for the localized opening of the origin in vitro.  相似文献   

8.
Study of the proteins involved in DNA replication of a model system such as SV40 is a first step in understanding eukaryotic chromosomal replication. Using a cell-free system that is capable of replicating plasmid DNA molecules containing the SV40 origin of replication, we conducted a series of systematic fractionation-reconstitution experiments for the purpose of identifying and characterizing the cellular proteins involved in SV40 DNA replication. In addition to the one viral-encoded replication protein, T antigen, we have identified and begun to characterize at least six cellular components from a HeLa cytoplasmic extract that are absolutely required for SV40 DNA replication in vitro. These include: (i) two partially purified fractions, CF IC and CF IIA, and (ii) four proteins that have been purified to near homogeneity, replication protein-A, proliferating cell nuclear antigen, DNA polymerase alpha-primase complex, and topoisomerase (I and II). Replication protein-A is a multi-subunit protein that has single-stranded DNA binding activity and is required for a T antigen-dependent, origin-dependent unwinding reaction which may be an important early step in initiation of replication. Fraction CF IC can stimulate this unwinding reaction, suggesting that it also may function during initiation. Proliferating cell nuclear antigen, DNA polymerase alpha-primase, and CF IIA all appear to be involved in elongation of nascent chains.  相似文献   

9.
The complete simian virus 40 (SV40) origin of DNA replication (ori) consists of a required core sequence flanked by two auxiliary sequences that together increase the rate of DNA replication in monkey cells about 25-fold. Using an extract of SV40-infected monkey cells that reproduced the effects of ori-auxiliary sequences on DNA replication, we examined the ability of ori-auxiliary sequences to facilitate binding of replication factors and to promote DNA unwinding. Although the replicationally active form of T antigen in these extracts had a strong affinity for ori-core, it had only a weak but specific affinity for ori-auxiliary sequences. Deletion of ori-auxiliary sequences reduced the affinity of ori-core for active T antigen by only 1.6-fold, consistent with the fact that saturating concentrations of T antigen in the cell extract did not reduce the stimulatory role of ori-auxiliary sequences in replication. In contrast, deletion of ori-auxiliary sequences reduced the efficiency of ori-specific, T-antigen-dependent DNA unwinding in cell extracts at least 15-fold. With only purified T antigen in the presence of topoisomerase I to unwind purified DNA, ori-auxiliary sequences strongly facilitated T-antigen-dependent DNA conformational changes consistent with melting the first 50 base pairs. Under these conditions, ori-auxiliary sequences had little effect on the binding of T antigen to DNA. Therefore, a primary role of ori-auxiliary sequences in DNA replication is to facilitate T-antigen-dependent DNA unwinding after the T-antigen preinitiation complex is bound to ori-core.  相似文献   

10.
Mouse cell extracts support vigorous replication of polyomavirus (Py) DNA in vitro, while human cell extracts do not. However, the addition of purified mouse DNA polymerase alpha-primase to human cell extracts renders them permissive for Py DNA replication, suggesting that mouse polymerase alpha-primase determines the species specificity of Py DNA replication. We set out to identify the subunit of mouse polymerase alpha-primase that mediates this species specificity. To this end, we cloned and expressed cDNAs encoding all four subunits of mouse and human polymerase alpha-primase. Purified recombinant mouse polymerase alpha-primase and a hybrid DNA polymerase alpha-primase complex composed of human subunits p180 and p68 and mouse subunits p58 and p48 supported Py DNA replication in human cell extracts depleted of polymerase alpha-primase, suggesting that the primase heterodimer or one of its subunits controls host specificity. To determine whether both mouse primase subunits were required, recombinant hybrid polymerase alpha-primases containing only one mouse primase subunit, p48 or p58, together with three human subunits, were assayed for Py replication activity. Only the hybrid containing mouse p48 efficiently replicated Py DNA in depleted human cell extracts. Moreover, in a purified initiation assay containing Py T antigen, replication protein A (RP-A) and topoisomerase I, only the hybrid polymerase alpha-primase containing the mouse p48 subunit initiated primer synthesis on Py origin DNA. Together, these results indicate that the p48 subunit is primarily responsible for the species specificity of Py DNA replication in vitro. Specific physical association of Py T antigen with purified recombinant DNA polymerase alpha-primase, mouse DNA primase heterodimer, and mouse p48 suggested that direct interactions between Py T antigen and primase could play a role in species-specific initiation of Py replication.  相似文献   

11.
Replication of damaged DNA in vitro is blocked by p53   总被引:1,自引:0,他引:1  
Zhou J  Prives C 《Nucleic acids research》2003,31(14):3881-3892
  相似文献   

12.
H Li  S Bhattacharyya    C Prives 《Journal of virology》1997,71(9):6479-6485
The amino-terminal portion of polyomavirus (Py) large T antigen (T Ag) contains two phosphorylation sites, at T187 and T278, which are potential substrates for cyclin-dependent kinases (CDKs). Our experiments were designed to test whether either or both of these sites are involved in the origin DNA (ori DNA) replication function of Py T Ag. Mutations were generated in Py T Ag whereby either or both threonines were replaced with alanine, generating T187A, T278A, and double-mutants (DM [T187A T278A]) mutant T Ags. We found that the Py ori DNA replication functions of T278A and DM, but not T187A, mutant T Ags were abolished both in vivo and in vitro. Consistent with this finding, it was shown that the ori DNA binding and unwinding activities of mutant T278A Py T Ag were greatly impaired. Moreover, whereas wild-type Py T Ag is an efficient substrate for phosphorylation by cyclin A-CDK2 and cyclin B-cdc2 complexes, it is phosphorylated poorly by a cyclin E-CDK2 complex. In contrast to mutant T187A, which behaved similarly to the wild-type protein, T278A was only weakly phosphorylated by cyclin B-cdc2. These data thus suggest that T278 is an important site on Py T Ag for phosphorylation by CDKs and that loss of this site leads to its various defects in mediating ori DNA replication. S- and G2-phase-specific CDKs, but not a G1-specific CDK, can phosphorylate wild-type T Ag, which suggests yet another reason why DNA tumor viruses require actively cycling host cells.  相似文献   

13.
The DNA helicase activity associated with purified simian virus 40 (SV40) large tumor (T) antigen has been examined. A variety of DNA substrates were used to characterize this ATP-dependent activity. Linear single-stranded M13 DNA containing short duplex regions at both ends was used to show that SV40 T antigen helicase displaced the short, annealed fragment by unwinding in a 3' to 5' direction. Three different partial duplex structures consisting of 71-, 343-, and 851-nucleotide long fragments annealed to M13 single-stranded circular DNA were used to show that SV40 T antigen can readily unwind short and long duplex regions with almost equal facility. ATP and MgCl2 were required for this reaction. With the exception of GTP, dGTP, and CTP, the other common nucleoside triphosphates substituted for ATP with varied efficiency, while adenosine 5'-O-(thiotriphosphate) was inactive. The T antigen helicase activity was also examined using completely duplex DNA fragments (approximately 300 base pairs) with or without the SV40 origin sequence as substrates. In reactions containing small amounts (0.6 ng) of DNA, the ATP-dependent unwinding of duplex DNA fragments occurred with no dependence on the origin sequence. This reaction was stimulated 5- to 6-fold by the addition of the Escherichia coli single-stranded DNA-binding protein. When competitor DNA was added so that the ratio of SV40 T antigen to DNA was reduced 1000-fold, only DNA fragments containing a functional SV40 origin of replication were unwound. This reaction was dependent on ATP, MgCl2, and a DNA-binding protein, and was stimulated by inorganic phosphate or creatine phosphate. The origin sequence requirements for the unwinding reaction were the same as those for replication (the 64-base pair sequence present at T antigen binding site 2). Thus, under specified conditions, only duplex DNA fragments containing an intact SV40 core origin were unwound. In contrast, unwinding of partially duplex segments of DNA flanked by single-stranded regions can occur with no sequence specificity.  相似文献   

14.
The plus-strand replication origin of bacteriophage fl has a bipartite structure consisting of a required core origin region and an adjacent A + T-rich enhancer sequence that potentiates replication approximately 100-fold. The core origin binds the initiator protein (gpII) and the enhancer binds the Escherichia coli integration host factor (IHF). gpII binds the core origin in two steps, forming a binding intermediate (complex I) and a functional complex for nicking (complex II). We have used a double-label gel binding assay to determine the stoichiometry of the gpII-origin interaction. The results indicate that complex I contains two gpII molecules per origin, and complex II contains four gpII molecules per origin. Enhancer-independent mutations in gpII allow wild-type levels of replication in the absence of either the enhancer or IHF. We have examined the binding of an enhancer-independent gpII mutant (mp1) protein to the replication origin. The mp1 mutation in gpII (Met40----Ile) increases the co-operativity with which the protein binds to form complex II. In addition, the mutant gpII forms both complexes with a DNA fragment containing only two (beta-gamma) of the three repeats from the core origin sequence, while the wild-type protein forms only complex I with this fragment. We discuss how a mutation that increases the co-operativity of binding of an initiator protein might stimulate DNA replication.  相似文献   

15.
A mutant simian virus 40 (SV40) large tumor (T) antigen bearing alanine instead of threonine at residue 124 (T124A) failed to replicate SV40 DNA in infected monkey cells (J. Schneider and E. Fanning, J. Virol. 62:1598-1605, 1988). We investigated the biochemical properties of T124A T antigen in greater detail by using purified protein from a baculovirus expression system. Purified T124A is defective in SV40 DNA replication in vitro, but does bind specifically to the viral origin under the conditions normally used for DNA replication. The mutant protein forms double-hexamer complexes at the origin in an ATP-dependent fashion, although the binding reaction requires somewhat higher protein concentrations than the wild-type protein. Binding of T124A protein results in local distortion of the origin DNA similar to that observed with the wild-type protein. These findings indicate that the replication defect of T124A protein is not due to failure to recognize and occupy the origin. Under some conditions T124A is capable of unwinding short origin DNA fragments. However, the mutant protein is almost completely defective in unwinding of circular plasmid DNA molecules containing the SV40 origin. Since the helicase activity of T124A is essentially identical to that of the wild-type protein, we conclude that the mutant is defective in the initial opening of the duplex at the origin, possibly as a result of altered hexamer-hexamer interactions. The phenotype of T124A suggests a possible role for phosphorylation of threonine 124 by cyclin-dependent kinases in controlling the origin unwinding activity of T antigen in infected cells.  相似文献   

16.
Murine cells or cell extracts support the replication of plasmids containing the replication origin (ori-DNA) of polyomavirus (Py) but not that of simian virus 40 (SV40), whereas human cells or cell extracts support the replication of SV40 ori-DNA but not that of Py ori-DNA. It was shown previously that fractions containing DNA polymerase alpha/primase from permissive cells allow viral ori-DNA replication to proceed in extracts of nonpermissive cells. To extend these observations, the binding of Py T antigen to both the permissive and nonpermissive DNA polymerase alpha/primase was examined. Py T antigen was retained by a murine DNA polymerase alpha/primase but not by a human DNA polymerase alpha/primase affinity column. Likewise, a Py T antigen affinity column retained DNA polymerase alpha/primase activity from murine cells but not from human cells. The murine fraction which bound to the Py T antigen column was able to stimulate Py ori-DNA replication in the nonpermissive extract. However, the DNA polymerase alpha/primase activity in this murine fraction constituted only a relatively small proportion (approximately 20 to 40%) of the total murine DNA polymerase alpha/primase that had been applied to the column. The DNA polymerase alpha/primase purified from the nonbound murine fraction, although far more replete in this activity, was incapable of supporting Py DNA replication. The two forms of murine DNA polymerase alpha/primase also differed in their interactions with Py T antigen. Our data thus demonstrate that there are two distinct populations of DNA polymerase alpha/primase in murine cells and that species-specific interactions between T antigen and DNA polymerases can be identified. They may also provide the basis for initiating a novel means of characterizing unique subpopulations of DNA polymerase alpha/primase.  相似文献   

17.
We show here that the DNA helicase activity of the parvoviral initiator protein NS1 is highly directional, binding to the single strand at a recessed 5' end and displacing the other strand while progressing in a 3'-to-5' direction on the bound strand. NS1 and a cellular site-specific DNA binding factor, PIF, also known as glucocorticoid modulating element binding protein, bind to the left-end minimal replication origin of minute virus of mice, forming a ternary complex. In this complex, NS1 is activated to nick one DNA strand, becoming covalently attached to the 5' end of the nick in the process and providing a 3' OH for priming DNA synthesis. In this situation, the helicase activity of NS1 did not displace the nicked strand, but the origin duplex was distorted by the NS1-PIF complex, as assayed by its sensitivity to KMnO(4) oxidation, and a stretch of about 14 nucleotides on both strands of the nicked origin underwent limited unwinding. Addition of Escherichia coli single-stranded DNA binding protein (SSB) did not lead to further unwinding. However, addition of recombinant human single-stranded DNA binding protein (RPA) to the initiation reaction catalyzed extensive unwinding of the nicked origin, suggesting that RPA may be required to form a functional replication fork. Accordingly, the unwinding mediated by NS1 and RPA promoted processive leading-strand synthesis catalyzed by recombinant human DNA polymerase delta, PCNA, and RFC, using the minimal left-end origin cloned in a plasmid as a template. The requirement for RPA, rather than SSB, in the unwinding reaction indicated that specific NS1-RPA protein interactions were formed. NS1 was tested by enzyme-linked immunosorbent assay for binding to two- or three-subunit RPA complexes expressed from recombinant baculoviruses. NS1 efficiently bound each of the baculovirus-expressed complexes, indicating that the small subunit of RPA is not involved in specific NS1 binding. No NS1 interactions were observed with E. coli SSB or other proteins included as controls.  相似文献   

18.
According to earlier genetic experiments, a region within the N-terminal 50-100 amino acids may be important for the replication function of T antigen, the initiator protein of simian virus 40 (SV40). We have investigated this possibility using the T antigen related D2 protein in several biochemical assay systems. D2 protein, a phosphoprotein coded for by the adeno-SV40 hybrid virus Ad2+D2, shares its 594 C-terminal amino acids with authentic T antigen and its 104 N-terminal amino acids with an adenovirus structural protein. We confirmed earlier studies showing that D2 protein appeared to bind well to specific binding sites in the SV40 origin of replication. We found, however, that D2 protein was rather inefficient, inducing the unwinding of the double-stranded origin region, and was much less active than authentic T antigen as an initiator of in vitro SV40 DNA replication. We interpret these findings to indicate that D2 protein molecules associate with the origin to form an aberrant complex that is quite inefficient, inducing DNA unwinding and the establishment of replication forks. The possibility that the N-terminus may be required for an optimal arrangement of T antigen at the origin was supported by results of dephosphorylation studies. Dephosphorylation of N-terminal phosphoamino acids had significant effects on the stability of D2 protein-origin complexes.  相似文献   

19.
Enhancer factor 1A (EF-1A) is a mammalian nuclear protein that previously was shown to bind cooperatively to the repeated core enhancer element I sequence in the adenovirus E1A enhancer region. We now have characterized three binding sites for EF-1A in the polyomavirus A2 (Py) enhancer region. Site 1 resides in the Py A enhancer domain, and sites 2 and 3 reside in the Py B enhancer domain. EF-1A binding to Py site 1 is independent of cooperation with other EF-1A sites or the adjacent binding sites for PEA-1 and PEA-2, two murine nuclear factors that bind in the Py A enhancer domain. EF-1A binding to Py sites 2 and 3, in contrast, is cooperative, similar to the situation previously observed with binding sites in the adenovirus E1A enhancer region. In a transient replication assay, EF-1A site 1 functions synergistically with the PEA-1 and PEA-2 sites in the A enhancer domain to enhance Py replication. The functional cooperativity observed with the EF-1A, PEA-1, and PEA-2 sites in vivo does not reflect cooperative DNA binding interactions, as detected in vitro. Py EF-1A site 1 alone is capable of weakly stimulating Py replication. EF-1A site 1 overlaps with the binding sites for the murine nuclear protein PEA-3 and the ets family of oncoproteins.  相似文献   

20.
Cellular factors required for papillomavirus DNA replication.   总被引:8,自引:5,他引:3       下载免费PDF全文
T Melendy  J Sedman    A Stenlund 《Journal of virology》1995,69(12):7857-7867
In vitro replication of papillomavirus DNA has been carried out with a combination of purified proteins and partially purified extracts made from human cells. DNA synthesis requires the viral E1 protein and the papillomavirus origin of replication. The E2 protein stimulates DNA synthesis in a binding site-independent manner. Papillomavirus DNA replication is also dependent on the cellular factors replication protein A, replication factor C, and proliferating-cell nuclear antigen as well as a phosphocellulose column fraction (IIA). Fraction IIA contains DNA polymerase alpha-primase and DNA polymerase delta. Both of these polymerases are essential for papillomavirus DNA replication in vitro. However, unlike the case with T-antigen-dependent replication from the simian virus 40 origin, purified DNA polymerase alpha-primase and delta cannot efficiently replace fraction IIA in the replication reaction. Hence, additional cellular factors seem to be required for papillomavirus DNA replication. Interestingly, replication factor C and proliferating-cell nuclear antigen are more stringently required for DNA synthesis in the papillomavirus system than in the simian virus 40 in vitro system. These distinctions indicate that there must be mechanistic differences between the DNA replication systems of papillomavirus and simian virus 40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号