首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Oxidative modifications of LDL are involved in atherogenesis. Previously we have developed a simple assay to evaluate the susceptibility of lipids to copper-induced peroxidation in the relatively natural milieu of unfractionated serum in the presence of excess citrate. Based on our previous results we have proposed that the inducer of peroxidation in our optimized assay is a copper-citrate complex. Recent investigations indicate that under certain conditions a copper-albumin complex may induce peroxidation of ascorbate. Two different complexes may be formed in albumin-containing systems (e.g. serum) namely 1:1 and 2:1 copper-albumin complexes. The aim of the present work was to evaluate the possibility that at least one of these complexes may be responsible for the induction of peroxidation of lipids in lipidic systems containing copper and albumin, including our optimized assay. Towards this end, we have investigated the dependence of copper-induced peroxidation on the concentration of added albumin in lipidic systems in the absence and presence of citrate. In all the systems investigated in this study (PLPC liposomes, LDL, HDL and mixtures of HDL and LDL) we found that at low concentrations of free copper (e.g. in the presence of excess citrate) the 2:1 copper-albumin complex is redox-active and that this complex is the major contributor to the initiation of lipid peroxidation in these systems and in our optimized assay. The possible relevance of the induction of peroxidation in vivo by the latter complex has yet to be studied. <footnote id="fn1"><no>*</no>This work was performed in partial fulfillment of the requirements for a Ph.D. degree of Dorit Samocha-Bonet, Sackler Faculty of Medicine, Tel-Aviv University, Israel. </footnote>  相似文献   

2.
In an attempt to gain deeper understanding of the mechanism or mechanisms responsible for the protective effect of serum albumin against Cu2+-induced peroxidation of low density lipoprotein (LDL), we have examined the influence of the concentrations of bovine serum albumin (BSA), Cu2+ and LDL on the kinetics of peroxidation. Since the common method of monitoring the oxidation by continuous recording of the absorbance of conjugated dienes at 234 nm cannot be used at high BSA-concentrations because of the intensive absorption of BSA, we have monitored the time-dependent increase of absorbance at 245 nm. At this wavelength, conjugated dienes absorb intensely, whereas the background absorbance of BSA is low. Using this method, as well as the TBARS assay for determination of malondialdehyde, over a large range of BSA concentrations, we show that in many cases the influence of BSA on the kinetics of oxidation can be compensated for by increasing the concentration of copper. This reconciles the apparent contradiction between previously published data. Detailed studies of the kinetic profiles obtained under different conditions indicate that binding of Cu2+ to albumin plays the major role in its protective effect while other mechanisms contribute much less than copper binding. This conclusion is consistent with the less pronounced effect of BSA on the oxidation induced by the free radical generator AAPH. It is also shown that the copper-albumin complex is capable of inducing LDL oxidation, although the kinetics of the latter process is very different from that of copper-induced oxidation. Nevertheless, when compared to copper induced oxidation at similar concentration of the oxidation-promotor, the kinetics of oxidation induced by copper-albumin complex is very different and is consistent with a tocopherol mediated peroxidation, characteristic under low radical flux. Similar kinetics was observed for copper-induced oxidation only at much lower copper concentrations.  相似文献   

3.
Comparison of the kinetic profiles of copper-induced peroxidation of HDL and LDL at different copper concentrations reveals that under all the studied experimental conditions HDL is more susceptible to oxidation than LDL. The mechanism responsible for HDL oxidation is a complex function of the copper/HDL ratio and of the tocopherol content of the HDL. At high copper concentrations, the kinetic profiles were similar to those observed for LDL oxidation, namely, relatively rapid accumulation of oxidation products, via an autoaccelerated, noninhibited mechanism, was preceded by an initial "lag phase." Under these conditions, the maximal peroxidation rate (V(max)) of HDL and LDL depended similarly on the molar ratio of bound copper/lipoprotein. Analysis of this dependency in terms of the binding characteristics of copper to lipoprotein, yielded similar dissociation constant (K = 10(-6) M) but different maximal binding capacities for the two lipoproteins (8 Cu(+2)/HDL as compared to 17 Cu(+2)/LDL). Given the size difference between HDL and LDL, these results imply that the maximal surface density of bound copper is at least 2-fold higher for HDL than for LDL. This difference may be responsible for the higher susceptibility of HDL to copper-induced oxidation in the presence of high copper concentrations. At relatively low copper concentrations, the kinetic profile of HDL oxidation was biphasic, similar to but more pronounced than the biphasic kinetics observed for the oxidation of LDL lipids at the same concentration of copper. Our results are consistent with the hypothesis that the first phase of rapid oxidation occurs via a tocopherol-mediated-peroxidation (TMP) mechanism. Accordingly, enrichment of HDL with tocopherol resulted in enhanced accumulation of hydroperoxides during the first phase of copper-induced oxidation. Notably, the maximal accumulation during the first phase decreased upon increasing the ratio of bound copper/HDL. This behavior can be predicted theoretically for peroxidation via a TMP mechanism, in opposition to autoaccelerated peroxidation. The possible pathophysiological significance of these findings is discussed.  相似文献   

4.
In view of the proposed central role of LDL oxidation in atherogenesis and the established role of HDL in reducing the risk of atherosclerosis, several studies were undertaken to investigate the possible effect of HDL on LDL peroxidation. Since these investigations yielded contradictory results, we have conducted systematic kinetic studies on the oxidation in mixtures of HDL and LDL induced by different concentrations of copper, 2, 2'-azo bis (2-amidinopropane) hydrochloride (AAPH) and myeloperoxidase (MPO). These studies revealed that oxidation of LDL induced either by AAPH or MPO is inhibited by HDL under all the studied conditions, whereas copper-induced oxidation of LDL is inhibited by HDL at low copper/lipoprotein ratio but accelerated by HDL at high copper/lipoprotein ratio. The antioxidative effects of HDL are only partially due to HDL-associated enzymes, as indicated by the finding that reconstituted HDL, containing no such enzymes, inhibits peroxidation induced by low copper concentration. Reduction of the binding of copper to LDL by competitive binding to the HDL also contributes to the antioxidative effect of HDL. The acceleration of copper-induced oxidation of LDL by HDL may be attributed to the hydroperoxides formed in the "more oxidizable" HDL, which migrate to the "less oxidizable" LDL and enhance the oxidation of the LDL lipids induced by bound copper. This hypothesis is supported by the results of experiments in which native LDL was added to oxidizing lipoprotein at different time points. When the native LDL was added prior to decomposition of the hydroperoxides in the oxidizing lipoprotein, the lag preceding oxidation of the LDL was much shorter than the lag observed when the native LDL was added at latter stages, after the level of hydroperoxides became reduced due to their copper-catalyzed decomposition. The observed dependence of the interrelationship between the oxidation of HDL and LDL on the oxidative stress should be considered in future investigations regarding the oxidation of lipoprotein mixtures.  相似文献   

5.
Copper tolerance among Arabidopsis ecotypes is inversely correlated with long-term K(+) leakage and positively correlated with short-term K(+) leakage (A. Murphy, L. Taiz [1997] New Phytol 136: 211-222). To probe the mechanism of the early phase of K(+) efflux, we tested various channel blockers on copper and peroxide-induced K(+) efflux from seedling roots. The K(+) channel blockers tetraethyl ammonium chloride and 4-aminopyridine (4-AP) both inhibited short-term copper-induced K(+) efflux. In contrast, peroxide-induced K(+) efflux was insensitive to both tetraethyl ammonium chloride and 4-AP. Copper-induced lipid peroxidation exhibited a lag time of 4 h, while peroxide-induced lipid peroxidation began immediately. These results suggest that short-term copper-induced K(+) efflux is mediated by channels, while peroxide-induced K(+) efflux represents leakage through nonspecific lesions in the lipid bilayer. Tracer studies with (86)Rb(+) confirmed that copper promotes K(+) efflux rather than inhibiting K(+) uptake. Short-term K(+) release is electroneutral, since electrophysiological measurements indicated that copper does not cause membrane depolarization. Short-term K(+) efflux was accompanied by citrate release, and copper increased total citrate levels. Since citrate efflux was blocked by 4-AP, K(+) appears to serve as a counterion during copper-induced citrate efflux. As copper but not aluminum selectively induces citrate production and release, it is proposed that copper may inhibit a cytosolic form of aconitase.  相似文献   

6.
The oxidative modification of low-density lipoprotein (LDL) is suggested to play an important role in the pathogenesis of atherosclerosis. The present study examined the role of the formation of LDL-copper (Cu) complex in the peroxidation of LDL. The amount of copper bound to LDL increased during incubation performed with increasing concentrations of CuSO4. More than 80% of the copper bound to the LDL particle was observed in the protein phase of LDL, suggesting that most of the copper ions formed complexes with the ligand-binding sites of apoprotein. The addition of histidine (1 mM), known to form a high affinity complex with copper, and EDTA (1 mM), a metal chelator, during the incubation of LDL with CuSO4 prevented the formation of both thiobarbituric acid-reactive substances (TBARS) and LDL-Cu complexes. EDTA inhibited the copper-catalyzed ascorbate oxidation whereas histidine had no effect, suggesting that the copper within the complex with histidine is available to catalyze the reaction, in contrast to EDTA. These observations indicate that the preventive effect of histidine on the copper-catalyzed peroxidation of LDL is not simply mediated by chelating free copper ions in aqueous phase. Evidence that copper bound to LDL particle still has a redox potential was provided by the observed increase in TBARS content during incubation of LDL-Cu complexes in the absence of free copper ions. The addition of either histidine or EDTA to LDL-Cu complexes inhibited the formation of TBARS by removing copper ions from the LDL forming the corresponding complexes. However, there still remained small amounts of copper in the LDL particles following the treatment of LDL-Cu complexes with histidine or EDTA. The copper ions remaining in the LDL particle lacked the ability to catalyze LDL peroxidation, suggesting that there may be two types of copper binding sites in LDL: tight-binding sites, from which the copper ions are not removed by chelation, and weak-binding sites, from which copper ions are easily removed by chelators. The formation of TBARS in the LDL preparation during incubation with CuSO4 was comparable to the incubation with FeSO4. In contrast, the formation of TBARS in the LDL-lipid micelles by CuSO4 was nearly eliminated even in the presence of ascorbate to promote metal-catalyzed lipid peroxidation, although a marked increase in TBARS content was observed in the LDL-lipid micelles with FeSO4, and with FeCl3 in the presence of ascorbate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Recently, an unusual compound named habenariol was isolated from the freshwater orchid, Habenaria repens. Its phenolic structure suggested that habenariol should have substantial antioxidant activity. This possibility was investigated by evaluating the capacity of habenariol to inhibit copper-induced lipid peroxidation of human low density lipoprotein (LDL), a popular experimental model. LDL was incubated with 5 μM cupric chloride in the presence and absence of habenariol or a positive control, viz., α-tocopherol. Both kinetic and end-point spectrophotometric assays were used to determine extent of lipid peroxidation of LDL. In the kinetic assay, the time elapsing before the onset of rapid formation of conjugated lipid hydroperoxides in LDL (marked by a sharp increase in UV absorbance) was prolonged by habenariol, indicative of an antioxidant effect. In the end-point assay, direct colorimetric measurement confirmed habenariol's ability to inhibit formation of lipid hydroperoxides. However, in both assays, habenariol was less potent than α-tocopherol in inhibiting lipid peroxidation of LDL.  相似文献   

8.
《Free radical research》2013,47(4):239-246
We analyse LDL oxidation in vitro in the presence of copper (II) ions and differentiate a lag phase and a rapid peroxidation phase. We demonstrate that a physiological concentration of albumin does not alter the kinetics of the dienes in the oxidizing LDL but reduces the fluorescence of the oxidizing LDL and alters the biological properties of oxidized LDL. We find in rats after intravenous administration of oxidized LDL, that it is rapidly cleared from the circulating blood. The presence of albumin during the peroxidation phase, however, reduces the fraction of oxidized LDL with rapid blood clearance. We propose that some lipid peroxidation products formed in oxidizing LDL are hydrophilic enough to diffuse into the aqueous buffer from where they react either with the s-amino-groups of apolipoprotein B or albumin. Effective scavengers for these hydrophilic endproducts of the LDL oxidation pathways such as albumin might reduce modification of the LDL and might be useful to reduce its atherogenicity.  相似文献   

9.
The mechanism of copper uptake by cells has been the subject of controversy for some time. This paper examines the possibility of a role for albumin in the uptake of copper by fibroblasts. Although the cells could accumulate copper from a copper-albumin complex, there was no evidence for either copper-albumin or albumin receptors on the cell surface. The possibility of a surface exchange mechanism for copper was examined. While copper uptake showed saturation with increasing concentrations of labelled copper-albumin, adding unlabelled copper to the incubation medium did not inhibit uptake. Adding albumin or histidine to the copper-albumin complex resulted in an inhibition of copper uptake. The results can only be explained by the cell taking up free copper from the incubation medium, with the albumin then releasing its copper to maintain the equilibrium between free and bound metal. Since, in vivo there is essentially no free copper in serum, it is concluded that albumin is most unlikely to play a role in the uptake of copper by fibroblasts.  相似文献   

10.
Urate and ascorbate are the major water-soluble low molecular weight antioxidants in serum. Much attention has been devoted to the effect of these antioxidants on lipoprotein peroxidation in vivo and on their effect on copper-induced peroxidation ex vivo. These studies revealed that urate inhibits ascorbate oxidation in vitro, whereas the effect of ascorbate on urate oxidation has not been systematically studied thus far. The present study addresses mechanistic aspects of the kinetics of copper-induced oxidation of both these antioxidants and their mutual effects in aqueous solutions. We found that: (i) ascorbate becomes oxidized much faster than urate. (ii) Urate inhibits the oxidation of ascorbate but, even in the presence of excess urate, ascorbate becomes oxidized much faster than urate. (iii) Ascorbate, as well as the products of its oxidation (and/or hydrolysis) inhibit the copper-induced oxidation of urate. All these results are consistent with the hypothesis that the rate of ascorbate oxidation is determined by the rate of reoxidation of reduced copper (Cu(I)) to Cu(II) by molecular oxygen, whereas the rate of urate oxidation is governed by the rate of oxidation of urate within a 2:1 urate/copper complex. We think that the mutual effects of urate and ascorbate on each other's oxidation are likely to enhance their inhibitory effect on lipid peroxidation in biologically relevant systems including membranes and lipoproteins.  相似文献   

11.
AimThe aims of this study were to investigate whether purified PON1 can reduce the pro-inflammatory effect of oxidized phospholipids and whether the effect depended on its association with HDL.Main methodsLipid peroxidation was induced by copper ions and was measured using the conjugated diene method. Lysophosphatidylcholine (lyso-PC) formation was measured by HPLC with evaporative light scattering detection (ELSD) and ICAM-1 expression on Ea.hy926 endothelial cells was analyzed by flow cytometry.Key findingsPurified PON1 significantly inhibited copper-induced oxidation of LDL and HDL, causing a 60.5% and 77.7% decrease in conjugated diene formation, respectively. Incubating PON1 with oxLDL caused a significant increase in lyso-PC levels, while oxHDL caused a significant decrease. PON1 (12.5 to 50 μg/mL) had a pro-inflammatory effect in the presence of oxLDL, increasing ICAM-1 levels in Ea.hy926 cells by 33.0% and 40.6% (p < 0.001) respectively, and had an anti-inflammatory effect in the presence of oxHDL, causing a 3-fold reduction in ICAM-1 levels. PON1 also caused a significant decrease in TNFα? and purified lyso-PC-induced ICAM-1 expression. The results obtained with reconstituted HDL as well as LCAT and PAF-AH inhibitors suggested that the anti-inflammatory effect of PON1 against oxidized lipids is dependent on its association with HDL.SignificanceOur results clearly showed that PON1 is involved in the anti-inflammatory effect of HDL and that the effect appears to depend on its association with HDL.  相似文献   

12.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

13.
The oxidative modification of LDL may play an important role in the early events of atherogenesis. Thus the identification of antioxidative compounds may be of therapeutic and prophylactic importance regarding cardiovascular disease. Copper-chlorophyllin (Cu-CHL), a Cu2+-protoporphyrin IX complex, has been reported to inhibit lipid oxidation in biological membranes and liposomes. Hemin (Fe3+-protoporphyrin IX) has been shown to bind to LDL thereby inducing lipid peroxidation. As Cu-CHL has a similar structure as hemin, one may assume that Cu-CHL may compete with the hemin action on LDL. Therefore, in the present study Cu-CHL and the related compound magnesium-chlorophyllin (Mg-CHL) were examined in their ability to inhibit LDL oxidation initiated by hemin and other LDL oxidizing systems. LDL oxidation by hemin in presence of H2O2 was strongly inhibited by both CHLs. Both chlorophyllins were also capable of effectively inhibiting LDL oxidation initiated by transition metal ions (Cu2+), human umbilical vein endothelial cells (HUVEC) and tyrosyl radicals generated by myeloperoxidase (MPO) in presence of H2O2 and tyrosine. Cu- and Mg-CHL showed radical scavenging ability as demonstrated by the diphenylpicrylhydracylradical (DPPH)-radical assay and estimation of phenoxyl radical generated diphenyl (dityrosine) formation. As assessed by ultracentrifugation the chlorophyllins were found to bind to LDL (and HDL) in serum. The present study shows that copper chlorophyllin (Cu-CHL) and its magnesium analog could act as potent antagonists of atherogenic LDL modification induced by various oxidative stimuli. As inhibitory effects of the CHLs were found at concentrations as low as 1 μmol/l, which can be achieved in humans, the results may be physiologically/therapeutically relevant.  相似文献   

14.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

15.
Plasma concentrations of free fatty acids are increased in metabolic syndrome, and the increased fatty acids may cause cellular damage via the induction of oxidative stress. The present study was designed to determine whether the increase in fatty acids can modify the free sulfhydryl group in position 34 of albumin (Cys34) and enhance the redox-cycling activity of the copper-albumin complex in high-fat diet-induced obese mice. The mice were fed with commercial normal diet or high-fat diet and water ad libitum for 3 months. The high-fat diet-fed mice developed obesity, hyperlipemia, and hyperglycemia. The plasma fatty acid/albumin ratio also significantly increased in high-fat diet-fed mice. The increased fatty acid/albumin ratio was associated with conformational changes in albumin and the oxidation of sulfhydryl groups. Moreover, an ascorbic acid radical, an index of redox-cycling activity of the copper-albumin complex, was detected only in the plasma from obese mice, whereas the plasma concentrations of ascorbic acid were not altered. Plasma thiobarbituric acid reactive substances were significantly increased in the high-fat diet group. These results indicate that the increased plasma fatty acids in the high-fat diet group resulted in the activated redox cycling of the copper-albumin complex and excessive lipid peroxidation.  相似文献   

16.
In order to explore the observed association among mercury, atherosclerosis, and coronary heart disease, the effects of mercury, copper, and iron on the peroxidation of low-density lipoprotein (LDL) and on the enzymatic activities of glutathione peroxidase and myeloperoxidase were investigated in vitro. On the basis of our nuclear magnetic resonance (NMR) experiments, we conclude that mercury does not promote the direct nonenzymatic peroxidation of LDL, like copper and iron. In our enzyme measurements, mercury inhibited slightly myeloperoxidase, although not significantly in presence of LDL. Instead, inorganic mercury, but not methylmercury chloride, inhibited glutathione peroxidase effectively and copper event at 10 μmol/L, below physiological concentrations, doubled the inhibition rate. Copper and iron had no direct effect on glutathione peroxidase, but they both seem to activate production of HOCl by myeloperoxidase. We conclude here that, first, mercury and methylmercury do not promote direct lipid peroxidation, but that, second, a simultaneous exposure to high inorganic mercury, copper, and iron and low selenium concentrations can lead to a condition in which mercury promotes lipid peroxidations. This mechanism provides a plausible molecular-level explanation for the observed association between high body mercury content and atherosclerosis.  相似文献   

17.
There is relatively little information on the role of high density lipoprotein (HDL) oxidation in atherogenesis although there are indications that oxidation might affect atheroprotective activities of HDL. Recently we reported the study on LDL oxidation initiated and sustained by traces of the transition metal ions under conditions, which favor slow oxidation. Here we report the results of the analogous study on the oxidation of the two HDL subclasses. The oxidation process was monitored by measuring the time dependence of oxygen consumption and concentration of the spin-trapped free radicals using EPR spectroscopy. In both HDL2 and HDL3 subclasses, the dependence of the oxidation process on the copper/lipoprotein molar ratio is different from that in LDL dispersions. Comparison of the kinetic profiles of HDL2 and HDL3 oxidation revealed that under all studied experimental conditions HDL2 was more susceptible to copper-induced oxidation than HDL3.  相似文献   

18.
4-Mercaptoimidazoles derived from the naturally occurring family of antioxidants, the ovothiols, were assayed for their antioxidant properties. These compounds are powerful HOCI scavengers, more potent than the aliphatic thiol N-acetylcysteine. They react slowly with hydrogen peroxide with second order rate constants of 0.13-0.89 M-1 s-1. Scavenging of hydroxyl radical occurs at a diffusion-controlled rate (k = 2.0-5.0 × 1010 M-1 s-1) for the most active compounds, which are also able to inhibit copper-induced LDL peroxidation. The combination of radical scavenging and copper chelating properties may explain the inhibitory effects on LDL peroxidation. Two molecules of mercaptoimidazole can chelate a copper ion and form a square planar complex detected by EPR. Compounds bearing an electron-withdrawing group on position 2 of the imidazole ring are the most potent antioxidant molecules in this series.  相似文献   

19.
We analyse LDL oxidation in vitro in the presence of copper (II) ions and differentiate a lag phase and a rapid peroxidation phase. We demonstrate that a physiological concentration of albumin does not alter the kinetics of the dienes in the oxidizing LDL but reduces the fluorescence of the oxidizing LDL and alters the biological properties of oxidized LDL. We find in rats after intravenous administration of oxidized LDL, that it is rapidly cleared from the circulating blood. The presence of albumin during the peroxidation phase, however, reduces the fraction of oxidized LDL with rapid blood clearance. We propose that some lipid peroxidation products formed in oxidizing LDL are hydrophilic enough to diffuse into the aqueous buffer from where they react either with the s-amino-groups of apolipoprotein B or albumin. Effective scavengers for these hydrophilic endproducts of the LDL oxidation pathways such as albumin might reduce modification of the LDL and might be useful to reduce its atherogenicity.  相似文献   

20.
The effect of plasma components on the particle size distribution and chemical composition of human plasma low-density lipoproteins (LDL) during interaction with discoidal complexes of human apolipoprotein A-I and phosphatidylcholine (PC) was investigated. Incubation (37 degrees C, 1 h and 6 h) of LDL with discoidal complexes in the presence of the plasma ultracentrifugal d greater than 1.20 g/ml fraction (activity of lecithin-cholesterol acyltransferase inhibited) produces an increase in LDL apparent particle diameter two-to six-fold greater than that observed in the absence of the plasma d greater than 1.20 g/ml fraction. In incubation mixtures of LDL and discoidal complexes, both in the presence and absence of the plasma d greater than 1.20 g/ml fraction, the extent of LDL apparent particle diameter increase is: (1) approximately three-fold greater at 6 h than at 1 h, and (2) markedly greater for LDL with initially small (22.4-24.0 nm) major components than for LDL with initially large (26.2-26.8 nm) major components. The facilitation factor in the plasma d greater than 1.20 g/ml fraction is not plasma phospholipid transfer protein. Purified human serum albumin produces an apparent particle diameter increase comparable to the plasma d greater than 1.20 g/ml fraction. The discoidal complex-induced increase in LDL apparent particle diameter value by albumin is associated with an increase in phospholipid uptake by LDL and a decreased loss of LDL unesterified cholesterol. In preliminary experiments, high-density lipoproteins (HDL) reverse the apparent particle diameter increase originally induced by discoidal complexes. The presence of HDL (HDL phospholipid/LDL phospholipid molar ratio of 10:1) in the incubation (6 h) mixture of LDL and discoidal complexes also attenuates LDL apparent particle diameter increase. In vivo, the plasma LDL/HDL ratio may be a controlling factor in determining the extent to which phospholipid uptake and the associated change in LDL particle size distribution occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号