首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C Lacombe  B Lubochinsky 《Biochimie》1977,59(11-12):877-884
Phospholipid analysis of the membranes associated with fast sedimenting folded chromosomes prepared by lysis of E. coli CR 34 shows that both inner and outer membranes are parts of the complex, in proportions not very different from that found in the whole bacteria. During the preparation of the folded chromosomes, the most recently synthesized molecules of phosphatidylglycerol and phosphatidylethanoamine are more sensitive to solubilisation, particularly those from the cytoplasmic membrane. Identification of a dominant fraction, the outer membrane, in some complexes, results from a preferential solubilization of the inner membrane. These results do not favor any specific association between the folded chromosome and the membranes.  相似文献   

2.
The in vitro trimerization of folded monomers of the bacterial pore protein PhoE, into its native-like, heat- and SDS-stable form requires incubations with isolated cell envelopes and Triton X-100. The possibility that membranes could be isolated that are enriched in assembly factors required for assembly of the pore protein was now investigated. Fractionation of total cell envelopes of Escherichia coli via various techniques indeed revealed the existence of membrane fractions with different capacities to support assembly in vitro. Fractions containing mainly inner membrane vesicles supported the formation of trimers that were associated with these membrane vesicles. However, only a proportion of these trimers were heat- and SDS-stable and these were formed with slow kinetics. In contrast, fractions containing mainly outer membrane vesicles supported formation of high amounts of heat-stable trimers with fast kinetics. We identified phospholipids as active assembly components in these membranes that support trimerization of folded monomers in a process with similar characteristics as observed with inner membrane vesicles. Furthermore, phospholipids strongly stimulate the kinetics of trimerization and increase the final yield of heat-stable trimers in the context of outer membranes. We propose that lipopolysaccharides stabilize the assembly competent state of folded monomers as a lipochaperone. Phospholipids are involved in converting the folded monomer into new assembly competent intermediate with a short half-life that will form heat-stable trimers most efficiently in the context of outer membrane vesicles. These results provide biochemical evidence for the involvement of different lipidic components at distinct stages of the porin assembly process.  相似文献   

3.
Lipid rafts are microdomains present in the membrane of eukaryotic organisms and bacterial pathogens. They are characterized by having tightly packed lipids and a subset of specific proteins. Lipid rafts are associated with a variety of important biological processes including signaling and lateral sorting of proteins. To determine whether lipid rafts exist in the inner membrane of Borrelia burgdorferi, we separated the inner and outer membranes and analyzed the lipid constituents present in each membrane fraction. We found that both the inner and outer membranes have cholesterol and cholesterol glycolipids. Fluorescence anisotropy and FRET showed that lipids from both membranes can form rafts but have different abilities to do so. The analysis of the biochemically defined proteome of lipid rafts from the inner membrane revealed a diverse set of proteins, different from those associated with the outer membrane, with functions in protein trafficking, chemotaxis and signaling.  相似文献   

4.
Eggs of the turtle Trionyx spiniferus are rigid, calcareous spheres averaging 2.5 cm in diameter. The eggshell is morphologically very similar to avian eggshells. The outer crystalline layer is composed of roughly columnar aggregates, or shell units, of calcium carbonate in the aragonite form. Each shell unit tapers to a somewhat conical tip at its base. Interior to the crystalline layer are two tertiary egg membranes: the outer shell membrane and the inner shell membrane. The outer shell membrane is firmly attached to the inner surface of the shell, and the two membranes are in contact except at the air cell, where the inner shell membrane separates from the outer shell membrane. Both membranes are multi-layered, with the inner shell membrane exhibiting a more fibrous structure than the outer shell membrane. Numerous pores are found in the eggshell, and these generally occur at the intersection of four or more shell units.  相似文献   

5.
Raymond Portalier  A. Worcel 《Cell》1976,8(2):245-255
Gentle lysis of E. coli cells in the presence of a DNA counterion (either 1.0 M NaCl or 5 mM spermidine) permits the isolation of the folded intact bacterial chromosome associated with membrane fragments. Most of the proteins in these chromosomes are also found in purified membrane preparations, and they can be identified as belonging to either the inner or the outer bacterial membrane.Ultraviolet irradiation of the membrane-attached chromosomes causes the formation of a stable complex between two inner membrane proteins (molecular weight 80,000 and 56,000 daltons) and 5-bromodeoxyuridine (BrdU)-substituted DNA. The photochemical attachment of BrdU-substituted DNA to specific membrane proteins suggests that these proteins may be bound to the DNA in vivo. Such DNA-membrane-binding proteins may have a role in the attachment of the folded chromosome to the bacterial envelope.  相似文献   

6.
Summary Rat liver mitochondria were fractionated into inner and outer membrane components at various times after the intravenous injection of14C-leucine or14C-glycerol. The time curves of protein and lecithin labeling were similar in the intact mitochondria, the outer membrane fraction, and the inner membrane fraction. In rat liver slices also, the kinetics of3H-phenylalanine incorporation into mitochondrial KCl-insoluble proteins was identical to that of14C-glycerol incorporation into mitochondrial lecithin. These results suggest a simultaneous assembly of protein and lecithin during membrane biogenesisThe proteins and lecithin of the outer membrane were maximally labeledin vivo within 5 min after injection of the radioactive precursors, whereas the insoluble proteins and lecithin of the inner membrane reached a maximum specific acitivity 10 min after injection.Phospholipid incorporation into mitochondria of rat liver slices was not affected when protein synthesis was blocked by cycloheximide, puromycin, or actinomycin D. The injection of cycloheximide 3 to 30 min prior to14C-choline did not affect thein vivo incorporation of lecithin into the mitochondrial inner or outer membranes; however treatment with the drug for 60 min prior to14C-choline resulted in a decrease in lecithin labeling. These results suggest that phospholipid incorporation into membranes may be regulated by the amount of newly synthesized protein available.When mitochondria and microsomes containing labeled phospholipids were incubated with the opposite unlabeled fractionin vitro, a rapid exchange of phospholipid between the microsomes and the outer membrane occurred. A slight exchange with the inner membrane was observed.  相似文献   

7.
The phospholipid content of mitochondrial membranes from slices of potato tuber (Solanum tuberosum) remains stable during aging. The phospholipid compositions of whole mitochondria and inner membranes do not vary during aging whereas the concentrations of phosphatidylinositol and phosphatidyl-glycerol in outer membranes are slightly amplified. The saturation of outer membrane fatty acids is slightly increased during aging. Gel electrophoresis of mitochondrial membrane proteins show slight variations of one polypeptide in outer membranes and of three polypeptides in inner membranes. These results suggest parallel variations of lipids and proteins in membranes during aging, in marked contrast with the large modifications observed in mitochondrial activities.  相似文献   

8.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both pro-mitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

9.
Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It is unknown, however, whether MINOS plays a role in the biogenesis of outer membrane proteins. We have dissected the interaction of MINOS with TOM and SAM and report that MINOS binds to both translocases independently. MINOS binds to the SAM complex via the conserved polypeptide transport–associated domain of Sam50. Mitochondria lacking mitofilin, the large core subunit of MINOS, are impaired in the biogenesis of β-barrel proteins of the outer membrane, whereas mutant mitochondria lacking any of the other five MINOS subunits import β-barrel proteins in a manner similar to wild-type mitochondria. We show that mitofilin is required at an early stage of β-barrel biogenesis that includes the initial translocation through the TOM complex. We conclude that MINOS interacts with TOM and SAM independently and that the core subunit mitofilin is involved in biogenesis of outer membrane β-barrel proteins.  相似文献   

10.
The two unit membranes which envelope the endosymbiont of the trypanosomatid protozoon, Blastocrithidia culicis, were studied using the freeze-fracture technique. The distribution of the intramembranous particles on both fracture faces of the inner and outer membrane of the endosymbiont was analyzed in the replicas. The protoplasmic face of the inner membrane (PFi) had a higher density of membrane particles than that observed on the extracellular face (EFi), a pattern typical of plasma membranes. The extracellular face of the outer membrane (EFo) presented a density of membrane particles much higher than that observed on the P face of the outer membrane (PFo) a distribution significantly different from that found in the inner membrane of the endosymbiont and in the plasma membrane of the protozoon, but similar to that observed in Gram-negative bacteria. The data obtained support the idea that the endosymbiont of trypanosomatids represents a Gram-negative bacterium-like microorganism enveloped by two unit membranes and lacking a peptidoglycan layer and which lives in direct contact with the cytoplasm of the protozoon.  相似文献   

11.
Cytoplasmic membrane vesicles prepared by lysis of Escherichia coli W 3110 spheroplasts in a French press at 0° C are heterogeneous with respect to density due to membrane protein aggregation as a result of lateral phase separation of membrane phospholipids and to the presence of more or less outer membrane. These different vesicle classes can be separated on isopycnic density gradients. Assays for various membrane-associated functions show that the membranes differ not only with respect to density and structure but also with respect to function.The proline transport system (as detected by uptake experiments with the artificial electron donor ascorbate-phenazine methosulfate) shows maximal activities in membrane fractions that have considerably higher densities than the normal cytoplasmic membrane. This is always the case, whether vesicles are isolated from membranes that exhibit a temperature-induced protein aggregation or not. A correlation between high proline transport activity and the presence of vesicles with double membranes (consisting of outer and inner membrane) has been established. The possibility that the outer membrane protects the transport system in the cytoplasmic membrane during the isolation of vesicles is discussed.  相似文献   

12.

Background  

In spite of their abundance and importance, little is known about cyanobacterial cell biology and their cell cycle. During each cell cycle, chromosomes must be separated into future daughter cells, i.e. into both cell halves, which in many bacteria is achieved by an active machinery that operates during DNA replication. Many cyanobacteria contain multiple identical copies of the chromosome, but it is unknown how chromosomes are segregated into future daughter cells, and if an active or passive mechanism is operative. In addition to an outer and an inner cell membrane, cyanobacteria contain internal thylakoid membranes that carry the active photosynthetic machinery. It is unclear whether thylakoid membranes are invaginations of the inner cell membrane, or an independent membrane system.  相似文献   

13.
大鼠心肌线粒体内、外膜磷脂动态结构的研究   总被引:4,自引:2,他引:2  
我们以DPH为荧光探针.用毫微秒荧光分光光度计测定了大鼠心肌线粒体及线粒体内、外膜的动态微细结构;用HPLC分析了磷脂组成.实验结果提示.完整线粒体膜流动性主要反映了线粒体外膜的运动状态.线粒体内膜微粘度及磷脂分子摇动角大于外膜,扩散速率小于外膜.除去了蛋白质的线粒体内、外膜磷脂脂质体膜流动性无明显差异.提示线粒体内膜的高微粘度与膜中所含有的多量蛋白有关.  相似文献   

14.
The fractionation of mitochondrial membranes on discontinuous sucrose gradient leads to the obtaining of free outer membranes, free inner membranes and two distinct membrane contact site populations characterized as follows. Only outer membrane contact sites and inner membrane contact sites bind hexokinase. Outer membranes and outer membrane contact sites are cholesterol-rich fractions. The endogenous dolichol content is twice fold higher in outer membranes and outer membrane contact sites than in inner membranes and inner membrane contact sites, only the biosynthesis of dolichol in inner membrane contact sites is not stimulated by addition of exogenous [14C]-IPP and FPP. The glycosylation of endogenous dolichol from labeled nucleotide-sugars (UDP-GlcNAc, GDP-Man and UDP-Glc) leads to the synthesis of dolichol-pyrophosphoryl-sugars and dolichol-monophosphoryl-sugars with the rate of synthesis proportional to the dolichol content of each submitochondrial fraction.  相似文献   

15.
Cyanelles of glaucocystophytes may be the most primitive of the known plastids based on their peptidoglycan content and the sequence phylogeny of cyanelle DNA. In this study, EM observations have been made to characterize the cyanelle division of Cyanophora paradoxa Korshikov and to gain insights into the evolution of plastid division. Constriction of cyanelles involves ingrowth of the septum at the cleavage site with the inner envelope membrane invaginating at the leading edge and the outer envelope membrane invaginating behind the septum. This means the inner and outer envelope membranes do not constrict simultaneously as they do in plastid division in other plants. The septum and the cyanelle envelope became stained after a silver‐methenamine staining was applied for in situ detection of polysaccharides. Septum formation was inhibited by β‐lactams and vancomycin, which are potent inhibitors of bacterial peptidoglycan biosynthesis. These results suggest the presence of peptidoglycan at the septum and the cyanelle envelope. In dividing cyanelles, a single electron‐dense ring (cyanelle ring) was observed on the stromal face of the inner envelope membrane at the isthmus, but no ring‐like structures were detected on the outer envelope membrane. Thus a single, stromal cyanelle ring such as this is quite unique and also distinct from FtsZ rings, which are not detectable by TEM. These features suggest that the cyanelle division of glaucocystophytes represents an intermediate stage between cyanobacterial and plastid division. If monophyly of all plastids is true, the cyanelle ring and the homologous inner plastid dividing ring might have evolved earlier than the outer plastid dividing ring.  相似文献   

16.
Summary Freeze-fracture electron microscopy of ultrarapidly frozen intact pea chloroplasts has been used to characterize the supramolecular architecture of their outer and inner envelope membranes, to follow changes in these membranes caused by experimental treatments, and to identify the composition of purified envelope membrane subfractions. Examination of intact chloroplasts revealed that the two membranes exhibit dramatically different densities of intramembrane particles, with the inner membrane particle density approximately fourfold that of the outer. Analysis of purified envelope membrane subfractions indicates that the low bouyant density fraction (1.08 g/cm3) corresponds to the outer envelope membrane, whereas the relatively higher bouyant density fraction (1.13 g/cm3) is predominantly inner membrane. From qualitative and quantitative morphological data we conclude that the outer membrane subfraction is pure whereas the inner membrane subfraction is significantly contaminated by outer membrane. These results confirm conclusions reached from biochemical analysis of these membranes.During the course of the studies on intact chloroplasts, sites were observed where the outer and inner envelope membranes appear to adhere to each other (contact sites). Some of the contact sites observed on intact chloroplasts survived the envelope purification procedures as evidenced by their presence on a small number of vesicles in inner membrane preparations. The practical significance of these putative contact sites is discussed.  相似文献   

17.
Bacterial lipoproteins comprise a subset of membrane proteins that are covalently modified with lipids at the amino-terminal Cys. Lipoproteins are involved in a wide variety of functions in bacterial envelopes. Escherichia coli has more than 90 species of lipoproteins, most of which are located on the periplasmic surface of the outer membrane, while others are located on that of the inner membrane. In order to elucidate the mechanisms by which outer-membrane-specific lipoproteins are sorted to the outer membrane, biochemical, molecular biological and crystallographic approaches have been taken. Localization of lipoproteins on the outer membrane was found to require a lipoprotein-specific sorting machinery, the Lol system, which is composed of five proteins (LolABCDE). The crystal structures of LolA and LolB, the periplasmic chaperone and outer-membrane receptor for lipoproteins, respectively, were determined. On the basis of the data, we discuss here the mechanism underlying lipoprotein transfer from the inner to the outer membrane through Lol proteins. We also discuss why inner membrane-specific lipoproteins remain on the inner membrane.  相似文献   

18.
In the previous paper (Block, M. A., Dorne, A.-J., Joyard, J., and Douce, R. (1983) J. Biol. Chem. 258, 13273-13280), we have described a method for the separation of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. The two envelope membranes have a different weight ratio of acyl lipid to protein (2.5-3 for the outer envelope membrane and 0.8-1 for the inner envelope membrane). The two membranes also differ in their polar lipid composition. However, in order to prevent the functioning of the galactolipid:galactolipid galactosyltransferase during the course of envelope membrane separation, we have analyzed the polar lipid composition of each envelope membrane after thermolysin treatment of the intact chloroplasts. The outer envelope membrane is characterized by the presence of high amounts of phosphatidylcholine and digalactosyldiacylglycerol whereas the inner envelope membrane has a polar lipid composition almost identical with that of the thykaloids. No phosphatidylethanolamine or cardiolipin could be detected in either envelope membranes, thus demonstrating that the envelope membranes, and especially the outer membrane, do not resemble extrachloroplastic membranes. No striking differences were found in the fatty acid composition of the polar lipids from either the outer or the inner envelope membrane. The two envelope membranes also differ in their carotenoid composition. Among the different enzymatic activities associated with the chloroplast envelope, we have shown that the Mg2+-dependent ATPase, the UDP-Gal:diacylglycerol galactosyltransferase, the phosphatidic acid phosphatase, and the acyl-CoA thioesterase are associated with the inner envelope from spinach chloroplasts whereas the acyl-CoA synthetase is located on the outer envelope membrane.  相似文献   

19.
Analysis of inner and outer pea (Pisum sativum var. Laxtons Progress No. 9) chloroplast envelope membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that, although the two membranes have distinct polypeptide compositions, there are several comigrating polypeptides in the two membrane fractions. To determine whether these comigrating polypeptides were identical by criteria other than molecular weight, the membrane proteins were analyzed by two-dimensional gel electrophoresis. The results demonstrated that an 86-kilodalton band found in both membranes represents at least two different polypeptides, one an outer membrane protein and the other an inner membrane protein. Several other polypeptide bands found in both membranes appear to be of stromal origin. Two of these polypeptides were shown to be the large and small subunits of ribulose 1,5-bisphosphate carboxylase. The large subunit was identified by two-dimensional electrophoresis of envelope membranes to which stromal proteins were added. Additionally, the large and small subunits of ribulose 1,5-bisphosphate carboxylase were immunologically identified using an electrophoretic transfer procedure coupled with an enzyme-linked immunosorbent assay. Various treatments, including sonication, resulted in no significant loss of the stromal polypeptides from the outer envelope membranes. Based on these results, it is suggested that the stromal proteins are not simply bound to the outer surface of the vesicles.  相似文献   

20.
To determine whether certain outer membrane proteins are associated with growth of Bacteroides thetaiotaomicron on polysaccharides, we developed a procedure for separating outer membranes from inner membranes by sucrose density centrifugation. Cell extracts in 10% (wt/vol) sucrose-10 mM HEPES buffer (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) (pH 7.4) were separated into two fractions on a two-step (37 and 70% [wt/vol]) sucrose gradient. These fractions were further resolved into outer membranes (p = 1.21 g/cm3) and inner membranes (p = 1.14 g/cm3) on sucrose gradients. About 20 to 26% of the total 3-hydroxy fatty acids from lipopolysaccharide and 2 to 3% of the total cellular succinate dehydrogenase activity were recovered in the outer membrane preparation. The inner membrane preparation contained 22 to 49% of the total succinate dehydrogenase activity and 2 to 3% of the total 3-hydroxy fatty acids from lipopolysaccharide. Outer membranes contained a lower concentration of protein (0.34 mg/mg [dry weight]) than did the inner membranes (0.68 mg/mg [dry weight]). Molecular weights of inner membrane polypeptides ranged from 11,000 to 133,000. The most prominent polypeptides had molecular weights ranging from 11,000 to 26,000. In contrast, the molecular weights of outer membrane polypeptides ranged from 17,000 to 117,000. The most prominent polypeptides had molecular weights ranging from 42,000 to 117,000. There were several polypeptides in the outer membranes of bacteria grown on polysaccharides (chondroitin sulfate, arabinogalactan, or polygalacturonic acid) which were not detected or were not as prominent in outer membranes of bacteria grown on monosaccharide components of these polysaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号