首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using lymphocytes of 5 healthy individuals the ability to adaptive response (AR), cell composition of population after PHA stimulation, changes in cell composition population after irradiation in the dose of 1.0 Gy and after irradiation in adaptive (0.05 Gy) and challenge (1.0 Gy) doses have been studied. AR observed in 2 of the 5 individuals only. After PHA stimulation the persons with AR have the total amount of cells after mitosis or during mitosis (the number of binucleated cells + the number of multinucleated cells + the whole cells with micronuclei + the number of mitotic cells) on average is higher than in persons without AR. In individuals with AR the linear correlation between the number of binucleated cells with micronuclei (on the 1000 scored binucleated cells) and the part of binucleated cells in the population is observed with coefficients of correlation -0.89 and -0.91. In the humans without AR this correlation is absent. The correlation observed permits to suppose that AR may occur at the expense of not only the decrease in number of damaged lymphocytes, but also the increase in the share of not damaged binucleated cell with the stable number of damaged cells.  相似文献   

2.
On human blood lymphoxytes with micronuclei (MN) assay and cytokinetic cytochalasin block and analysis of chromosome aberrations the change of cell population composition, adaptive response (AR) and phenomenon of enhanced radiosensitivity after low dose (5 cGy) and challenge doses (1.0 Gy) have been studied. Irradiation have been carried out in G1 and G2 phases of cell cycle (24 h and 48 h after PHA stimulation). Fixation of cells have been conducted after 50 h (2 h after demecolcin adding) and 72 h (24 h after cytochalasin adding) chromosome and MN assay. Evaluation criteria were the frequency of binucleated cells with MN on 1000 binucleated cells and the frequency of cells with chromatid aberration on 100 metaphases. It was shown that cell population constitution change, AR occurring depended on the individual peculiarity. The evaluation of AR presence by the indexes of bimucleated cells with MN frequency and cells with chromatid aberrations don't coincide (coincidence is observed in 3 cases from 15). It is supposed that in G2 phase after irradiation in challenge dose the MN assay and metaphase analysis can register different cells (24 h and 2 h after mitotic block). The cell population constitution change can probably influence on the AR evaluation but in isn't the AR mechanism. The main mechanism of AR forming * the protection from the damages by different ways. AR depends on many factors, individual peculiarities observes by the use of definite evaluation criteria, in individuals with definite genetic constitution. Perhaps these considerations permit to discuss the problem of AR universality.  相似文献   

3.
The spontaneous level of blood lymphocytes with micronuclei (MN), the sensitivity to 1.0 Gy irradiation and adaptive response (AR) after adaptive irradiation with a dose of 0.05 Gy 5 hr later have been studied in children population living in different districts of Moscow. It was shown that spontaneous frequency of cells with MN, the sensitivity to 1.0 Gy acute irradiation and the AR manifestation have significant differences in samples taken from children living in different districts. The individual variability is significant also. In each group of children the individuals with the enhanced radiosensitivity after adaptive irradiation have been observed. In conformance with the data of radioecological inspection the radiation situation in different Moscow districts is quite safe on overage but in some districts the spontaneous level of lymphocytes with MN, and radiosensitivity after 0.05 Gy irradiation were enhanced, the AR was not found.  相似文献   

4.
The results of long-term investigations of the effectivity of low level irradiation (below 0.5 Gy) carried out on the cells in culture and blood human lymphocytes (adults and children) have been brought. In the experiments conducted in the laboratory conditions and in the contaminated with radionuclides regions (after Chernobyl accident) the genomic instability have been discovered. The cell manifestations of the genomic instability have been registered in the progeny of irradiated cells as the decreasing of proliferative activity, the increasing of the frequency of cells with micronuclei, the increasing of cells with sister chromatid exchanges, the late cell death, the absence of the adaptive response ability, the enhancement of the radiosensitivity. The results of the investigations of the adaptive response of blood lymphocytes have been presented. It was shown that in all populations investigated there are individuals without the adaptive response and the individuals with the enhancement of radiosensitivity after adaptive irradiation (0.05 Gy). On the basis of own results and the data of literature the possible mechanisms of low level irradiation effects are discussed. The conclusion is that: a. The population with new properties can be formed after low level irradiation; b. The effects and mechanisms of this effect realization can be different from that after irradiation with high doses.  相似文献   

5.
The role of changes in cell composition of population of human blood lymphocytes in the forming of an adaptive response (AR) has been studied. By micronuclei assay and cytokinetic block with cytohalasin B the frequency of mono-, bi- and multinuclear cells with micronuclei (MN) and without MN were determined in the initial population. The same parameters have been studied after exposure of the population to the adaptive (0.05 Gy), challenge (1.0 Gy) doses and to doses 0.05 + 1.0 Gy 5 hours after. 13 from 23 investigated individuals manifested the AR: the decreasing of the ratio of damaged binuclear cells to the all binuclear cells after the adaptive and challenge exposure. It was shown that the ways of an AR forming are different: in 7 of 13 individuals with AR the number of binuclear cells with MN did not decrease but the amount of binuclear undamaged cells increased. The ratio of these parameters enhances but not for the account of cells with MN decreasing. There is the linear correlation between the frequency of cells with MN and the frequency of binuclear cells in population (spontaneous, after irradiation with doses of 0.05, 1.0 and 0.05 + 1.0 Gy) with the coefficient of correlation about -1. These results show the presence of new mechanism of AR forming, which is not connect with the induction of damage repair and rather with the stimulation of cell division. In the another group of individuals the decrease in damaged cells number after irradiation with doses of 0.05 + 1.0 Gy have been observed. Probably the stimulation of repair system occurred to the moment of 1.0 Gy irradiation. Thus, the mechanism of an AR forming depends on the individual properties of organism. The work was suppoted by RFBR grant 03-04-48325a.  相似文献   

6.
Micronuclei in human lymphocytes irradiated in vitro or in vivo   总被引:1,自引:0,他引:1  
Venous blood from healthy donors or from patients with various lympho- and myeloproliferative diseases was incubated in vitro in the presence of cytochalasin B for the induction of binucleated lymphocytes. The time at which cytochalasin B was added depended on the proliferation rate of the lymphocytes. Proliferation was monitored using a semiautomatic microscope photometer/computer system. The background level of micronuclei in binucleated lymphocytes of the patients before radiotherapy was statistically indistinguishable from that of healthy persons. Blood from both groups was irradiated in vitro for the study of the dose-response relationship. The dose-response curves were very similar up to 3.75 Gy, and a somewhat lower micronucleus frequency was found in lymphocytes of patients after a 5-Gy exposure. These in vitro results were compared with in vivo exposure after total-body irradiation of leukemic patients. Due to heavy medication that accompanied radiation therapy, only two doses (1.25 and 2.5 Gy) could be checked after in vivo exposure. There was no statistically significant difference between in vitro and in vivo results after 1.25 Gy, but a slightly lower number of micronuclei was observed after in vivo exposure to 2.5 Gy.  相似文献   

7.
The paper summarizes the results of studies of 85 individuals exposed in the Southern Ural region. The spontaneous frequency of the cells with micronuclei (MN) in a population of human blood lymphocytes after PHA stimulation and cytokinetic block with cytochalasin B has been determined. The sensitivity of lymphocytes to the irradiation at the dose of 1.0 Gy and the adaptive response (AR) after the irradiation at the low adaptive dose of 0.05 Gy, and the challenge dose of 1.0 Gy 5 h later have been studied too. It was shown that the peculiarity of the Urals population consists in a higher individual variability of the frequency of cells with MN in all groups have been investigated (spontaneous, after acute irradiation in the dose 1.0 Gy) in comparison with Moscow people. The proportion of persons with a significant AR in the Urals groups was considerably lower than that identified among Moscow residents, and the number of persons with enhanced radiosensitivity increased following low-dose irradiation. We can suppose that prolonged action of low level radiation with another ecological factors, living in the contaminated regions result in the enhancement of the sensitivity to the genotoxic agents in the separate individuals.  相似文献   

8.
In offspring's of first generation irradiated inhabitants of Techa river (fathers, mothers and both parents) the spontaneous level of damaged blood lymphocytes, sensitivity of lymphocytes to the additional acute irradiation in dose 1.0 Gy and radioinduced adaptive response after adaptive (5 cGy) and challenge (1.0 Gy) irradiation 5 h after was studied. The micronuclei test with cytochalasin B as a criteria of the effect have been used. It was shown, that descendents of irradiated parents differ from the control group. The main difference is the significant decrease of the adaptive response frequency in the progeny. In the offspring's of the irradiated fathers and mothers there is no one individuals with the adaptive response; in the offspring's of both irradiated parents the frequency of individuals with adaptive response decreases in control from 19.5% to 6.8%. The distribution of descendents according to response on adaptive irradiation differ significantly from the control distribution and from the each other. And the tendency to the radiosensitivity increase after adaptive irradiation was observed. In the whole joint group of progeny the mean spontaneous cell frequency with micronuclei decreased, but the sensitivity of lymphocytes to the additional acute irradiation doesn't differ from the control. The results of the paper permit to suppose that transgenerational genome instability in human can be determined. Earlier discovered decrease of the adaptive response frequency in the Techa river livings is observed in the offspring's of irradiated fathers, mothers and both parents.  相似文献   

9.
To determine if radiofrequency (RF) radiation induces the formation of micronuclei, C3H 10T(1/2) cells were exposed to 835.62 MHz frequency division multiple access (FDMA) or 847.74 MHz code division multiple access (CDMA) modulated RF radiation. After the exposure to RF radiation, the micronucleus assay was performed by the cytokinesis block method using cytochalasin B treatment. The micronuclei appearing after mitosis were scored in binucleated cells using acridine orange staining. The frequency of micronuclei was scored both as the percentage of binucleated cells with micronuclei and as the number of micronuclei per 100 binucleated cells. Treatment of cells with cytochalasin B at a concentration of 2 microg/ml for 22 h was found to yield the maximum number of binucleated cells in C3H 10T(1/2) cells. The method used for the micronucleus assay in the present study detected a highly significant dose response for both indices of micronucleus production in the dose range of 0.1-1.2 Gy and it was sensitive enough to detect a significant (P > 0.05) increase in micronuclei after doses of 0.3 Gy in exponentially growing cells and after 0.9 Gy in plateau-phase cells. Exponentially growing cells or plateau-phase cells were exposed to CDMA (3.2 or 4.8 W/kg) or FDMA (3.2 or 5.1 W/kg) RF radiation for 3, 8, 16 or 24 h. In three repeat experiments, no exposure condition was found by analysis of variance to result in a significant increase relative to sham-exposed cells either in the percentage of binucleated cells with micronuclei or in the number of micronuclei per 100 binucleated cells. In this study, data from cells exposed to different RF signals at two SARs were compared to a common sham-exposed sample. We used the Dunnett's test, which is specifically designed for this purpose, and found no significant exposure-related differences for either plateau-phase cells or exponentially growing cells. Thus the results of this study are not consistent with the possibility that these RF radiations induce micronuclei.  相似文献   

10.
The variability of blood lymphocyte reaction on the adaptive irradiation (0.05 Gy at first, then 1.0 Gy 5 h later) was investigated by micronuclei assay. Blood samples were obtained from 700 children. It was shown that in all groups studied there were children with enhanced radiosensitivity ("radiosensitivity syndrome"-RS) after exposure to adaptive low dose of radiation. The radiosensitivity syndrome occurred more often in groups of ill children; part of them was characterized by the enhanced blood content of immunoglobulin E, enhanced level of T helpers and T suppressors. A high spontaneous level of lymphocytes with micronucleus is a factor of radiosensitivity formation. The possible factors resulted in radiosensitivity syndrome are discussed.  相似文献   

11.
The F1-progeny of BALB/c male mice chronically exposed to low-dose gamma-radiation (0.1; 0.25 and 0.5 Gy; dose rate 0.01 Gy/day) as well as the F1-progeny of females exposed to acute X-radiation (0.5; 1.0 and 2.0 Gy; dose rate 0.1 Gy/min) shown the significant elevated micronuclei frequencies in bone marrow erythrocytes, as compared to the F1-progeny of unirradiated males and females. The increase in the micronuclei frequency in the F1-progeny was determined by the dose of irradiation of parents. The values of elevated micronuclei frequency in the F1-progeny of chronically irradiated males and acutely irradiated females for a dose of 0.5 Gy were comparable. The micronuclei frequencies in the F1-progeny of irradiated females and males for this dose were in 1.5 and in 1.6 times higher than ones in the F1-progeny of unirradiated mice correspondingly. The results suggest the possibility of transfer of genome instability from irradiated parents to the somatic cells of the F1-progeny via non-lethally damaged germ cells of parents.  相似文献   

12.
Melanin’s influence on the chromosome aberration frequency induced by radiation in human lymphocytes and mouse bone marrow cells has been studied. We revealed earlier that melanin significantly decreases the frequencies of different radiation-induced mutations in animal germ cells. Melanin protection in somatic cells has been found to be less effective. The melanin effect in somatic cells depends on radiation dose: the lower the damage level, the better the melanin protection. In order to determine the influence of melanin at low radiation doses, the adaptive response was investigated in mouse bone marrow cells in vivo. The level of chromosome aberrations in these cells after fractionated irradiation of 0.2 Gy+1.5 Gy with a 4-h interval was about half that after a single dose of 1.7 Gy. If melanin was injected prior to irradiation, the aberration level decreased by a factor of about two in both cases. This observed result may be due to the potential radioprotective effect of melanin and to the absence of any adaptive response, whereas in the case of melanin application between the priming and challenge doses, the combined effect of the adaptive response as well as melanin protection resulted in a 4-fold decrease of chromosome aberrations. These results allow us to draw the following conclusions: adaptive response can be prevented by a radioprotector such as melanin, and melanin is capable of completely removing low-dose radiation effects. Received: 2 December 1998 / Accepted in revised form: 15 September 1999  相似文献   

13.
BackgroundPelvic organs morbidity after irradiation of cancer patients remains a major problem although new technologies have been developed and implemented. A relatively simple and suitable method for routine clinical practice is needed for preliminary assessment of normal tissue intrinsic radiosensitivity. The micronucleus test (MNT) determines the frequency of the radiation induced micronuclei (MN) in peripheral blood lymphocytes, which could serve as an indicator of intrinsic cell radiosensitivity.AimTo investigate a possible use of the micronucleus test (MNT) for acute radiation morbidity prediction in gynecological cancer patients.Materials and methodsForty gynecological cancer patients received 50 Gy conventional external pelvic irradiation after radical surgery. A four-field “box” technique was applied with 2D planning. The control group included 10 healthy females.Acute normal tissue reactions were graded according to NCI CTCAE v.3.0. From all reaction scores, the highest score named “summarized clinical radiosensitivity” was selected for a statistical analysis.MNT was performed before and after in vitro irradiation with 1.5 Gy. The mean radiation induced frequency of micronuclei per 1000 binucleated cells (MN/1000) and lymphocytes containing micronuclei per 1000 binucleated cells (cells with MN/1000) were evaluated for both patients and controls.An arbitrary cut off value was created to pick up a radiosensitive individual: the mean value of spontaneous frequency of cells with MN/1000 ± 2SD, found in the control group.ResultsBoth mean spontaneous frequency of cells with MN/1000 and MN/1000 were registered to be significantly higher in cancer patients compared to the control group (t = 2.46, p = 0.02 and t = 2.51, p = 0.02). No statistical difference was registered when comparing radiation induced MN frequencies between those groups.Eighty percent (32) of patients developed grade 2 summarized clinical radiosensitivity, with great variations in MNT parameters. Only three patients with grade 2 “summarized clinical radiosensitivity” had values of cells with MN/1000 above the chosen radiosensitivity threshold.ConclusionThe present study was not able to confirm in vitro MNT applicability for radiosensitivity prediction in pelvic irradiation.  相似文献   

14.
The cell composition of a population of human blood lymphocytes was studied after irradiation at doses of 5 cGy, 1.0 Gy and 5 cGy + 1.0 Gy and the use of a cytokinesis block. The frequencies of uni-, bi- and multinucleate lymphocytes with and without micronuclei (MN) were taken into account. By the standard criterion the frequency of binucleate lymphocytes with MN among binucleate lymphocytes--the donors were characterized as follows: in with reduction of radiosensitivity after irradiation with 5 cGy + 1.0 Gy as compared to the values of radiosensitivity after irradiation with 1.0 Gy only (an adaptive response, AR); in with no change of radiosensitivity after exposure to these doses (no AR); and with an increased ofradiosensitivity after exposure to these doses (syndrome of increased radiosensitivity, IRS). It was found that upon exposure to 1.0 Gy and 5 cGy + 1.0 Gy in some donors with AR, without AR and with IRS the total numbers of damaged cells in the population and the number of binucleate cells with MN were equal. This result calls in question the involvement of the repair mechanism in the alteration of radiosensitivity of lymphocytes in these donors. It was also observed that in the same donors a simultaneous increase (or a decrease in the case of IRS) of the portion of undamaged binucleate cells in the population took place. Our results demonstrate the existence of a new, populational, mechanism involved in the alteration of radiosensitivity after exposure to the adaptive and challenge doses.  相似文献   

15.
The genomic instability (GI) in somatic cells of the progeny (F1 generation) of male mice chronically exposed to low-dose gamma-radiation was studied by comparative analysis of chromosome damage. BALB/C male mice exposed to 0.1 Gy (0.01 Gy/day) and 0.5 Gy (0.01 and 0.05 Gy/day) were mated with unirradiated females 15 days after irradiation. For comparison of radiosensitivity, two-month-old males, the descendants of irradiated and unirradiated animals, were subjected to irradiation with a dose of 1.5 Gy (0.47 Gy/min) from a 60Co source. GI was revealed by the standard scheme of adaptive response. The experiments indicated that, by using the test "adaptive response", it is possible to detect the transition of gamma-radiation-induced genomic instability in sex cells of male parent into somatic cells of mice (F1 generation) either from changes in radiosensitivity or by the absence of the adaptive response induced by a standard scheme.  相似文献   

16.
The frequency of cells with chromosome aberrations and the number of aberrations per cell have been studied by metaphase analysis in the nonirradiated progeny of irradiated human blood lymphocytes. DNA fragmentation (DNA double-stranded breaks) has been investigated by DNA comet assay. To study the adaptive response (AR), PHA-stimulated lymphocytes were irradiated by the adaptive dose (0.05 Gy) in 24 h and by challenge dose (1 Gy) in 48 h after stimulation. The first through fourth mitoses were identified by 5-bromodeoxyuridine. It was found that the frequency of chromosome aberrations and double-strand breaks were increased in all mitotic cycles after the challenge irradiation. In most individuals, the adaptive response is induced by adaptive and challenge irradiations in the first and the second mitotic cycles (48 and 72 h after stimulation, respectively); however, it is absent in the third and the fourth mitoses. In the first mitosis (1Gy in 48 h after stimulation), only chromatid aberrations are observed; chromosome aberrations were registered in subsequent mitoses. DNA comet assay showed that the adaptive response was obvious at 48–72 h, but not 96 h, after stimulation. It can be concluded that the nonirradiated progeny of irradiated lymphocytes have genomic instability. The adaptive response is manifested up to the third mitosis and is explained by the decreasing number of chromatid and chromosome aberrations and DNA fragmentation. We suppose that double-stranded DNA breaks may be damage signals for the induction of adaptive response.  相似文献   

17.
In children living in an ecologically unfavorable area the quantitative content of bifidobacteria and enterococci appeared to be considerably decreased while the level of sulfate-reducing clostridia, on the contrary, elevated. The suppression of bifidoflora leads to decreased immune responsiveness that promotes different somatic diseases. Bronchitis, pneumonia, tonsillitis, pharyngitis, otitis, allergic diseases, diseases of digestive organs, acute respiratory virus infections are more often registered in children living in ecologically unfavorable Central district than in children living in the ecologically favorable Lenin district.  相似文献   

18.
The dependence of relative biological effectiveness (RBE) on photon energy is a topic of extensive discussions. The increasing amount of in vitro data in the low-energy region indicates this to be a complex dependence that is influenced by the end point and cell line studied. In the present investigation, the RBE of 10 kV X rays (W anode) was determined relative to 200 kV X rays (W anode, 0.5 mm copper filter) for cell survival in the dose range 1-10 Gy and for induction of micronuclei in the range 0.5-3.6 Gy for MCF-12A human mammary epithelial cells. The RBE for cell survival was found to increase with decreasing dose, being 1.21+/-0.03 at 10% survival. Considerably higher values were obtained for micronucleus induction, where the RBE(M) obtained from the ratio of the linear coefficients of the dose-effect curves was 2.6+/-0.4 for the fraction of binucleated cells with micronuclei and 4.1+/-1.0 for the number of micronuclei per binucleated cell. These values, together with our previous data, support a monotonic increase in RBE with decreasing photon energy down to the mean energy of 7.3 keV used in the present study.  相似文献   

19.
Early- and late-passage cultures of Fischer rat thyroid cells differ in their growth properties and gap junction competency. Previous studies comparing early- and late-passage cultures exposed to gamma rays and proton beams revealed that differences in growth rate did not influence their responses; however, the presence of connexin 32 gap junctions conferred resistance to gamma radiation. To further assess differences in radiation quality, suspension cultures of early- and late-passage cells were exposed to accelerated iron ions, and their comparative biological responses were measured. The iron-ion-irradiated cells displayed sustained levels of incorporated dUTP, reflecting persistent DNA damage. These results were supported by the frequency of chromosomal damage measured by micronucleus formation. Iron-ion irradiation induced micronuclei at a rate of eight per gray per 100 binucleated cells scored in early-passage cells and nine per gray per 100 binucleated cells scored in late-passage cells. Relative to photons, the calculated radiobiological effectiveness for frequency of micronuclei was 5.7 and 6.4 for the early- and late-passage cultures, respectively (P > 0.05). Levels of apoptosis fluctuated as a function of dose, and modest increases above basal levels persisted throughout the 48-h period. The comparison of retained follicular structures revealed differences in the alpha components of the linear-quadratic dose-response curves (0.60 Gy(-1) for early-passage and 0.71 Gy(-1) for late-passage cultures, P < 0.014). Cell cycle phase redistribution resulted in a G2 arrest (P < 0.001) for both early- and late-passage cultures. In conclusion, the response of thyroid follicular cells to high-LET radiation was not influenced by the presence of gap junctions or the proliferative status of the target cells.  相似文献   

20.
为了研究X射线与X染色体的微校率之间的关系.本实验利用原位杂交技术同时检测了经X射线诱发人双核淋巴细胞的7号和X染色体的微核率。结果发现:经2.5Gy的X射线照射后.X和7号染色体的微核率男性分别为3.4%和7.1%;女性分别为6.6%和6.0%。X和7号染色体微核率的实验观察值与理论预期值之间在统计学上无显著性差异。实验结果提示:X射线并不特异性引起X染色体的微核率增高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号