首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Data obtained in earlier studies with rats fed diets containing high doses of peroxisome proliferators (niadenate, tiadenol, clofibrate, or nitotinic acid) are used to look for a quantitative relationship between peroxisomal beta-oxidation, palmitoyl-CoA hydrolase, palmitoyl-CoA synthetase and carnitine palmitoyltransferase activities, and the cellular concentration of their substrate and reaction products. The order of the hyperlipidemic drugs with regard to their effect on CoA derivatives and enzyme activities was niadenate greater than tiadenol greater than clofibrate greater than nicotinic acid. Linear regression analysis of long-chain acyl-CoA content versus palmitoyl-CoA hydrolase and peroxisomal beta-oxidation activity showed highly significant linear correlations both in the total liver homogenate and in the peroxisome-enriched fractions. A dose-response curve of tiadenol showed that carnitine palmitoyltransferase and palmitoyl-CoA synthetase activities and the ratio of long-chain acyl-CoA to free CoASH in total homogenate rose at low doses before detectable changes occurred in the peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. A plot of this ratio parallelled the palmitoyl-CoA synthetase activity. The specific activity of microsomally localized carnitine palmitoyl-transferase was low and unchanged up to a dose where no enhanced peroxisomal beta-oxidation was observed, but over this dose the activity increased considerably so that the specific of the enzyme in the mitochondrial and microsomal fractions became comparable. The mitochondrial palmitoyl-CoA synthetase activity decreased gradually. The correlations may be interpreted as reflecting a common regulation mechanism for palmitoyl-CoA hydrolase and peroxisomal beta-oxidation enzymes, i.e., the cellular level of long-chain acyl-CoA acting as the metabolic message for peroxisomal proliferation resulting in induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. The findings are discussed with regard to their possible consequences for mitochondrial fatty acid oxidation and the conversion of long-chain acyl-L-carnitine to acyl-CoA derivatives.  相似文献   

2.
Induction of microsomal 1-acyl-glycerophosphocholine (GPC) acyltransferase in rat tissues by four peroxisome proliferators, clofibric acid, tiadenol, DEHP and PFOA, was examined. Among the nine tissues examined, kidney, liver and intestinal mucosa responded to the challenges by the peroxisome proliferators to induce the enzyme. The treatment of rats with various dose of clofibric acid, tiadenol, DEHP or PFOA resulted in an induction of kidney microsomal 1-acyl-GPC acyltransferase in a dose-dependent manner. Despite the structural dissimilarity of peroxisome proliferators, the induction of microsomal 1-acyl-GPC acyltransferase was highly correlated with the induction of peroxisomal beta-oxidation. The activity of microsomal 1-acyl-GPC acyltransferase was not affected by changes in hormonal (adrenalectomy, diabetes, hyperthyroidism and hypothyroidism) and nutritional (starvation, starvation-refeeding, fat-free-diet feeding and high-fat-diet feeding) states. The induction of renal microsomal 1-acyl-GPC acyltransferase was seen in mice subsequent to the administration of clofibric acid and tiadenol and in guinea pigs subsequent to the administration of tiadenol. These results may indicate that kidney microsomal 1-acyl-GPC acyltransferase is a highly specific parameter responsive to the challenges by peroxisome proliferators and may suggest that the possibility that the inductions by peroxisome proliferators of microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation in kidney are co-regulated.  相似文献   

3.
Treatment of rats with dehydroepiandrosterone (300 mg/kg body weight, per os, 14 days) caused a remarkable increase in the number of peroxisomes and peroxisomal beta-oxidation activity in the liver. The activities of carnitine acetyltransferase, microsomal laurate 12-hydroxylation, cytosolic palmitoyl-CoA hydrolase, malic enzyme and some other enzymes were also increased. The increases in these enzyme activities were all greater in male rats than in female rats. Immunoblot analysis revealed remarkable induction of acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme in the liver and to a smaller extent in the kidney, whereas no significant induction of these enzymes was found in the heart. The increase in the hepatic peroxisomal beta-oxidation activity reached a maximal level at day 5 of the treatment of dehydroepiandrosterone and the increased activity rapidly returned to the normal level on discontinuation of the treatment. The increase in the activity was also dose-dependent, which was saturable at a dose of more than 200 mg/kg body weight. All these features in enzyme induction caused by dehydroepiandrosterone correlate well with those observed in the treatment of clofibric acid, a peroxisome proliferator. Co-treatment of dehydroepiandrosterone and clofibric acid showed no synergism in the enhancement of peroxisomal beta-oxidation activity, suggesting the involvement of a common process in the mechanism by which these compounds induce the enzymes. These results indicate that dehydroepiandrosterone is a typical peroxisome proliferator. Since dehydroepiandrosterone is a naturally occurring C19 steroid in mammals, the structure of which is novel compared with those of peroxisome proliferators known so far, this compound could provide particular information in the understanding of the mechanisms underlying the induction of peroxisome proliferation.  相似文献   

4.
Administration of p-chlorophenoxyisobutyric acid (clofibric acid) markedly increased the activity of microsomal 1-acylglycerophosphorylcholine (1-acyl-GPC) acyltransferase in kidney, intestinal mucosa and liver, but not in brain, heart, lung, spleen, testis or skeletal muscle. In both kidney and liver, a marked dose-dependent increase in the activities of both microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation was observed. In the rats treated with clofibric acid at a relatively low dose, the increase in the activity of 1-acyl-GPC acyltransferase in kidney was more marked than that in liver. The extent of the relative increase in the activity of 1-acyl-GPC acyltransferase to the activity of peroxisomal beta-oxidation in kidney was more marked than that in liver. The increased activity of 1-acyl-GPC acyltransferase in both kidney and liver lasted throughout the 8-week treatment period of rat with clofibric acid.  相似文献   

5.
The induction of hepatic long-chain acyl-CoA hydrolase in the cytosolic fraction by administration of clofibric acid (p-chlorophenoxyisobutyric acid) was compared in rats, mice and guinea-pigs. In rats, two long-chain acyl-CoA hydrolases were induced by the administration of clofibric acid. In mice, only one long-chain acyl-CoA hydrolase was induced, and this hydrolase had properties similar to those of the lower-molecular-weight hydrolase induced in the hepatic cytosol of rats. In hepatic cytosol of guinea-pig, no hydrolase was induced by the administration of clofibric acid.  相似文献   

6.
Inductions by perfluoro-octanoic acid (PFOA) of hepatomegaly, peroxisomal beta-oxidation, microsomal 1-acylglycerophosphocholine acyltransferase and cytosolic long-chain acyl-CoA hydrolase were compared in liver between male and female rats. Marked inductions of these four parameters were seen concurrently in liver of male rats, whereas the inductions in liver of female rats were far less pronounced. The sex-related difference in the response of rat liver to PFOA was much more marked than that seen with p-chlorophenoxyisobutyric acid (clofibric acid) or 2,2'-(decamethylenedithio)diethanol (tiadenol). Hormonal manipulations revealed that this sex-related difference in the inductions is strongly dependent on sex hormones, namely that testosterone is necessary for the inductions, whereas oestradiol prevented the inductions by PFOA.  相似文献   

7.
Administration of clofibric acid, 2,2'-(decamethylenedithio)diethanol, di(2-ethylhexyl)phthalate or perfluorooctanoic acid to male rates increased markedly microsomal 1-acylglycerophosphocholine (a-acyl-GPC) acyltransferase in a dose-dependent manner in liver. Simultaneous administration of actinomycin D or cycloheximide completely abolished the increase in the enzyme activity. The treatment of rats with clofibric acid did not affect the rate of decay of 1-acyl-GPC acyltransferase. Regardless of a great difference in the chemical structures of the peroxisome proliferators, high correlation was observed between the induced activities of microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation. Stearoyl-CoA desaturase was induced by peroxisome proliferators in a dose-dependent manner; nevertheless, high correlation was not seen between the induced activities of desaturase and peroxisomal beta-oxidation. Hormonal (adrenalectomy, diabetes, hyperthyroidism and hypothyroidism) and nutritional (starvation, starvation-refeeding, fat-free diet feeding and high-fat diet feeding) alterations hardly affected the activity of 1-acyl-GPC acyltransferase. The present results indicate that microsomal 1-acyl-GPC acyltransferase is a useful parameter responsive to the challenges by peroxisome proliferators and suggest that a similar regulatory mechanism operates for the inductions of microsomal 1-acyl-GPC acyltransferase and peroxisomal beta-oxidation.  相似文献   

8.
For the analysis of the molecular mechanism of the action of peroxisome proliferators, we attempted to establish the optimal conditions for obtaining the effects of the chemicals in vitro, employing an established cell line, Reuber rat hepatoma H4IIEC3. Histochemical analyses revealed a marked increase in the number, size, and catalase content of peroxisomes in the cells cultured on a medium containing 0.5 mM ciprofibrate, a peroxisome proliferator. The activity of acyl-CoA oxidase, the initial enzyme of the peroxisomal beta-oxidation system, was increased by more than 10-fold by the same treatment. Catalase was also induced significantly, whereas the activities of glutamate dehydrogenase and lactate dehydrogenase, mitochondrial and cytosolic marker enzymes, did not change upon the treatment. Immunoblotting and RNA-blotting analyses confirmed the increases in the amount of protein and mRNA for all the three enzymes of the peroxisomal beta-oxidation system. Cell fractionation experiments gave a partial separation of peroxisomes from other organelles for the induced culture. Thus, H4IIEC3 cells offer a good in vitro model system of the induction of peroxisomes and peroxisomal beta-oxidation enzymes by peroxisome proliferators.  相似文献   

9.
Rat hepatocytes were cultured for 72 h with or without the addition of 0.5 mM clofibric acid. The activities of individual enzymes of the peroxisomal beta-oxidation pathway (acyl-CoA oxidase, enoyl-CoA hydratase-3-hydroxyacyl-CoA dehydrogenase bifunctional protein, and 3-ketoacyl-CoA thiolase) decreased in the control culture, but markedly increased synchronously in the clofibric acid-treated culture. The levels of mRNAs coding for these enzymes and the rates of synthesis of the enzymes were also elevated in the clofibric acid-treated culture, although no proportional relationship was observed between the time-dependent changes of these parameters. The increase in mRNAs was much higher than the increase in the rate of synthesis of the enzymes. The activity of catalase, its mRNA level and the rate of its synthesis were slightly affected. The effects of clofibric acid on the peroxisomal beta-oxidation enzymes and catalase in primary cultured hepatocytes were very similar to those observed in vivo. These results, therefore, suggest that primary culture of hepatocytes should provide a useful means for investigating the mechanism of induction of peroxisomal enzymes and the mechanism of action of peroxisome proliferators.  相似文献   

10.
Using dietary administration, mice were exposed to eight substances known to cause peroxisome proliferation (i.e. clofibrate clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, ICI-55.897, S-8527 and Wy-14.643) or the related substance p-chlorophenoxyacetic acid (group A). Other animals received di(2-ethylhexyl)phthalate, mono(2-ethylhexyl)phthalate, 2-ethylhexanoic acid, or one of 12 other metabolically and/or structurally related compounds (group B). The effects of these treatments on liver cytosolic and microsomal epoxide hydrolases, microsomal cytochrome P-450, cytosolic glutathione transferase activity, the liver-somatic index and the protein contents of the microsomal and cytosolic fractions prepared from liver were subsequently monitored. In general, peroxisome proliferation was accompanied by increases in cytosolic epoxide hydrolase activity. Many peroxisome proliferators also caused increases in microsomal epoxide hydrolase activity, although the correlation was poorer in this case. Immunochemical quantitation by radial immunodiffusion demonstrated that the increases observed in both of these enzyme activities reflected equivalent increases in enzyme protein, i.e. that induction truly occurred. Induction of total microsomal cytochrome P-450 was obtained after dietary exposure to clofibrate, clofibric acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, nafenopin, Wy-14.643, di(2-ethylhexyl)phthalate and di(2-ethylhexyl)phosphate. The most pronounced effects on cytosolic glutathione transferase activity were the decreases obtained after treatment with clofibrate, clofibric acid and Wy-14.643. Our results, together with those reported by others, suggest that the processes of peroxisome proliferation and induction of cytosolic epoxide hydrolase are intimately related. One possible explanation for this is presented.  相似文献   

11.
The present study has confirmed previous findings of long-chain acyl-CoA hydrolase activities in the mitochondrial and microsomal fractions of the normal rat liver. In addition, experimental evidence is presented in support of a peroxisomal localization of long-chain acyl-CoA hydrolase activity. (a) Analytical differential centrifugation of homogenates from normal rat liver revealed that this activity (using palmitoyl-CoA as the substrate) was also present in a population of particles with an average sedimentation coefficient of 6740 S, characteristic of peroxisomal marker enzymes. (b) The subcellular distribution of the hydrolase activity was greatly affected by administration of the peroxisomal proliferators clofibrate and tiadenol. The specific activity was enhanced in the mitochondrial fraction and in a population of particles with an average sedimentation coefficient of 4400 S, characteristic of peroxisomal marker enzymes. Three populations of particles containing lysosomal marker enzymes were found by analytical differential centrifugation, both in normal and clofibrate-treated rats. Our data do not support the proposal that palmitoyl-CoA hydrolase and acid phosphatase belong to the same subcellular particles. In livers from rats treated with peroxisomal proliferators, the specific activity of palmitoyl-CoA hydrolase was also enhanced in the particle-free supernatant. Evidence is presented that this activity at least in part, is related to the peroxisomal proliferation.  相似文献   

12.
The purpose of this study was to investigate early biochemical changes and possible mechanisms via which alkyl(C12)thioacetic acid (CMTTD, blocked for beta-oxidation), alkyl(C12)thiopropionic acid (CETTD, undergo one cycle of beta-oxidation) and a 3-thiadicarboxylic acid (BCMTD, blocked for both omega- (and beta-oxidation) influence the peroxisomal beta-oxidation in liver of rats. Treatment of rats with CMTTD caused a stimulation of the palmitoyl-CoA synthetase activity accompanied with increased concentration of hepatic acid-insoluble CoA. This effect was already established during 12-24 h of feeding. From 2 days of feeding, the cellular level of acid-insoluble CoA began to decrease, whereas free CoASH content increased. Stimulation of [1-14C]palmitoyl-CoA oxidation in the presence of KCN, palmitoyl-CoA-dependent dehydrogenase (termed peroxisomal beta-oxidation) and palmitoyl-CoA hydrolase activities were revealed after 36-48 h of CMTTD-feeding. Administration of BCMTD affected the enzymatic activities and altered the distribution of CoA between acid-insoluble and free forms comparable to what was observed in CMTTD-treated rats. It is evident that treatment of peroxisome proliferators (BCMTD and CMTTD), the level of acyl-CoA esters and the enzyme activity involved in their formation precede the increase in peroxisomal and palmitoyl-CoA hydrolase activities. In CMTTD-fed animals the activity of cyanide-insensitive fatty acid oxidation remained unchanged when the mitochondrial beta-oxidation and carnitine palmitoyltransferase operated at maximum rates. The sequence and redistribution of CoA and enzyme changes were interpreted as support for the hypothesis that substrate supply is an important factor in the regulation of peroxisomal fatty acid metabolism, i.e., the fatty acyl-CoA species appear to be catabolized by peroxisomes at high rates only when uptake into mitochondria is saturated. Administration of CETTD led to an inhibition of mitochondrial fatty acid oxidation accompanied with a rise in the concentration of acyl-CoA esters in the liver. Consequently, fatty liver developed. The peroxisomal beta-oxidation was marginally affected. Whether inhibition of mitochondrial beta-oxidation may be involved in regulation of peroxisomal fatty acid metabolism and in development of fatty liver should be considered.  相似文献   

13.
The effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on hepatic lipids and key enzymes involved in esterification, hydrolysis and oxidation of long-chain fatty acids at increasing doses were investigated in rats. TPA administration tended to decrease the mitochondrial activities of palmitoyl-CoA synthetase and carnitine palmitoyltransferase. The microsomal palmitoyl-CoA synthetase activity was increased. TPA administration was also associated with a dose-dependent increase of glycerophosphate acyltransferase activity both in the mitochondrial and microsomal fractions in particular. The data are consistent with a decreased catabolism of long-chain fatty acids at the mitochondrial level, and an increased capacity for esterification of fatty acids in the microsomal fraction. Peroxisomal beta-oxidation was increased about 2-fold in the peroxisome-enriched fraction of TPA-treated rats while the catalase and urate oxidase activities were only marginally affected. TPA administration revealed elevated capacity for hydrolysis of palmitoyl-CoA and palmitoyl-L-carnitine in the microsomal fraction. Neither increased cytosolic palmitoyl-CoA hydrolase activity nor increased hydroxylation of lauric acid nor changes of the hepatic content of cytochrome P-450 isoenzymic forms were observed in the TPA-treated animals. There was no induction of the protein content of the bifunctional enoyl-CoA hydratase. Thus, TPA behaves more like choline-deficient diet and ethionine treatment than well-known peroxisome proliferators. It seems possible that TPA selectively stimulated the peroxisomal activities, i.e., peroxisomal beta-oxidation rather than evoking a peroxisome proliferation capacity.  相似文献   

14.
We studied the fatty acyl-CoA binding activity of rat liver peroxisomes. After subcellular fractionation of rat liver treated with or without clofibrate, a peroxisome proliferator, the binding activity with [1-(14)C]palmitoyl-CoA was detected in the light mitochondrial fraction in addition to the mitochondrial and cytosol fractions. After Nycodenz centrifugation of the light mitochondrial fraction, the binding activity was detected in peroxisomes. The peroxisomal activity depended on the incubation temperature and peroxisome concentration. The activity also depended on the concentration of 2-mercaptoethanol, and a plateau of activity was unexpectedly found at 2-mercaptoethanol concentrations from 20 to 40 mM. Clofibrate increased the total and specific activity of the fatty acyl-CoA binding of peroxisomes by 7.9 and 2.5 times compared with the control, respectively. In the presence of 20% glycerol at 0 degree C, approximately 90% of the binding activity was maintained for up to at least 3 wk. After successive treatment with an ultramembrane Amicon YM series, about 70% of the binding activity was detected in the M.W. 30,000-100,000 fraction. When the M.W. 30,000-100,000 fraction was added to the incubation mixture of the peroxisomal fatty acyl-CoA beta-oxidation system, a slight increase in the beta-oxidation activity was found. 2-Mercaptoethanol (20 mM) significantly activated the fatty acyl-CoA beta-oxidation system to 1.4 times control. After gel filtration of the M.W. 30,000-100,000 fraction, the peaks of fatty acyl-CoA binding protein showed broad elution profiles from 45,000 to 75,000. These results suggest that fatty acyl-CoA binding activity can be detected directly in peroxisomes and is increased by peroxisome proliferators. The high binding activity in the presence of higher concentrations of 2-mercaptoethanol indicates the importance of the SH group for binding. The apparent molecular weight of the binding protein may be from 45,000 to 75,000.  相似文献   

15.
Long-chain acyl-CoA hydrolase in the brain   总被引:1,自引:0,他引:1  
Yamada J 《Amino acids》2005,28(3):273-278
Summary. Long-chain acyl-CoA hydrolases are a group of enzymes that cleave acyl-CoAs into fatty acids and coenzyme A (CoA-SH). Because acyl-CoAs participate in numerous reactions encompassing lipid synthesis, energy metabolism and regulation, modulating intracellular levels of acyl-CoAs would affect cellular functions. Therefore, acyl-CoA synthetases have been intensively studied. In contrast, acyl-CoA hydrolases have been less investigated, especially in the brain despite the fact that its long-chain acyl-CoA hydrolyzing activity is much higher than that in any other organ in the body. However, recent studies have dissected the multiplicity of this class of enzymes on a genomic basis, and have allowed us to discuss their function. Here, we describe a cytosolic long-chain acyl-CoA hydrolase (referred to as BACH) that is constitutively expressed in the brain, comparing it with other acyl-CoA hydrolases found in peripheral organs that have a role in fatty acid oxidation.  相似文献   

16.
Coenzyme A (CoASH) is an obligate cofactor for lipids undergoing beta-oxidation in peroxisomes. Although the peroxisomal membrane appears to be impermeable to CoASH, peroxisomes contain their own pool of CoASH. It is believed that CoASH enters peroxisomes as acyl-CoAs, but it is not known how this pool is regulated. The mouse nudix hydrolase 7 (NUDT7alpha) was previously identified in peroxisomes as a CoA-diphosphatase, and therefore suggested to be involved in regulation of peroxisomal CoASH levels. Here we show that mouse NUDT7alpha mainly acts as an acyl-CoA diphosphatase, with highest activity towards medium-chain acyl-CoAs, and much lower activity with CoASH. Nudt7alpha mRNA is highly expressed in liver, brown adipose tissue and heart, similar to enzymes involved in peroxisomal lipid degradation. Nudt7alpha mRNA is down-regulated by Wy-14,643, a peroxisome proliferator-activated receptor alpha (PPARalpha) ligand, in a PPARalpha-dependent manner in mouse liver. In highly purified peroxisomes, nudix hydrolase activity is highest with C(6)-CoA and is decreased by fibrate treatment. Under certain conditions, such as treatment with peroxisome proliferators or fasting, an increase in peroxisomal CoASH levels has been reported, which is in line with a decreased expression/activity of NUDT7alpha. Taken together these data suggest that NUDT7alpha function is tightly linked to peroxisomal CoASH/acyl-CoA homeostasis.  相似文献   

17.
Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis   总被引:19,自引:0,他引:19  
  相似文献   

18.
The activity of long-chain acyl-CoA hydrolase in rat liver was increased by the administration of peroxisome proliferators, such as ethyl p-chlorophenoxyisobutyrate, di(2-ethylhexyl)phthalate or acetylsalicylic acid. The induced activity was mainly confined in the soluble fluid after the subcellular fractionation. The enzyme was purified nearly to homogeneity from livers of rats treated with di(2-ethylhexyl)phthalate. The specific activity of the final preparation was 247 mumol palmitoyl-CoA hydrolyzed min-1 mg protein-1. The molecular weight of the native enzyme was estimated to be 150 000 by gel filtration and that of the subunits was 41 000 by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The activity of the enzyme was not increased but inhibited by bovine serum albumin or Triton X-100. The molecular and catalytic properties of the enzyme suggest that the induced enzyme was different from mitochondrial and microsomal long-chain acyl-CoA hydrolyses in liver.  相似文献   

19.
20.
The sex differences in the induction of two novel long-chain acyl-CoA hydrolases in hepatic cytosol of rats by clofibric acid (p-chlorophenoxyisobutyric acid)-feeding and the properties of the induced acyl-CoA hydrolases were investigated. Marked sex-related difference was observed in the induction of acyl-Coa hydrolase activity. The sex difference was mainly due to the difference in the induction of acyl-CoA hydrolase with higher molecular weight (hydrolase I), but not to the difference in the induction of acyl-CoA hydrolase with lower molecular weight (hydrolase II). The extent of the induction of the hydrolase I in hepatic cytosol of male rats was 3.5 times over that of female rats. Castration of male rats resulted in the marked depression of the ability to induce hydrolase I. The administration of testosterone to the castrated male rats recovered completely the ability to induce hydrolase I. Unlike hydrolase I, the ability to induce hydrolase II did not respond to the changes in state of androgen. The administration of di-(2-ethylhexyl)phthalate also induced both hydrolase I and II, although the extent of the induction of hydrolase I was less compared to that by clofibric acid treatment. Likewise, marked sex difference was observed in the induction of the hydrolase I on di-(2-ethylhexyl)phthalate administration. These two hydrolases showed different kinetic properties and different substrate specificities to each other. Hydrolase I was inhibited by bovine serum albumin in vitro, but was not affected by Mg2+. Hydrolase II was activated slightly in the presence of lower concentrations of bovine serum albumin, Mg2+ or Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号