首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
The high sensitivity and effective frequency discrimination of sound detection performed by the auditory system rely on the dynamics of a system of hair cells. In the inner ear, these acoustic receptors are primarily attached to an overlying structure that provides mechanical coupling between the hair bundles. Although the dynamics of individual hair bundles has been extensively investigated, the influence of mechanical coupling on the motility of the system of bundles remains underdetermined. We developed a technique of mechanically coupling two active hair bundles, enabling us to probe the dynamics of the coupled system experimentally. We demonstrated that the coupling could enhance the coherence of hair bundles’ spontaneous oscillation, as well as their phase-locked response to sinusoidal stimuli, at the calcium concentration in the surrounding fluid near the physiological level. The empirical data were consistent with numerical results from a model of two coupled nonisochronous oscillators, each displaying a supercritical Hopf bifurcation. The model revealed that a weak coupling can poise the system of unstable oscillators closer to the bifurcation by a shift in the critical point. In addition, the dynamics of strongly coupled oscillators far from criticality suggested that individual hair bundles may be regarded as nonisochronous oscillators. An optimal degree of nonisochronicity was required for the observed tuning behavior in the coherence of autonomous motion of the coupled system.  相似文献   

2.
Hudspeth AJ 《Neuron》2008,59(4):530-545
The inner ear's performance is greatly enhanced by an active process defined by four features: amplification, frequency selectivity, compressive nonlinearity, and spontaneous otoacoustic emission. These characteristics emerge naturally if the mechanoelectrical transduction process operates near a dynamical instability, the Hopf bifurcation, whose mathematical properties account for specific aspects of our hearing. The active process of nonmammalian tetrapods depends upon active hair-bundle motility, which emerges from the interaction of negative hair-bundle stiffness and myosin-based adaptation motors. Taken together, these phenomena explain the four characteristics of the ear's active process. In the high-frequency region of the mammalian cochlea, the active process is dominated instead by the phenomenon of electromotility, in which the cell bodies of outer hair cells extend and contract as the protein prestin alters its membrane surface area in response to changes in membrane potential.  相似文献   

3.
Hair cells of the inner ear exhibit an active process, believed to be crucial for achieving the sensitivity of auditory and vestibular detection. One of the manifestations of the active process is the occurrence of spontaneous hair bundle oscillations in vitro. Hair bundles are coupled by overlying membranes in vivo; hence, explaining the potential role of innate bundle motility in the generation of otoacoustic emissions requires an understanding of the effects of coupling on the active bundle dynamics. We used microbeads to connect small groups of hair cell bundles, using in vitro preparations that maintain their innate oscillations. Our experiments demonstrate robust synchronization of spontaneous oscillations, with either 1:1 or multi-mode phase-locking. The frequency of synchronized oscillation was found to be near the mean of the innate frequencies of individual bundles. Coupling also led to an improved regularity of entrained oscillations, demonstrated by an increase in the quality factor.  相似文献   

4.
Apart from detecting sounds, vertebrate ears occasionally produce sounds. These spontaneous otoacoustic emissions are the most compelling evidence for the existence of the cochlear amplifier, an active force-generating process within the cochlea that resides in the motility of the hair cells. Insects have neither a cochlea nor hair cells, yet recent studies demonstrate that an active process that is equivalent to the cochlear amplifier occurs in at least some insect ears; like hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila actively generate forces that augment the minute vibrations they transduce. This neuron-based force-generation, its impact on the ear's macroscopic performance, and the underlying molecular mechanism are the topics of this article, which summarizes some of the recent findings on how the Drosophila organ of hearing works. Functional parallels with vertebrate auditory systems are described that recommend the fly for the study of fundamental processes in hearing.  相似文献   

5.

Background

The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ensembles of such cells collude to power observable emissions.

Methodology and Principal Findings

We have measured and modeled spontaneous otoacoustic emissions from the ear of the tokay gecko, a convenient experimental subject that produces robust emissions. Using a van der Pol formulation to represent each cluster of hair cells within a tonotopic array, we have examined the factors that influence the cooperative interaction between oscillators.

Conclusions and Significance

A model that includes viscous interactions between adjacent hair cells fails to produce emissions similar to those observed experimentally. In contrast, elastic coupling yields realistic results, especially if the oscillators near the ends of the array are weakened so as to minimize boundary effects. Introducing stochastic irregularity in the strength of oscillators stabilizes peaks in the spectrum of modeled emissions, further increasing the similarity to the responses of actual ears. Finally, and again in agreement with experimental findings, the inclusion of a pure-tone external stimulus repels the spectral peaks of spontaneous emissions. Our results suggest that elastic coupling between oscillators of slightly differing strength explains several properties of the spontaneous otoacoustic emissions in the gecko.  相似文献   

6.
Sensitive hearing organs often employ nonlinear mechanical sound processing which generates distortion-product otoacoustic emissions (DPOAE). Such emissions are also recordable from tympanal organs of insects. In vertebrates (including humans), otoacoustic emissions are considered by-products of active sound amplification through specialized sensory receptor cells in the inner ear. Force generated by these cells primarily augments the displacement amplitude of the basilar membrane and thus increases auditory sensitivity. As in vertebrates, the emissions from insect ears are based on nonlinear mechanical properties of the sense organ. Apparently, to achieve maximum sensitivity, convergent evolutionary principles have been realized in the micromechanics of these hearing organs-although vertebrates and insects possess quite different types of receptor cells in their ears. Just as in vertebrates, otoacoustic emissions from insects ears are vulnerable and depend on an intact metabolism, but so far in tympanal organs, it is not clear if auditory nonlinearity is achieved by active motility of the sensory neurons or if passive cellular characteristics cause the nonlinear behavior. In the antennal ears of flies and mosquitoes, however, active vibrations of the flagellum have been demonstrated. Our review concentrates on experiments studying the tympanal organs of grasshoppers and moths; we show that their otoacoustic emissions are produced in a frequency-specific way and can be modified by electrical stimulation of the sensory cells. Even the simple ears of notodontid moths produce distinct emissions, although they have just one auditory neuron. At present it is still uncertain, both in vertebrates and in insects, if the nonlinear amplification so essential for sensitive sound processing is primarily due to motility of the somata of specialized sensory cells or to active movement of their (stereo-)cilia. We anticipate that further experiments with the relatively simple ears of insects will help answer these questions.  相似文献   

7.
Vilfan A  Duke T 《Biophysical journal》2008,95(10):4622-4630
Spontaneous otoacoustic emissions (SOAEs) are indicators of an active process in the inner ear that enhances the sensitivity and frequency selectivity of hearing. They are particularly regular and robust in certain lizards, so these animals are good model organisms for studying how SOAEs are generated. We show that the published properties of SOAEs in the bobtail lizard are wholly consistent with a mathematical model in which active oscillators, with exponentially varying characteristic frequencies, are coupled together in a chain by visco-elastic elements. Physically, each oscillator corresponds to a small group of hair cells, covered by a tectorial sallet, so our theoretical analysis directly links SOAEs to the micromechanics of active hair bundles.  相似文献   

8.
《Biophysical journal》2022,121(6):897-909
Since the pioneering work of Thomas Gold, published in 1948, it has been known that we owe our sensitive sense of hearing to a process in the inner ear that can amplify incident sounds on a cycle-by-cycle basis. Called the active process, it uses energy to counteract the viscous dissipation associated with sound-evoked vibrations of the ear’s mechanotransduction apparatus. Despite its importance, the mechanism of the active process and the proximate source of energy that powers it have remained elusive, especially at the high frequencies characteristic of amniote hearing. This is partly due to our insufficient understanding of the mechanotransduction process in hair cells, the sensory receptors and amplifiers of the inner ear. It has been proposed previously that cyclical binding of Ca2+ ions to individual mechanotransduction channels could power the active process. That model, however, relied on tailored reaction rates that structurally forced the direction of the cycle. Here we ground our study on our previous model of hair-cell mechanotransduction, which relied on cooperative gating of pairs of channels, and incorporate into it the cyclical binding of Ca2+ ions. With a single binding site per channel and reaction rates drawn from thermodynamic principles, the current model shows that hair cells behave as nonlinear oscillators that exhibit Hopf bifurcations, dynamical instabilities long understood to be signatures of the active process. Using realistic parameter values, we find bifurcations at frequencies in the kilohertz range with physiological Ca2+ concentrations. The current model relies on the electrochemical gradient of Ca2+ as the only energy source for the active process and on the relative motion of cooperative channels within the stereociliary membrane as the sole mechanical driver. Equipped with these two mechanisms, a hair bundle proves capable of operating at frequencies in the kilohertz range, characteristic of amniote hearing.  相似文献   

9.
Even in the absence of external stimulation, the cochleas of most humans emit very faint sounds below the threshold of hearing, sounds that are known as spontaneous otoacoustic emissions. They are a signature of the active amplification mechanism in the cochlea. Emissions occur at frequencies that are unique for an individual and change little over time. The statistics of a population of ears exhibit characteristic features such as a preferred relative frequency distance between emissions (interemission intervals). We propose a simplified cochlea model comprising an array of active nonlinear oscillators coupled both hydrodynamically and viscoelastically. The oscillators are subject to a weak spatial disorder that lends individuality to the simulated cochlea. Our model captures basic statistical features of the emissions: distributions of 1), emission frequencies; 2), number of emissions per ear; and 3), interemission intervals. In addition, the model reproduces systematic changes of the interemission intervals with frequency. We show that the mechanism for the preferred interemission interval in our model is the occurrence of synchronized clusters of oscillators.  相似文献   

10.
Even in the absence of external stimulation, the cochleas of most humans emit very faint sounds below the threshold of hearing, sounds that are known as spontaneous otoacoustic emissions. They are a signature of the active amplification mechanism in the cochlea. Emissions occur at frequencies that are unique for an individual and change little over time. The statistics of a population of ears exhibit characteristic features such as a preferred relative frequency distance between emissions (interemission intervals). We propose a simplified cochlea model comprising an array of active nonlinear oscillators coupled both hydrodynamically and viscoelastically. The oscillators are subject to a weak spatial disorder that lends individuality to the simulated cochlea. Our model captures basic statistical features of the emissions: distributions of 1), emission frequencies; 2), number of emissions per ear; and 3), interemission intervals. In addition, the model reproduces systematic changes of the interemission intervals with frequency. We show that the mechanism for the preferred interemission interval in our model is the occurrence of synchronized clusters of oscillators.  相似文献   

11.
Spontaneous otoacoustic emissions (SOAEs) are weak sounds that emanate from the ears of tetrapods in the absence of acoustic stimulation. These emissions are an epiphenomenon of the inner ear's active process, which enhances the auditory system’s sensitivity to weak sounds, but their mechanism of production remains a matter of debate. We recorded SOAEs simultaneously from the two ears of the tokay gecko and found that binaural emissions could be strongly correlated: some emissions occurred at the same frequency in both ears and were highly synchronized. Suppression of the emissions in one ear often changed the amplitude or shifted the frequency of emissions in the other. Decreasing the frequency of emissions from one ear by lowering its temperature usually reduced the frequency of the contralateral emissions. To understand the relationship between binaural SOAEs, we developed a mathematical model of the eardrums as noisy nonlinear oscillators coupled by the air within an animal’s mouth. By according with the model, the results indicate that some SOAEs are generated bilaterally through acoustic coupling across the oral cavity. The model predicts that sound localization through the acoustic coupling between ears is influenced by the active processes of both ears.  相似文献   

12.
Sound is detected and converted into electrical signals within the ear. The cochlea not only acts as a passive detector of sound, however, but can also produce tones itself. These otoacoustic emissions are a striking manifestation of the cochlea's mechanical active process. A controversy remains of how these mechanical signals propagate back to the middle ear, from which they are emitted as sound. Here, we combine theoretical and experimental studies to show that mechanical signals can be transmitted by waves on Reissner's membrane, an elastic structure within the cochlea. We develop a theory for wave propagation on Reissner's membrane and its role in otoacoustic emissions. Employing a scanning laser interferometer, we measure traveling waves on Reissner's membrane in the gerbil, guinea pig, and chinchilla. The results are in accord with the theory and thus support a role for Reissner's membrane in otoacoustic emissions.  相似文献   

13.
Bora Sul 《Biophysical journal》2009,97(10):2653-2663
The effectiveness of hair bundle motility in mammalian and avian ears is studied by examining energy balance for a small sinusoidal displacement of the hair bundle. The condition that the energy generated by a hair bundle must be greater than energy loss due to the shear in the subtectorial gap per hair bundle leads to a limiting frequency that can be supported by hair-bundle motility. Limiting frequencies are obtained for two motile mechanisms for fast adaptation, the channel re-closure model and a model that assumes that fast adaptation is an interplay between gating of the channel and the myosin motor. The limiting frequency obtained for each of these models is an increasing function of a factor that is determined by the morphology of hair bundles and the cochlea. Primarily due to the higher density of hair cells in the avian inner ear, this factor is ∼10-fold greater for the avian ear than the mammalian ear, which has much higher auditory frequency limit. This result is consistent with a much greater significance of hair bundle motility in the avian ear than that in the mammalian ear.  相似文献   

14.
Tones cause vibrations within the hearing organ. Conventionally, these vibrations are thought to reflect the input and therefore end with the stimulus. However, previous recordings of otoacoustic emissions and cochlear microphonic potentials suggest that the organ of Corti does continue to move after the end of a tone. These after-vibrations are characterized here through recordings of basilar membrane motion and hair cell extracellular receptor potentials in living anesthetized guinea pigs. We show that after-vibrations depend on the level and frequency of the stimulus, as well as on the sensitivity of the ear. Even a minor loss of hearing sensitivity caused a sharp reduction in after-vibration amplitude and duration. Mathematical models suggest that after-vibrations are driven by energy added into organ of Corti motion after the end of an acoustic stimulus. The possible importance of after-vibrations for psychophysical phenomena such as forward masking and gap detection are discussed.  相似文献   

15.
16.
17.
The outer hair cell (OHC) of the mammalian inner ear exhibits an unusual form of somatic motility that can follow membrane-potential changes at acoustic frequencies. The cellular forces that produce this motility are believed to amplify the motion of the cochlear partition, thereby playing a key role in increasing hearing sensitivity. To better understand the role of OHC somatic motility in cochlear micromechanics, we developed an excised cochlea preparation to visualize simultaneously the electrically-evoked motion of hundreds of cells within the organ of Corti (OC). The motion was captured using stroboscopic video microscopy and quantified using cross-correlation techniques. The OC motion at approximately 2-6 octaves below the characteristic frequency of the region was complex: OHC, Deiter's cell, and Hensen's cell motion were hundreds of times larger than the tectorial membrane, reticular lamina (RL), and pillar cell motion; the inner rows of OHCs moved antiphasic to the outer row; OHCs pivoted about the RL; and Hensen's cells followed the motion of the outer row of OHCs. Our results suggest that the effective stimulus to the inner hair cell hair bundles results not from a simple OC lever action, as assumed by classical models, but by a complex internal motion coupled to the RL.  相似文献   

18.
The auditory sensory organ, the cochlea, not only detects but also generates sounds. Such sounds, otoacoustic emissions, are widely used for diagnosis of hearing disorders and to estimate cochlear nonlinearity. However, the fundamental question of how the otoacoustic emission exits the cochlea remains unanswered. In this study, emissions were provoked by two tones with a constant frequency ratio, and measured as vibrations at the basilar membrane and at the stapes, and as sound pressure in the ear canal. The propagation direction and delay of the emission were determined by measuring the phase difference between basilar membrane and stapes vibrations. These measurements show that cochlea-generated sound arrives at the stapes earlier than at the measured basilar membrane location. Data also show that basilar membrane vibration at the emission frequency is similar to that evoked by external tones. These results conflict with the backward-traveling-wave theory and suggest that at low and intermediate sound levels, the emission exits the cochlea predominantly through the cochlear fluids.  相似文献   

19.
The mammalian hearing organ, the cochlea, contains an active amplifier to boost the vibrational response to low level sounds. Hallmarks of this active process are sharp location-dependent frequency tuning and compressive nonlinearity over a wide stimulus range. The amplifier relies on outer hair cell (OHC)-generated forces driven in part by the endocochlear potential, the ∼+80 mV potential maintained in scala media, generated by the stria vascularis. We transiently eliminated the endocochlear potential in vivo by an intravenous injection of furosemide and measured the vibrations of different layers in the cochlea’s organ of Corti using optical coherence tomography. Distortion product otoacoustic emissions were also monitored. After furosemide injection, the vibrations of the basilar membrane lost the best frequency (BF) peak and showed broad tuning similar to a passive cochlea. The intra-organ of Corti vibrations measured in the region of the OHCs lost the BF peak and showed low-pass responses but retained nonlinearity. This strongly suggests that OHC electromotility was operating and being driven by nonlinear OHC current. Thus, although electromotility is presumably necessary to produce a healthy BF peak, the mere presence of electromotility is not sufficient. The BF peak recovered nearly fully within 2 h, along with the recovery of odd-order distortion product otoacoustic emissions. The recovery pattern suggests that physical shifts in operating condition are a critical step in the recovery process.  相似文献   

20.
The auditory system is the first biological structure facing the electromagnetic fields emitted by mobile phones. The aim of this study was to evaluate the cochlear functionality of Sprague-Dawley rats exposed to electromagnetic fields at the typical frequencies of GSM mobile phones (900 and 1800 MHz) by distortion product otoacoustic emissions, which are a well-known indicator of the status of the cochlea's outer hair cells. A population of 48 rats was divided into exposed and sham-exposed groups. Three sets of four loop antennas, one for sham-exposed animals and two for exposed animals, were used for the local exposures. Rats were exposed 2 h/day, 5 days/week for 4 weeks at a local SAR of 2 W/kg in the ear. Distortion product otoacoustic emissions tests were carried out before, during and after the exposure. The analysis of the data shows no statistically significant differences between the audiological signals recorded for the different groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号