首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The Escherichia coli gene katE, which is driven by the promoter of the Rubisco small subunit gene of tomato, rbcS3C, was introduced into a tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens‐mediated transformation. Catalase activity in progeny from transgenic plants was approximately three‐fold higher than that in wild‐type plants. Leaf discs from transgenic plants remained green at 24 h after treatment with 1 µm paraquat under moderate light intensity, whereas leaf discs from wild‐type plants showed severe bleaching after the same treatment. Moreover, ion leakage from transgenic leaf discs was significantly less than that from wild‐type leaf discs at 24 h after treatment with 1 µm paraquat and 10 mm H2O2, respectively, under moderate light intensity. To evaluate the efficiency of the E. coli catalase to protect the whole transgenic plant from the oxidative stress, transgenic and wild‐type plants were sprayed with 100 µm paraquat and exposed to high light illumination (800 µmol m?2 s?1). After 24 h, the leaves of the transgenic plants were less damaged than the leaves of the wild‐type plants. The catalase activity and the photosynthesis activity (indicated by the Fv/Fm ratio) were less affected by paraquat treatment in leaves of transgenic plants, whereas the activities of the chloroplastic ascorbate peroxidase isoenzymes and the ascorbate content decreased in both lines. In addition, the transgenic plants showed increased tolerance to the oxidative damage (decrease of the CO2 fixation and photosystem II activity and increase of the lipid peroxidation) caused by drought stress or chilling stress (4 °C) under high light intensity (1000 µmol m?2 s?1). These results indicate that the expression of the catalase in chloroplasts has a positive effect on the protection of the transgenic plants from the photo‐oxidative stress invoked by paraquat treatment, drought stress and chilling stress.  相似文献   

2.
The effect of phosphorus (P), potassium (K), and magnesium (Mg)deficiency on the development of leaf symptoms (chlorosis andnecrosis) and activities of ascorbate-dependent H2O2 scavengingenzymes (ascorbate peroxidase, monodehydroascorbate reductase,dehydroascorbate reductase, and glutathione reductase) was studiedin bean (Phaseolus vulgans) plants over a 12 d period of growthin nutrient solution. With increasing plant age Mg- and K-deficientleaves developed severe interveinal chlorosis and, accordingly,chlorophyll concentrations were reduced. However, in P-deficientleaves neither chlorosis nor necrosis appeared; the leaves remaineddark green and even at an advanced stage of P deficiency, chlorophyllconcentrations were still higher than those of control plants.In K- and, particularly, Mg-deficient leaves with an increasein severity of leaf chlorosis, activity of ascorbate-dependentH2O2- scavenging enzymes was progressively increased. In contrast,in P-deficient leaves, as in leaves of the control plants, activityof H2O2-scavenging enzymes remained at a low level over the12 d period. Accordingly, compared with P-deficient and controlplants, Mg- and K-deficient leaves with elevated anti-oxidativepotential showed much higher resistance to chlorophyll destructionby the herbicide paraquat. Elevated levels of H2O2-scavengingenging enzymes in Mg- and K-deficient leaves indicate a higherproduction of H2O2 and related toxic O2 species. It Is suggestedthat in Mg- and K-deficient leaves, utilization of photoreductantsin CO2 fixation is restricted because of impaired export andthus accumulation of photosynthates. This disturbance mightlead to enhanced photoreduction of molecular O2 to toxic O2species causing chlorophyll destruction (chlorosis), a processwhich is not important in P-deficient leaves where export ofsucrose is not affected. Key words: Bean, hydrogen peroxide detoxification, leaf chlorosis, magnesium nutrition, oxygen activation, phosphorus nutrition, potassium nutrition  相似文献   

3.
The effect of leaf dehydration on photosynthetic O2 exchange of potato (Solanum tuberosum L., cv. Haig) leaf discs was examined using 18O2 as a tracer and mass spectrometry. In normal air (350 μl·l?1CO2) and under an irradiance of 390 μmol photons·m?2·s1, a relative water deficit (RWD) of about 30% severely decreased net O2 evolution and increased O2 uptake by about 50%, thus indicating an enhancement of photorespiration. Increasing CO2 concentrations diminished O2 uptake and stimulated net O2 evolution both in well-hydrated and in dehydrated (RWD of about 30%) leaves. Much higher CO2 concentrations (up to 4%) were required to observe a complete effect of CO2 in dehydrated leaves. The chloroplastic CO2 concentration at the ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) level (Cc) was calculated from O2-exchange data in both well-hydrated and dehydrated leaves, assuming that the specificity factor of Rubisco was unaffected by desiccation. When plotting net O2 photosynthesis as a function of Cc, a similar relationship was obtained for well-hydrated and waterstressed leaf discs, thus showing that the main effect of water deficit is a decrease of the chloroplastic CO2 concentration. At saturating CO2 levels, the non-cyclic electron-transport rate, measured either as gross O2 photosynthesis or as the chlorophyll fluorescence ratio (Fm -Fs)/Fm, was insensitive to water deficit, provided RWD was below 40%. In this range of RWD, the decrease in gross O2 photosynthesis observed in normal air was attributed to the inability of oxidative processes to sustain the maximal electron-flow rate at low chloroplastic CO2 concentration. The maximal efficiency of photosystem II, estimated as the chlorophyll fluorescence ratio (Fm -F0)/Fm measured in dark-adapted leaves, was not affected by water deficits up to 60%.  相似文献   

4.
The mode of action of paraquat (1,1-dimethyl-4,4-bipyridinium) and the mechanism of resistance to it were studied in leaves of atrazine/paraquat co-resistant (R) and susceptible (S) biotypes of horseweed (Conyza canadensis) collected from Hungarian vineyards. The application of 0·5 mol m?3 paraquat by spraying onto the surface of the leaves of intact plants in the light rapidly led to typical symptoms of paraquat action in the initial period in both biotypes, i.e. inhibition of CO2 fixation, suppression of variable chlorophyll fluorescence (Fv), decrease of oxygen evolution and stimulation of ethane production. The inhibitory effect of paraquat in the S plants was irreversible, whereas it was transient in the R plants and those plants recovered gradually afterwards. The R plants recovered from the inhibitory effect of paraquat only in the light, and an increase in light intensity was found to have a pronounced effect on the recovery of Fv. The mechanism of resistance to paraquat in C. canadensis is discussed.  相似文献   

5.
6.
Terry N  Ulrich A 《Plant physiology》1974,54(3):379-381
The effects of Mg deficiency on the photosynthesis and respiration of sugar beets (Beta vulgaris L. cv. F58-554H1) were studied by withholding Mg from the culture solution and by following changes in CO2 and water vapor exchange of attached leaves. Leaf blade Mg concentration decreased from about 1200 to less than 200 meq kg−1 dry matter without change in the rate of photosynthetic CO2 uptake per unit leaf area, while from 200 to 50 meq kg−1 the rate decreased to one-third. Rates of photorespiratory evolution of CO2 into CO2-free air responded to Mg like those of photosynthetic CO2 uptake, the rates decreasing to one-half, below 200 meq kg−1. Respiratory CO2 evolution in the dark increased almost 2-fold in low Mg leaves. Magnesium deficiency had less effect on leaf (mainly stomatal) diffusion resistance (r1) than on mesophyll resistance (rm); in Mg-deficient plants rm increased from 2.9 to 7.1 sec cm−1, whereas r1 became significantly greater than the control value only in the most severe instances of Mg deficiency.  相似文献   

7.
Abstract The chloroplast ultrastructure, especially the thylakoid organization, the polypeptide composition of the thylakoid membranes and photosynthetic O2 evolution rate, chlorophyll (Chl) content and Chi a/b ratio were studied in leaves of nine plants growing in contrasting biotopes in the wild in South Finland. All the measurements were made at the beginning of the period of main growth on leaves approaching full expansion, when the CO2-saturated O2 evolution rate (measured at 20°C and 1500 μmol photons m?2s?1) was at a maximum, ranging from 19.2 to 6.9 μmol O2 cm?2 h?1. Among the species, the Chi a/b ratio varied between 3.75 and 2.71. In the mesophyll chloroplasts, the ratio of the total length of appressed to non-appressed thylakoid membranes varied between 1.07 and 1.79, the number of partitions per granum varied between 2.8 and 12.0 and the grana area between 21 and 42% of the chloroplast area. There was a significant relationship between the rate of O2 evolution of the leaf discs and the thylakoid organization in the mesophyll chloroplasts. The higher the O2 evolution rate, the lower was the ratio of the total length of appressed to non-appressed thylakoid membranes and also the lower the grana area. Although the relationship of the photosynthetic rate with the Chi content and the Chi a/b ratio of the leaves was not as clear, a significant negative correlation existed between the Chi a/b ratio and the ratio of appressed to non-appressed thylakoid membranes, indicating lateral heterogeneity in the distribution of different Chl- protein complexes.  相似文献   

8.
The influence of varied Mg supply (10-1000 micromolar) and light intensity (100-580 microeinsteins per square meter per second) on the concentrations of ascorbate (AsA) and nonprotein SH-compounds and the activities of superoxide dismutase (SOD; EC 1.15.11) and the H2O2 scavenging enzymes, AsA peroxidase (EC 1.11.1.7), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were studied in bean (Phaseolus vulgaris L.) leaves over a 13-day period. The concentrations of AsA and SH-compounds and the activities of SOD and H2O2 scavenging enzymes increased with light intensity, in particular in Mg-deficient leaves. Over the 12-day period of growth for a given light intensity, the concentrations of AsA and SH-compounds and the activities of these enzymes remained more or less constant in Mg-sufficient leaves. In contrast, in Mg-deficient leaves, a progressive increase was recorded, particularly in concentrations of AsA and activities of AsA peroxidase and glutathione reductase, whereas the activities of guaiacol peroxidase and catalase were only slightly enhanced. Partial shading of Mg-deficient leaf blades for 4 days prevented chlorosis, and the activities of the O2.− and H2O2 scavenging enzymes remained at a low level. The results demonstrate the role of both light intensity and Mg nutritional status on the regulation of O2.− and H2O2 scavenging enzymes in chloroplasts.  相似文献   

9.
In the present work, the response of tobacco (Nicotiana tabaccum L.) wild-type SR1 and transgenic CAT1AS plants (with a basal reduced CAT activity) was evaluated after exposure to the herbicide paraquat (PQ). Superoxide anion (O2.−) formation was inhibited at 3 or 21 h of exposure, but H2O2 production and ion leakage increased significantly, both in SR1 or CAT1AS leaf discs. NADPH oxidase activity was constitutively 57% lower in non-treated transgenic leaves than in SR1 leaves and was greatly reduced both at 3 or 21 h of PQ treatment. Superoxide dismutase (SOD) activity was significantly reduced by PQ after 21 h, showing a decrease from 70% to 55%, whereas catalase (CAT) activity decreased an average of 50% after 3 h of treatment, and of 90% after 21 h, in SR1 and CAT1AS, respectively. Concomitantly, total CAT protein content was shown to be reduced in non-treated CAT1AS plants compared to control SR1 leaf discs at both exposure times. PQ decreased CAT expression in SR1 or CAT1AS plants at 3 and 21 h of treatment. The mechanisms underlying PQ-induced cell death were possibly not related exclusively to ROS formation and oxidative stress in tobacco wild-type or transgenic plants.  相似文献   

10.
The effects of a range of salinity (0, 100, 200 and 400 mM NaCl) on growth, ion accumulation, photosynthesis and anatomical changes of leaves were studied in the mangrove, Bruguiera parviflora of the family Rhizophoraceae under hydroponically cultured conditions. The growth rates measured in terms of plant height, fresh and dry weight and leaf area were maximal in culture treated with 100 mM NaCl and decreased at higher concentrations. A significant increase of Na+ content of leaves from 46.01 mmol m-2 in the absence of NaCl to 140.55 mmol m-2 in plants treated with 400 mM NaCl was recorded. The corresponding Cl- contents were 26.92 mmol m-2 and 97.89 mmol m-2. There was no significant alteration of the endogenous level of K+ and Fe2+ in leaves. A drop of Ca2+ and Mg2+ content of leaves upon salt accumulation suggests increasing membrane stability and decreased chlorophyll content respectively. Total chlorophyll content decreased from 83.44 g cm-2 in untreated plants to 46.56 g cm-2 in plants treated with 400 mM NaCl, suggesting that NaCl has a limiting effect on photochemistry that ultimately affects photosynthesis by inhibiting chlorophyll synthesis (ca. 50% loss in chlorophyll). Light-saturated rates of photosynthesis decreased by 22% in plants treated with 400 mM NaCl compared with untreated plants. Both mesophyll and stomatal conductance by CO2 diffusion decreased linearly in leaves with increasing salt concentration. Stomatal and mesophyll conductance decreased by 49% and 52% respectively after 45 days in 400 mM NaCl compared with conductance in the absence of NaCl. Scanning electron microscope study revealed a decreased stomatal pore area (63%) in plants treated with 400 mM NaCl compared with untreated plants, which might be responsible for decreased stomatal conductance. Epidermal and mesophyll thickness and intercellular spaces decreased significantly in leaves after treatment with 400 mM NaCl compared with untreated leaves. These changes in mesophyll anatomy might have accounted for the decreased mesophyll conductance. We conclude that high salinity reduces photosynthesis in leaves of B. parviflora, primarily by reducing diffusion of CO2 to the chloroplast, both by stomatal closure and by changes in mesophyll structure, which decreased the conductance to CO2 within the leaf, as well as by affecting the photochemistry of the leaves.  相似文献   

11.
镁缺乏和过量胁迫对纽荷尔脐橙叶绿素荧光特性的影响   总被引:2,自引:0,他引:2  
以2龄枳砧纽荷尔脐橙为材料,研究了镁缺乏和过量胁迫对叶片叶绿素含量和叶绿素荧光特性的影响。结果表明,镁缺乏胁迫导致老叶叶绿素含量显著降低,而新叶叶绿素含量无显著下降;镁过量胁迫显著抑制老叶叶绿素含量的下降,而促进了新叶叶绿素含量的降低。镁缺乏和过量均导致不同叶龄叶片的光化学效率(Fv/Fm)和相对电子传递速率(rETR)降低,但镁缺乏胁迫的影响显著大于镁过量胁迫。缺镁第4个月时,2龄秋梢、1龄春梢、1龄夏梢和晚夏梢叶的Fv/Fm分别比对照低了13.9%、12.6%、2.9%和2.0%,rETRmax值分别比对照低35.7%、56.2%、32.6%和15.2%;而镁过量胁迫叶片的Fv/Fm分别比对照低了0.5%、2.2%、3.4%和1.5%,rETRmax分别为对照的110.1%、68.8%、87.2%和84.5%。缺镁2龄秋梢、1龄春梢和1龄夏梢叶片的非光化学淬灭系数(NPQ)先升后降,热耗散能力显著下降,且显著低于镁过量胁迫。因此,在夏季高光照条件下缺镁胁迫对纽荷尔脐橙光合作用的影响显著,且大于镁过量胁迫,缺镁纽荷尔脐橙叶片易发生光抑制,产生光伤害。  相似文献   

12.
Abstract Young, amphistomatous hybrid poplar (Populus deltoides x trichocarpa) plants were exposed daily to either background (0.025 cm3 m-3) or elevated (0.125 cm3 m-3) concentrations of O3. Levels of abaxial and adaxial leaf conductance were affected interactively by pollutant treatment, leaf age, and photon fluence rate. Consequently, conductance in O3-treated leaves was sometimes higher and sometimes lower than in comparable control leaves, depending on leaf age or level of photon fluence rate. For example, at low photon fluence rate or in the dark, conductance was greater in O3-treated than in control plants, while at high photon fluence rate that relationship was reversed. Exposure to O3 also reduced the water-use efficiency and range of leaf conductance of individual leaves, and altered the relationship between the conductances of the two leaf surfaces (the ratio of abaxial to adaxial leaf conductance was increased). Furthermore, O3 treatment resulted in diminished stomatal control of water loss; excised O3-treated leaves had higher conductances and wilted sooner than excised control leaves of identical ages. Overall, the data indicate that exposure to O3 resulted in impaired stomatal function.  相似文献   

13.
Effects of three levels of photosynthetic photon flux (PPF: 60, 160 and 300 μmol m−2s−1) were investigated in one-month-old Phalaenopsis plantlets acclimatised ex vitro. Optimal growth, chlorophyll and carotenoid concentations, and a high carotenoid:chlorophyll a ratio were obtained at 160 μmol m−2s−1, while net CO2 assimilation (A), stomatal conductance (g), transpiration rate (E) and leaf temperature peaked at 300 μmol m−2s−1, indicating the ability of the plants to grow ex vitro. Adverse effects of the highest PPF were reflected in loss of chlorophyll, biomass, non-protein thiol and cysteine, but increased proline. After acclimatisation, glucose-6-phosphate dehydrogenase, shikimate dehydrogenase, phenylalanine ammonia-lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) increased, as did lignin. Peroxidases (POD), which play an important role in lignin synthesis, were induced in acclimatised plants. Polyphenol oxidase (PPO) and β-glucosidase (β-GS) activities increased to a maximum in acclimatised plants at 300 μmol m−2s−1. A positive correlation between PAL, CAD activity and lignin concentration was observed, especially at 160 and 300 μmol m−2s−1. The study concludes that enhancement of lignin biosynthesis probably not only adds rigidity to plant cell walls but also induces defence against radiation stress. A PPF of 160 μmol m−2s−1was suitable for acclimatisation when plants were transferred from in vitro conditions.  相似文献   

14.
Abstract According to computer energy balance simulations of horizontal thin leaves, the quantitative effects of stomatal distribution patterns (top vs. bottom surfaces) on transpiration (E) were maximal for sunlit leaves with high stomatal conductances (gs) and experiencing low windspeeds (free or mixed convection regimes). E of these leaves decreased at windspeeds > 50 cm s?1, despite increases in the leaf-to-air vapour density deficit. At 50 cm s?1 wind-speed, rapidly transpiring leaves had greater E when one-half of the stomata were on each leaf surface (amphistomaty; 10.16 mmol H2O m?2 s?1) than when all stomata were on either the top (hyperstomaty; 9.34 mmol m?2s?1) or bottom (hypostomaty; 7.02 mmol m?2s?1) surface because water loss occurred in parallel from both surfaces. Hyperstomatous leaves had larger E than hypostomatous leaves because free convection was greater on the top than on the bottom surface. Transpiration of leaves with large g, was greatest at windspeeds near zero when ~60–75% of the stomata were on the top surface, while at high windspeeds E was greatest with, 50% of the stomata on top. For leaves with low gs, stomatal distribution exerted little influence on simulated E values. Laboratory measurements of water loss from simulated hypo-, hyper-, and amphistomatous leaf models qualitatively supported these predictions.  相似文献   

15.
Some elemental levels, morphological and photosynthetic characteristics and cellular metabolites of wheat plants (Triticum aestivum L. cv. Vergina) growing in the field on an ore body (Cu concentration in the soil 3050 ug g?1) were compared to control plants growing in the same environment where the Cu concentration in the soil was 140 μg g1. The concentrations of Cu, K, Pb, Zn, Mg and Fe were higher in the ore plants but Ca was lower. Growth of the ore plants was inhibited, with decreased height (25%), weight (5%), leaf area (7%) and leaf dry weight (5%) compared to the control plants. Leaf protein concentration of the ore plants was 16. 2 mg cm2 leaf area, 63% of that of the control plants. The ore plants were chlorotic and chlorophyll concentration was 3. 8 μg cm?2 leaf area, 6. 4 times lower than that in the control plants. Ribulose 1. 5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4. 1. 1. 39) activity was 13. 4 μmol CO2 fixed (mg dry weight)?1 min?1, 164% of the activity in control plants. Therefore, growth inhibition did not appear to result from inhibition of the dark reactions of photosynthesis. High Rubisco activity appears to be maintained to permit maximal CO2 fixation rates whenever energy is available. Parameters of chlorophyll fluorescence Fm, Fv, I1/2 and Fv/Fm were lower in the ore-grown plants than in control plants; Fm was higher. These values indicate that there is a decrease in the pool size of the electron acceptors on the reducing side of photosystem II (PSII), a destruction of PSII centres and interference in the photochemistry of PSII. The nitrogen content, soluble sugars, starch and lipid content were lower in ore-grown plants. Lower carbohydrate levels appear to result from low photosynthetic activity. The fatty acid composition of lipids was similar in both groups. A lower proportion of polyunsaturated fatty acids was found in the ore-grown plants. Stress caused by high Cu concentration in the soil appears to affect the light reactions of photosynthesis leading to growth inhibition.  相似文献   

16.
Changes in photon flux can induce stomatal patchiness   总被引:9,自引:2,他引:7  
Images of chlorophyll fluorescence were used to detect the occurrence of stomatal patchiness in leaves from eight species under variable photon flux conditions. Pronounced stomatal patchiness was induced within 5–10 min after PFD was changed from intermediate (~450 μmol quanta m?2 s?1) to low (~150 μmol quanta m?2 s?1) levels. This effect was completely reversible by returning PFD to intermediate levels. The pattern of heterogeneous fluorescence for each leaf was usually similar during repeated applications of medium and low PFD. In three species, stomatal patchiness could only be induced in slightly water-stressed plants. Leaves of more severely water-stressed Xanthium strumarium plants in low air humidity exhibited oscillations in fluorescence that corresponded with oscillatory changes in leaf diffusion conductance for water vapour. Stomatal patchiness was also induced by illuminating dark-adapted leaves with low PFD (below 200–300 μmol quanta m?2 s?1). Infiltration of leaves with distilled water showed that heterogeneous chlorophyll fluorescence was caused by changes in stomatal apertures.  相似文献   

17.
Plants of bean (Vicia faba L. cv. Calvor 103) were salt-stressed with NaCl and CaCl2 in concentrations inducing soil osmotic potentials (ψsoil) from 0 to -1.2 MPa and were sprayed with proline (8.7 μM) and glycinebetaine (8.5 μM) solutions. Bean plants respond to increasing soil salinity by decreased leaf relative water content and osmotic potential. Salinity decreased the contents of dry mass, chlorophyll, soluble and hydrolysable sugars, soluble proteins and enhanced content of total free amino acids, Na+, Ca2+ and Cl-. The ratio of K+/Na+ was decreased on salinization. The membranes of leaf discs from salt-stressed plants appeared to be less stable under heat stress (51 °C) than that of unstressed plants. The reverse was true for discs placed under dehydration stress (40 % polyethylene glycol 6000). Proline and glycinebetaine application reduced membrane injury, improved K+ uptake and growth. Also both solutes increased chlorophyll contents. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Effects of root treatment with 5-aminolevulinic acid (ALA) on leaf photosynthesis in strawberry (Fragaria ananassa Duch.) plants were investigated by rapid chlorophyll fluorescence and modulated 820 nm reflection using 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV). Our results showed that ALA treatments increased the net photosynthetic rate and decreased the intercelluar CO2 concentration in strawberry leaves. Under DCMU treatment, trapping energy for QA reduction per PSII reaction center increased greatly, indicating DCMU inhibited electron transfer from QA ?. The maximum photochemical efficiency of PSII (Fv/Fm) decreased under the DCMU treatment, while a higher Fv/Fm remained in the ALA-pretreated plants. Not only the parameters related to a photochemical phase, but also that one related to a heat phase remained lower after the ALA pretreatment, compared to the sole DCMU treatment. The MV treatment decreased PSI photochemical capacity. The results of modulated 820 nm reflection analysis showed that DCMU and MV treatments had low re-reduction of P700 and plastocyanin (PSI). However, the strawberry leaf discs pretreated with ALA exhibited high re-reduction of PSI under DCMU and MV treatments. The results of this study suggest that the improvement of photosynthesis by ALA in strawberry was not only related to PSII, but also to PSI and electron transfer chain.  相似文献   

19.
The effect of varied phosphorus (10 and 250 mmol P m–3potassium (50 and 2010 mmol K m–3) and magnesium (20 and1000 mmol Mg m–3 supply on sucrose, reducing sugars, aminoacids, P, K, and Mg in phloem exudate was studied in bean (Phaseolusvulgaris L.) plants over a 12 d growth period in nutrient solution.Phloem exudates were collected from detached primary leavesusing the EDTA-promoted exudation technique. Compared with controlnutrient-sufficient plants, sucrose export in the phloem exudatewas drastically decreased by K deficiency and, particularly,by Mg deficiency, whereas P deficiency either had no effector stimulated sucrose export. In Mg-deficient plants the rateof sucrose export was decreased to 10–20% of the controlplants. There was a close Inverse relationship between phloemexport and leaf concentration of sucrose: higher leaf concentrationsof sucrose were accompanied by lower phloem export of sucrose.In contrast to sucrose, reducing sugars in the exudates werevery low and not affected by P, K and Mg deficiency. The phloemexport of amino acids was strongly depressed by Mg deficiency,but only slightly by P and K deficiency. Resupplying Mg to Mg-deficientplants for 12 h during the dark or light periods rapidly stimulatedsucrose export. After resup ply of Mg for 24 h and 48 h therate of sucrose export was comparable with the rate in the controlplants. The results demonstrate a key role for Mg in phloem loadingand export of photosynthates from source leaves, especiallysucrose. Inhibition of root growth and development of visualsymptoms of chlorosis in Mg-deficient plants are suggested asconsequences of Impaired phloem loading. In agreement with thisin P-deficient plants where phloem loading was not impaired,chlorosis was absent and root growth was maintained at a highlevel. Key words: Bean, carbon partitioning, magnesium nutrition, phloem transport, phosphorus nutrition, potassium nutrition  相似文献   

20.
Abstract The CO2 compensation concentrations (points) of leaves of the submerged vascular aquatic plant Myriophyllum spicatum L. were determined in a closed aqueous system at pH 7.0 by a gas chromatographic technique and over the range 10–30deg;C were found to range from 36 to 46 cm3m?3 in medium equilibrated with 21% O2 (0.03 kgm?3), and 25 to 35 cm3m?3 in medium equilibrated with 2% O2 (0.03 kgm?3). The rates of true (TPS) and apparent (APS) photosynthesis of leaves were measured in medium equilibrated with 21% O2 and buffered at pH 7.0, at subsaturating concentrations (12.8–18.8 mmol m?3) of dissolved inorganic carbor. (DIC) containing H14CO3, by determining the initial rates of uptake by the leaves of DIC and 14C-activity from the medium. The rate of photorespiration, the difference between TPS and APS, was 7.0–13.3% of TPS over the range of 10–25°C and rose to 29% of TPS at 35°C. The magnitude of the compensation point of this plant is therefore similar to, but is much less O2-sensitive than, those of C3 plants, and the photorespiratory rate, at DIC concentrations near the CO2 compensation point, is very low compared to that of C3 plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号