首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously described a microarray of cluster of differentiation (CD) antibodies that enables concurrent determination of more than 60 CD antigens on leukocytes. This procedure does not require protein purification or labeling, or a secondary detection system. Whole cells are captured by a microarray of 10 nL antibody dots immobilized on a nitrocellulose film on a microscope slide. Distinct patterns of cell binding are observed for different leukemias or lymphomas. These haematological malignancies arise from precursor cells of T- or B-lymphocytic, or myeloid lineages of hematopoiesis. The dot patterns obtained from patients are distinct from those of peripheral blood leukocytes from normal subjects. This microarray technology has recently undergone a number of refinements. The microarray now contains more CD antibodies, and a scanner for imaging dot patterns and software for data analysis provide an extensive immunophenotype sufficient for diagnosis of common leukemias. The technology is being evaluated for diagnosis of leukemias with parallel use of conventional diagnostic criteria.  相似文献   

2.
Finding edging genes from microarray data   总被引:1,自引:0,他引:1  
MOTIVATION: A set of genes and their gene expression levels are used to classify disease and normal tissues. Due to the massive number of genes in microarray, there are a large number of edges to divide different classes of genes in microarray space. The edging genes (EGs) can be co-regulated genes, they can also be on the same pathway or deregulated by the same non-coding genes, such as siRNA or miRNA. Every gene in EGs is vital for identifying a tissue's class. The changing in one EG's gene expression may cause a tissue alteration from normal to disease and vice versa. Finding EGs is of biological importance. In this work, we propose an algorithm to effectively find these EGs. RESULT: We tested our algorithm with five microarray datasets. The results are compared with the border-based algorithm which was used to find gene groups and subsequently divide different classes of tissues. Our algorithm finds a significantly larger amount of EGs than does the border-based algorithm. As our algorithm prunes irrelevant patterns at earlier stages, time and space complexities are much less prevalent than in the border-based algorithm. AVAILABILITY: The algorithm proposed is implemented in C++ on Linux platform. The EGs in five microarray datasets are calculated. The preprocessed datasets and the discovered EGs are available at http://www3.it.deakin.edu.au/~phoebe/microarray.html.  相似文献   

3.
ABSTRACT: BACKGROUND: In the field of mouse genetics the advent of technologies like microarray based expression profiling dramatically increased data availability and sensitivity, yet these advanced methods are often vulnerable to the unavoidable heterogeneity of in vivo material and might therefore reflect differentially expressed genes between mouse strains of no relevance to a targeted experiment. The aim of this study was not to elaborate on the usefulness of microarray analysis in general, but to expand our knowledge regarding this potential "background noise" for the widely used Illumina microarray platform surpassing existing data which focused primarily on the adult sensory and nervous system, by analyzing patterns of gene expression at different embryonic stages using wild type strains and modern transgenic models of often non-isogenic backgrounds. RESULTS: Wild type embryos of 11 mouse strains commonly used in transgenic and molecular genetic studies at three developmental time points were subjected to Illumina microarray expression profiling in a strain-by-strain comparison. Our data robustly reflects known gene expression patterns during mid-gestation development. Decreasing diversity of the input tissue and/or increasing strain diversity raised the sensitivity of the array towards the genetic background. Consistent strain sensitivity of some probes was attributed to genetic polymorphisms or probe design related artifacts. CONCLUSION: Our study provides an extensive reference list of gene expression profiling background noise of value to anyone in the field of developmental biology and transgenic research performing microarray expression profiling with the widely used Illumina microarray platform. Probes identified as strain specific background noise further allow for microarray expression profiling on its own to be a valuable tool for establishing genealogies of mouse inbred strains.  相似文献   

4.
MOTIVATION: Experimental gene expression data sets, such as those generated by microarray or gene chip experiments, typically have significant noise and complicated interconnectivities that make understanding even simple regulatory patterns difficult. Given these complications, characterizing the effectiveness of different analysis techniques to uncover network groups and structures remains a challenge. Generating simulated expression patterns with known biological features of expression complexity, diversity and interconnectivities provides a more controlled means of investigating the appropriateness of different analysis methods. A simulation-based approach can systematically evaluate different gene expression analysis techniques and provide a basis for improved methods in dynamic metabolic network reconstruction. RESULTS: We have developed an on-line simulator, called eXPatGen, to generate dynamic gene expression patterns typical of microarray experiments. eXPatGen provides a quantitative network structure to represent key biological features, including the induction, repression, and cascade regulation of messenger RNA (mRNA). The simulation is modular such that the expression model can be replaced with other representations, depending on the level of biological detail required by the user. Two example gene networks, of 25 and 100 genes respectively, were simulated. Two standard analysis techniques, clustering and PCA analysis, were performed on the resulting expression patterns in order to demonstrate how the simulator might be used to evaluate different analysis methods and provide experimental guidance for biological studies of gene expression. AVAILABILITY: http://www.che.udel.edu/eXPatGen/  相似文献   

5.
FiRe is a user-friendly Excel macro designed to survey microarray data rapidly. This software interactively assembles data from different experiments and produces lists of candidate genes according to patterns of gene expression. Furthermore, macros bundled with FiRe can compare lists of genes, merge information from different spreadsheets, link candidates to information available from web-based databases, and produce heat-maps for easy visualization of microarray data. FiRe is freely available at http://www.unifr.ch/plantbio/FiRe/main.html .  相似文献   

6.
Fuzzy J-Means and VNS methods for clustering genes from microarray data   总被引:4,自引:0,他引:4  
MOTIVATION: In the interpretation of gene expression data from a group of microarray experiments that include samples from either different patients or conditions, special consideration must be given to the pleiotropic and epistatic roles of genes, as observed in the variation of gene coexpression patterns. Crisp clustering methods assign each gene to one cluster, thereby omitting information about the multiple roles of genes. RESULTS: Here, we present the application of a local search heuristic, Fuzzy J-Means, embedded into the variable neighborhood search metaheuristic for the clustering of microarray gene expression data. We show that for all the datasets studied this algorithm outperforms the standard Fuzzy C-Means heuristic. Different methods for the utilization of cluster membership information in determining gene coregulation are presented. The clustering and data analyses were performed on simulated datasets as well as experimental cDNA microarray data for breast cancer and human blood from the Stanford Microarray Database. AVAILABILITY: The source code of the clustering software (C programming language) is freely available from Nabil.Belacel@nrc-cnrc.gc.ca  相似文献   

7.
Bayesian hierarchical error model for analysis of gene expression data   总被引:1,自引:0,他引:1  
MOTIVATION: Analysis of genome-wide microarray data requires the estimation of a large number of genetic parameters for individual genes and their interaction expression patterns under multiple biological conditions. The sources of microarray error variability comprises various biological and experimental factors, such as biological and individual replication, sample preparation, hybridization and image processing. Moreover, the same gene often shows quite heterogeneous error variability under different biological and experimental conditions, which must be estimated separately for evaluating the statistical significance of differential expression patterns. Widely used linear modeling approaches are limited because they do not allow simultaneous modeling and inference on the large number of these genetic parameters and heterogeneous error components on different genes, different biological and experimental conditions, and varying intensity ranges in microarray data. RESULTS: We propose a Bayesian hierarchical error model (HEM) to overcome the above restrictions. HEM accounts for heterogeneous error variability in an oligonucleotide microarray experiment. The error variability is decomposed into two components (experimental and biological errors) when both biological and experimental replicates are available. Our HEM inference is based on Markov chain Monte Carlo to estimate a large number of parameters from a single-likelihood function for all genes. An F-like summary statistic is proposed to identify differentially expressed genes under multiple conditions based on the HEM estimation. The performance of HEM and its F-like statistic was examined with simulated data and two published microarray datasets-primate brain data and mouse B-cell development data. HEM was also compared with ANOVA using simulated data. AVAILABILITY: The software for the HEM is available from the authors upon request.  相似文献   

8.
MOTIVATION: DNA microarrays are now capable of providing genome-wide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory due to the lack of a systematic framework that can accommodate noise, variability, and low replication often typical of microarray data. RESULTS: We develop a Bayesian probabilistic framework for microarray data analysis. At the simplest level, we model log-expression values by independent normal distributions, parameterized by corresponding means and variances with hierarchical prior distributions. We derive point estimates for both parameters and hyperparameters, and regularized expressions for the variance of each gene by combining the empirical variance with a local background variance associated with neighboring genes. An additional hyperparameter, inversely related to the number of empirical observations, determines the strength of the background variance. Simulations show that these point estimates, combined with a t -test, provide a systematic inference approach that compares favorably with simple t -test or fold methods, and partly compensate for the lack of replication.  相似文献   

9.
MOTIVATION: Alternative splicing (AS) is a frequent step in metozoan gene expression whereby the exons of genes are spliced in different combinations to generate multiple isoforms of mature mRNA. AS functions to enrich an organism's proteomic complexity and regulates gene expression. Despite its importance, the mechanisms underlying AS and its regulation are not well understood, especially in the context of global gene expression patterns. We present here an algorithm referred to as the Generative model for the Alternative Splicing Array Platform (GenASAP) that can predict the levels of AS for thousands of exon skipping events using data generated from custom microarrays. GenASAP uses Bayesian learning in an unsupervised probability model to accurately predict AS levels from the microarray data. GenASAP is capable of learning the hybridization profiles of microarray data, while modeling noise processes and missing or aberrant data. GenASAP has been successfully applied to the global discovery and analysis of AS in mammalian cells and tissues. RESULTS: GenASAP was applied to data obtained from a custom microarray designed for the monitoring of 3126 AS events in mouse cells and tissues. The microarray design included probes specific for exon body and junction sequences formed by the splicing of exons. Our results show that GenASAP provides accurate predictions for over one-third of the total events, as verified by independent RT-PCR assays. SUPPLEMENTARY INFORMATION: http://www.psi.toronto.edu/GenASAP.  相似文献   

10.
One of the essential issues in microarray data analysis is to identify differentially expressed genes (DEGs) under different experimental treatments. In this article, a statistical procedure was proposed to identify the DEGs for gene expression data with or without missing observations from microarray experiment with one- or two-treatment factors. An F statistic based on Henderson method III was constructed to test the significance of differential expression for each gene under different treatment(s) levels. The cutoff P value was adjusted to control the experimental-wise false discovery rate. A human acute leukemia dataset corrected from 38 leukemia patients was reanalyzed by the proposed method. In comparison to the results from significant analysis of microarray (SAM) and microarray analysis of variance (MAANOVA), it was indicated that the proposed method has similar performance with MAANOVA for data with one-treatment factor, but MAANOVA cannot directly handle missing data. In addition, a mouse brain dataset collected from six brain regions of two inbred strains (two-treatment factors) was reanalyzed to identify genes with distinct regional-specific expression patterns. The results showed that the proposed method could identify more distinct regional-specific expression patterns than the previous analysis of the same dataset. Moreover, a computer program was developed and incorporated in the software QTModel, which is freely available at .  相似文献   

11.
The large variety of clustering algorithms and their variants can be daunting to researchers wishing to explore patterns within their microarray datasets. Furthermore, each clustering method has distinct biases in finding patterns within the data, and clusterings may not be reproducible across different algorithms. A consensus approach utilizing multiple algorithms can show where the various methods agree and expose robust patterns within the data. In this paper, we present a software package - Consense, written for R/Bioconductor - that utilizes such an approach to explore microarray datasets. Consense produces clustering results for each of the clustering methods and produces a report of metrics comparing the individual clusterings. A feature of Consense is identification of genes that cluster consistently with an index gene across methods. Utilizing simulated microarray data, sensitivity of the metrics to the biases of the different clustering algorithms is explored. The framework is easily extensible, allowing this tool to be used by other functional genomic data types, as well as other high-throughput OMICS data types generated from metabolomic and proteomic experiments. It also provides a flexible environment to benchmark new clustering algorithms. Consense is currently available as an installable R/Bioconductor package (http://www.ohsucancer.com/isrdev/consense/).  相似文献   

12.
13.
14.
Determination of stromal signatures in breast carcinoma   总被引:2,自引:0,他引:2       下载免费PDF全文
Many soft tissue tumors recapitulate features of normal connective tissue. We hypothesize that different types of fibroblastic tumors are representative of different populations of fibroblastic cells or different activation states of these cells. We examined two tumors with fibroblastic features, solitary fibrous tumor (SFT) and desmoid-type fibromatosis (DTF), by DNA microarray analysis and found that they have very different expression profiles, including significant differences in their patterns of expression of extracellular matrix genes and growth factors. Using immunohistochemistry and in situ hybridization on a tissue microarray, we found that genes specific for these two tumors have mutually specific expression in the stroma of nonneoplastic tissues. We defined a set of 786 gene spots whose pattern of expression distinguishes SFT from DTF. In an analysis of DNA microarray gene expression data from 295 previously published breast carcinomas, we found that expression of this gene set defined two groups of breast carcinomas with significant differences in overall survival. One of the groups had a favorable outcome and was defined by the expression of DTF genes. The other group of tumors had a poor prognosis and showed variable expression of genes enriched for SFT type. Our findings suggest that the host stromal response varies significantly among carcinomas and that gene expression patterns characteristic of soft tissue tumors can be used to discover new markers for normal connective tissue cells.  相似文献   

15.
16.

Background  

The underlying goal of microarray experiments is to identify gene expression patterns across different experimental conditions. Genes that are contained in a particular pathway or that respond similarly to experimental conditions could be co-expressed and show similar patterns of expression on a microarray. Using any of a variety of clustering methods or gene network analyses we can partition genes of interest into groups, clusters, or modules based on measures of similarity. Typically, Pearson correlation is used to measure distance (or similarity) before implementing a clustering algorithm. Pearson correlation is quite susceptible to outliers, however, an unfortunate characteristic when dealing with microarray data (well known to be typically quite noisy.)  相似文献   

17.
MOTIVATION: There is a very large and growing level of effort toward improving the platforms, experiment designs, and data analysis methods for microarray expression profiling. Along with a growing richness in the approaches there is a growing confusion among most scientists as to how to make objective comparisons and choices between them for different applications. There is a need for a standard framework for the microarray community to compare and improve analytical and statistical methods. RESULTS: We report on a microarray data set comprising 204 in-situ synthesized oligonucleotide arrays, each hybridized with two-color cDNA samples derived from 20 different human tissues and cell lines. Design of the approximately 24 000 60mer oligonucleotides that report approximately 2500 known genes on the arrays, and design of the hybridization experiments, were carried out in a way that supports the performance assessment of alternative data processing approaches and of alternative experiment and array designs. We also propose standard figures of merit for success in detecting individual differential expression changes or expression levels, and for detecting similarities and differences in expression patterns across genes and experiments. We expect this data set and the proposed figures of merit will provide a standard framework for much of the microarray community to compare and improve many analytical and statistical methods relevant to microarray data analysis, including image processing, normalization, error modeling, combining of multiple reporters per gene, use of replicate experiments, and sample referencing schemes in measurements based on expression change. AVAILABILITY/SUPPLEMENTARY INFORMATION: Expression data and supplementary information are available at http://www.rii.com/publications/2003/HE_SDS.htm  相似文献   

18.
Sexual and social stimuli elicit rapid and contrasting genomic responses   总被引:3,自引:0,他引:3  
Sensory physiology has been shown to influence female mate choice, yet little is known about the mechanisms within the brain that regulate this critical behaviour. Here we examine preference behaviour of 58 female swordtails, Xiphophorus nigrensis, in four different social environments (attractive and unattractive males, females only, non-attractive males only and asocial conditions) followed by neural gene expression profiling. We used a brain-specific cDNA microarray to identify patterns of genomic response and candidate genes, followed by quantitative PCR (qPCR) examination of gene expression with variation in behaviour. Our microarray results revealed patterns of genomic response differing more between classes of social stimuli than between presence versus absence of stimuli. We identified suites of genes showing diametrically opposed patterns of expression: genes that are turned 'on' while females interact with attractive males are turned 'off' when interacting with other females, and vice versa. Our qPCR results identified significant predictive relationships between five candidate genes and specific mate choice behaviours (preference and receptivity) across females exposed to males, with no significant patterns identified in female or asocial conditions or with overall locomotor activity. The identification of stimulus- and behaviour-specific responses opens an exciting window into the molecular pathways associated with social behaviour and mechanisms that underlie sexual selection.  相似文献   

19.
20.
MOTIVATION: DNA microarray technologies make it possible to simultaneously monitor thousands of genes' expression levels. A topic of great interest is to study the different expression profiles between microarray samples from cancer patients and normal subjects, by classifying them at gene expression levels. Currently, various clustering methods have been proposed in the literature to classify cancer and normal samples based on microarray data, and they are predominantly data-driven approaches. In this paper, we propose an alternative approach, a model-driven approach, which can reveal the relationship between the global gene expression profile and the subject's health status, and thus is promising in predicting the early development of cancer. RESULTS: In this work, we propose an ensemble dependence model, aimed at exploring the group dependence relationship of gene clusters. Under the framework of hypothesis-testing, we employ genes' dependence relationship as a feature to model and classify cancer and normal samples. The proposed classification scheme is applied to several real cancer datasets, including cDNA, Affymetrix microarray and proteomic data. It is noted that the proposed method yields very promising performance. We further investigate the eigenvalue pattern of the proposed method, and we discover different patterns between cancer and normal samples. Moreover, the transition between cancer and normal patterns suggests that the eigenvalue pattern of the proposed models may have potential to predict the early stage of cancer development. In addition, we examine the effects of possible model mismatch on the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号