首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ornithine transcarbamylase (OTCase) (E.C.2.1.3.3) was partially purified fromLactobacillus buchneri NCDO110. It was stabilized by the presence of glycerol. The optimal pH for enzyme activity is 8.5. The positive cooperativeness was observed among ornithine molecules at pH values different from the optimum. The Mr of the enzyme was calculated to be 162,000 by gel filtration on Ultrogel ACA-34. Maximum activity occurred at 35°C. G* of the reaction was calculated from Arrhenius plot. The values were 9100 cal mol–1 below 35°C, and 4300 cal mol–1 above 35°C. The Km value for carbamylphosphate was 7.1×10–4 M, and the Km for ornithine was 1.6×10–3 M, under the conditions described here. Dead-end inhibition analysis was performed with norvaline, which is a structural analogue of ornithine. Norvaline acted as a noncompetitive inhibitor when carbamylphosphate was the variable substrate, and as a competitive inhibitor when ornithine was the variable substrate. The results are consistent with a ping-pong mechanism.  相似文献   

4.
Ornithine transcarbamylase of rat liver has been purified to homogeneity. The purified enzyme of specific activity 870 to 920 focuses as a single protein at pH 7.2. At pH 7.7, the Km for carbamyl phosphate is 0.026 mM, and the Km for ornithine is 0.04 mM. The inhibition constants of a number of amino acids that act as competitive inhibitors of the enzyme are reported. The native enzyme of Mr = 112,000 is composed of three subunits of Mr = 39,600 +/- 1,000. Chemical evidence indicates that the subunits are identical in amino acid composition and amino acid sequence. The amino acid sequence of the NH2-terminal region of ornithine transcarbamylase is Ser-Gln-Val-Gln-Leu-Lys-Gly-Ser-Asp-Leu-Leu-Thr-Leu-Lys-Asn-(Phe)-X-Thr-X-Glu-Ile-Gln-Tyr-Met-.  相似文献   

5.
The crude extract of human liver ornithine transcarbamylase, obtained from a patient with hyperammonemia due to enzyme deficiency, was studied by the isoelectric focusing method. The activity of ornithine transcarbamylase in the patient at pH 8.0 was only slightly reduced.  相似文献   

6.
We have characterized further the biogenesis in vitro of ornithine transcarbamylase, a homotrimeric mitochondrial matrix enzyme synthesized in the cytoplasm as a larger precursor. When cell-free translation mixtures containing the ornithine transcarbamylase precursor (40 kDa) were chromatographed on Bio-Gel P-200 columns, all of the precursor eluted as aggregates or complexes with molecular weights greater than 200 kDa. None of the precursor bound to a ligand affinity column containing delta-N-(phosphonoacetyl)-L-ornithine (delta-PALO), a transition-state analog and competitive inhibitor of carbamyl phosphate binding, which recognizes native ornithine transcarbamylase. In contrast, a significant portion of the labeled mature-sized subunits, formed when intact mitochondria processed the precursor, bound specifically to the delta-PALO column, were eluted by carbamyl phosphate, and chromatographed on a Bio-Gel P-300 column with a mobility identical to that of native, trimeric ornithine transcarbamylase. No such binding to delta-PALO was observed for the mature-sized monomer or dimer, or for the intermediate-sized ornithine transcarbamylase polypeptide. Moreover, processing by a mitochondrial matrix fraction failed to yield trimeric enzyme, despite producing ample amounts of mature-sized monomer. We conclude that delta-PALO recognizes only trimeric ornithine transcarbamylase composed of mature-sized subunits and that such trimers can be assembled in vitro by intact mitochondria following translocation and proteolytic processing.  相似文献   

7.
Ornithine transcarbamylase catalyzes the synthesis of citrulline from carbamyl phosphate and ornithine. This enzyme is involved in the biosynthesis of arginine in many organisms and participates in the urea cycle of mammals. The biosynthetic ornithine transcarbamylase has been purified from the filamentous fungus, Neurospora crassa. It was found to be a homotrimer with an apparent subunit molecular weight of 37,000 and a native molecular weight of about 110,000. Its catalytic activity has a pH optimum of 9.5 and Km's of about 5 and 2.5 mM for the substrates, ornithine and carbamyl phosphate, respectively, at pH 9.5. The Km's and pH optimum are much higher than those of previously characterized enzymes from bacteria, other fungi, and mammals. These unusual kinetic properties may be of significance with regard to the regulation of ornithine transcarbamylase in this organism, especially in the avoidance of a futile ornithine cycle. Polyclonal antibodies were raised against the purified enzyme. These antibodies and antibody raised against purified rat liver ornithine transcarbamylase were used to examine the structural similarities of the enzyme from a number of organisms. Cross-reactivity was observed only for mitochondrial ornithine transcarbamylases of related organisms.  相似文献   

8.
To define the molecular basis for the TaqI site alteration in the ornithine transcarbamylase (OTC) (E.C.2.1.3.3) gene of a female patient with mild OTC deficiency, we used a combination of genomic amplification followed by direct sequencing and oligodeoxyribonucleotide hybridization. We obtained evidence for a C-to-T substitution in exon 5 (codon 141) of this gene. This mutation generates a stop codon, in place of Arg, at amino acid 109 of the mature OTC protein. The mutation arose, de novo, in a germ cell of one of the parents.  相似文献   

9.
10.
Ornithine transcarbamylase (OTC) deficiency, the most common inborn error of the urea cycle, shows an X-linked inheritance with frequent new mutations. Investigations of patients with OTC deficiency have indicated an overproportionate share of mutations at CpG dinucleotides. These statistics may, however, be biased because of the easy detection of CpG mutations by screening for TaqI and MspI restriction sites. In the present study, we investigated 30 patients, with diagnosed OTC deficiency, for new sites with an increased probability of mutation by complete DNA sequence analysis of all ten exons of the OTC gene. In six patients, two codons in exons 2 and 5, respectively, contained novel recurrent mutations, all of them affecting CpG dinucleotides. They included C to T and G to A transitions in codon 40, changing an arginine to cysteine and histidine, respectively, and a C to T transition in codon 178 causing the substitution of threonine by methionine. The first two mutations were characterized by a mild clinical course with high risk of sudden death in late childhood or early adulthood, whereas the third mutation showed a more severe phenotypic expression. In addition to these novel mutations, we identified four patients with the known R277W mutation, making it the most common point mutation of the OTC gene.  相似文献   

11.
Turnover of rat liver ornithine transcarbamylase   总被引:1,自引:0,他引:1  
The relative half-life of ornithine transcarbamylase from rat liver has been determined using the double isotope technique and affinity chromatography. The calculated half-life (6-9 days) is similar to that of mitochondria and of the other mitochondrial enzyme of the urea cycle, carbamoyl-phosphate synthase. Therefore, both mitochondrial urea cycle enzymes are most probably degraded mainly via the lysosomal (autophagic) pathway of mitochondrial protein degradation.  相似文献   

12.
13.
14.
One of the major polypeptide bands seen after rat liver mitochondria are subjected to dodecyl sulfate gel electrophoresis is a component with a mass of 36,000 daltons that makes up 3 to 4% of the total mitochondrial protein. This band, designated Va (1), purifies with an enzyme of the urea cycle, ornithine transcarbamylase (E.C. 2.1.3.3). Evidence is presented that the band Va polypeptide is a single molecular species corresponding to the polypeptide chain of this enzyme.  相似文献   

15.
[14C]Ornithine uptake by rat kidney mitochondria has been investigated according to the stop inhibitor method by using praseodimium chloride as an inhibitor. The existence of an ornithine/Pi exchange was found occurring with 1:1 stoichiometry. Both uptake and efflux follow first-order kinetics with a k of 2.4 min-1. Uptake increases with increasing pH. The activation energy for the process is 58.6 kJ/mol and Q10 is 2.6. Ornithine/Pi exchange is electrical and energy-dependent, as suggested by the sensitivity of the process to the ionophores valinomycin and nigericin. Measurements both of proton movement across the mitochondrial membrane and of membrane potential strongly suggest that ornithine uptake into mitochondria is driven by the electrochemical proton gradient via the dependent ornithine/Pi translocator and delta pH-dependent Pi carrier.  相似文献   

16.
Summary A girl with ornithine transcarbamylase (OTC) deficiency was investigated for molecular and cytogenetic abnormalities that might explain this phenotype. Analysis with polymorphic DNA markers indicated that the patient did not inherit paternal alleles of the OTC locus, but that she did inherit the proximal locus DXS7 and the long arm of chromosome X. High-resolution cytogenetic analysis of the patient indicated a deletion of Xp11.4-p21, whereas both parents had normal karytoypes. Since the mother might be heterozygous according to biochemical tests, a second mutation within the maternal OTC gene cannot be excluded.  相似文献   

17.
Ornithine decarboxylase from calf liver. Purification and properties   总被引:5,自引:0,他引:5  
M K Haddox  D H Russell 《Biochemistry》1981,20(23):6721-6729
Ornithine decarboxylase (ODC) was purified 25000-fold from calf liver to apparent homogeneity by methods developed to circumvent the lability of the enzyme. Appropriate ratios of sample protein applied to column size and/or gradient size were derived for each purification procedure (ion-exchange, gel filtration ahd hydroxylapatite chromatography, electrophoresis, and thiol affinity chromatography) to maintain enzymatic activity. The enzyme was labile to dilution at all steps of the purification; the inclusion of poly(ethylene glycol) or additional protein decreased but did not eliminate the activity loss. The purified enzyme had a Stokes radius of 3.14 and a molecular weight of 54000. The Km for ornithine was 0.12 mM, and pyridoxal phosphate was 2.0 microM; the pH optimum for the decarboxylation reaction was 7.0. Analysis by sievorptive ion-exchange chromatography indicated the presence of three ionic forms. In the presence of Tris-barbital buffer containing thioglycolic acid, the ODC preparation assumed an apparent molecular weight of 100000 and a Stokes radius of 4.5 and retained full catalytic activity.  相似文献   

18.
Ornithine transcarbamylase (OTCase) was purified to hemogeneity from a derepressed strain of Salmonella typhimurium. The optimal pH for enzyme activity is 8.0. The molecular weight of the enzyme was calculated to be 116,000, based on measurements of the sedimentation coefficient by sucrose gradient ultracentrifugation and the Stokes radius by gel filtration. Polyacrylamide gel electrophoresis of cross-linked OTCase in the presence of sodium dodecyl sulfate showed that the enzyme is composed of three identical subunits. The molecular weight of the monomer was determined to be 39,000. Steady-state kinetics indicate that the reaction mechanism is sequential. The limiting Michealis constants for carbamylphosphate and ornithine were determined to be 0.06 and 0.2 mM, respectively. The dissociation constant for carbamylphosphate was 0.02 mM. Product and dead-end inhibition patterns are consistent with an ordered Bi Bi mechanism, in which carbamylphosphate is the first substrate added and phosphate is the last product released. OTCase activity was inhibited by arginine, but relatively high concentrations were required for significant inhibition. The inhibition by arginine might be physiologically significant in the regulation of carbamlphosphate utilization; a single carbamylphosphate synthetase is responsible for the synthesis of carbamylphosphate for both arginine and pyrimidines in S. typhimurium and the inhibition by argine might serve to divert carbamlphosphate to the synthesis of pyrimidines when arginine is present at high concentrations. The crossreaction of OTCases from different microorganisms with purified antibodies raised against the homogeneous OTCase from S. typhimurium was investigated. The results of immunotitration and immunodiffusion experiments revealed a high degree of identity between the enzymes form S. typhimurium and Esherichia coli B and W. In these three cases, a single gen (argl) encodes OTCase. Wild-type E. coli K-12 and strain 3000 X 111, which carry two OTCase genes (argI, argF), also revealed similar cross-reactivity, supporting the hypothesis that argF is the product of a relatively recent duplication. The activity of OTCase from Bacillus subtilis was partially inhibited by antibodies against the enzyme from S. typhimurium, indicating unusual conservation of primary structure among widely different taxonomic groups. OTCase from Saccharomyces cerevisiae, whose molecular weight and primary structure are similar to those of the enzyme from S. typhimurium, was without detectable cross-reactivity.  相似文献   

19.
In the rat, changes in dietary protein intake give rise to changes in the levels of ornithine transcarbamylase (OTC) in liver and small intestine--an increase in liver and decrease in small intestine. The changes in enzyme level are accompanied by similar changes in levels of specific mRNA. Thus in liver, there is an increase in the level of specific mRNA when protein intake is increased, whereas in small intestine there is a small decrease. Comparison of changes in specific mRNA with total poly-A-containing RNA showed that the change in OTC mRNA in liver paralleled the change in total RNA levels. In contrast, in small intestine the small decrease in OTC mRNA levels when protein intake was increased was in the face of an increase in the level of total mRNA. Whereas the level of OTC is 20-fold higher in liver than in small intestine, the mRNA level for the enzyme differs by only 2.5-fold.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号