首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The partial purification and characterization of hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase (CQT) from two plant sources growing as cell cultures are reported. The enzymes have been purified 50-and 16-fold, respectively, and show an absolute specificity for p-coumaroyl-CoA and caffeoyl-CoA as well as for quinate, and are responsible for the synthesis of p-coumaroylquinate and caffeoylquinate (chlorogenic acid). The distribution of this transferase activity in a variety of plant cell cultures and differentiated plants is reported.  相似文献   

2.
Abstract The accumulation of chlorogenic acid in illuminated discs of Solanum tuberosum tuber tissue is accompanied by rapid but transient increases in the activity levels of the biosynthetic enzymes phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase and hydroxycinnamoyl-CoA : quinate hydroxycinna-moyl transferase. Exogenous D-phenylalanine and L-α-aminooxy-β-phenylpropionic acid, competitive inhibitors of phenylalanine ammonia-lyase, inhibit the accumulation of chlorogenic acid and presumably reduce the endogenous pools of pathway intermediates such as cinnamic acid. These treatments prolong the phase of increase in phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase activities and indicate that product feedback modulation is important in maintaining the interrelationship between the levels of these two enzymes during the later stages of induction. In contrast,L-α-aminooxy-β-phenylpropionic acid inhibits the development of hydroxycinnamoyl transferase in illuminated discs supporting the idea that the light-stimulated increase in phenylalanine ammonia-lyase activity causes an increase in cinnamic acid production which mediates the light-stimulated increase in hydroxycinnamoyl transferase activity.  相似文献   

3.
Upon irradiation an increase in the extractable activity of hydroxycinnamoyl-CoA:d-quinate hydroxycinnamoyl transferase (CQT) and a decrease in the activity of hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (CST) was observed in cell suspension cultures and seedling of carrot (Daucus carota L). Conversely, CST was induced and CQT repressed in the cell cultures upon treatment with fungal elicitor (i.e. cell wall preparations from Phytophthora megasperma). In the cell cultures irradiation led to a continuous accumulation of 5-O-caffeoyl-d-quinic (chlorogenic) acid, while a transient accumulation of 5-O-caffeoylshikimic acid took place in response to elicitor treatment. Cell wall bound 4-hydroxybenzoic, 4-coumaric and also ferulic acid were increased after treatment with Pmg elicitor. These wall bound phenolics may be involved in protection against microbil attack.  相似文献   

4.
A rapid method for the purification of hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase (CQT) from potato tubers which had been stored at low temperatures is described. The method involves affinity chromatography on Blue Sepharose with biospecific desorption of CQT with its substrate, CoA. Elution of the Blue Sepharose column with a gradient of CoA leads to the resolution of CQT, a protein with MW of ca 41500, into 3 peaks of activity; the largest peak elutes first. This fraction is purified × 1440 and gives a single band of protein after PAGE which suggests a high degree of purity. The properties of the 3 fractions of CQT, with respect to substrates and to a number of inhibitors, are described. The first and last eluting CQT fractions are specific for quinate and show no activity towards shikimate. The second peak, however, shows a small activity towards shikimate but this is thought to be due to an underlying peak of a shikimate specific enzyme. The major peak of CQT activity found in potatoes stored at 0° is absent from those stored at 10° throughout the period after harvest.  相似文献   

5.
This communication reviews data on the accumulation and biosynthesis of rosmarinic acid in cell suspension cultures ofColeus blumei. The influence of the medium, mainly the carbohydrate source on growth and rosmarinic acid production in these cell cultures is described. The biosynthetic pathway of rosmarinic acid was elucidated inColeus blumei cell cultures: eight enzymatic activities are involved in the transformation of the precursors phenylalanine and tyrosine to the end product rosmarinic acid.Abbreviations CAH cinnamic acid 4-hydroxylase - 4CL 4-coumarate:CoA ligase - HPPR hydroxyphenylpyruvate reductase - 3-H hydroxycinnamoyl-hydroxyphenyllactate 3-hydroxylase - 3-H hydroxycinnamoyl-hydroxyphenyllactate 3-hydroxylase - PAL phenylalanine ammonia-lyase - RAS rosmarinic acid synthase (hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyl transferase) - TAT tyrosine aminotransferase  相似文献   

6.
7.
8.
A large increase in the activity of hydroxycinnamyl CoA:quinate hydroxycinnamyl transferase (CQT) occurred in potatoes stored at 0 and 2° and such an increase was prevented by storage at either 5 or 10°. The increase was most rapid in potatoes stored at 0° where it reached a maximum after 28 days and then declined slowly during storage for up to 6 months. Accompanying these changes in CQT were transitory increases in p-coumarate CoA ligase and PAL which occured during the first few weeks of storage at 0° and during this period there was nearly a two fold increase in the chlorogenic acid content of the tissue. The increase in chlorogenic acid did not occur at 10° when the increases in PAL, ligase and CQT were also prevented. The increase in CQT was reversed when tubers stored at 0° for 14 days were returned to 10° and this warming up period prevented further increase in CQT on return to 0°. The increase in CQT at 0° was prevented if the air in the storageatmosphere was replaced by N2, 1 % O2 or 10–15% CO2. Similar increases in CQT, ligase and chlorogenic acid occurred in sweet potatoes stored at 7.5° but were prevented by storage at 15°. The role of PAL, ligase and CQT in the control of chlorogenic acid accumulation in these commodities and the significance of changes in their activities in relation to physiological changes at low temperatures are discussed.  相似文献   

9.
10.
11.
Jang SM  Ishihara A  Back K 《Plant physiology》2004,135(1):346-356
Transgenic rice (Oryza sativa) plants were engineered to express a N-(hydroxycinnamoyl)transferase from pepper (Capsicum annuum), which has been shown to have hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase activity, a key enzyme in the synthesis of hydroxycinnamic acid amides, under the control of constitutive maize (Zea mays) ubiquitin promoter. The transgenic rice plants require foliar application of amines to support synthesis of hydroxycinnamic acid amides, suggestive of limiting amine substrates in rice shoots. In addition, when T2 homozygous transgenic rice plants were grown in the presence of amines or phenolic acids, two novel compounds were exclusively identified in the leaves of the transgenic plants. These compounds eluted earlier than p-coumaroyltyramine and feruloyltyramine during HPLC chromatography and were identified as p-coumaroylserotonin and feruloylserotonin by liquid chromatography/mass spectrometry and other methods. To test whether the unpredicted production of serotonin derivatives is associated with the pepper N-(hydroxycinnamoyl)transferase, the substrate specificity of the pepper enzyme was analyzed again. Purified recombinant pepper N-(hydroxycinnamoyl)transferase exhibited a serotonin N-hydroxycinnamoyltransferase (SHT) activity, synthesized p-coumaroylserotonin and feruloylserotonin in vitro, and demonstrated a low K(m) for serotonin. SHT activity was inhibited by 10 to 50 mm tyramine. In addition, SHT activity was predominantly found in the root tissues of wild-type rice in parallel with the synthesis of serotonin derivatives, suggesting that serotonin derivatives are synthesized in the root of rice. This is the first report of SHT activity and the first demonstration, to our knowledge, that serotonin derivatives can be overproduced in vivo in transgenic rice plants that express serotonin N-(hydroxycinnamoyl)transferase.  相似文献   

12.
Potato tuber disks, when treated with laminarin, a beta-1,3-glucooligosaccharide from Laminaria digitata, accumulate a hydroxycinnamoyl amide compound, N-p-coumaroyloctopamine (p-CO). The biosynthesis of p-CO was investigated by feeding experiments, in order to show that the precursors of N-p-coumaroyl and octopamine moieties of p-CO are L-phenylalanine and L-tyrosine, respectively. The treatment of potato tuber tissue with laminarin resulted in elevated activities of four enzymes which are putatively involved in p-CO biosynthesis: phenylalanine ammonia lyase (PAL; EC 4.3.1.5), 4-hydroxycinnamic acid:CoA ligase (4CL; EC 6.2.1.12), hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase (THT; EC 2.3.1.110) and tyrosine decarboxylase (TyrDC; EC 4.1.1.25). Among these, the response of TyrDC was specific to laminarin treatment, thus indicating that the regulation of TyrDC activity is critical for the accumulation of p-CO in potato tuber tissue.  相似文献   

13.
The trend to view many foods not only as sustenance but also as medicine, so-called functional foods, is increasing. Phenolics are the most widespread dietary antioxidants, and among these, chlorogenic acid (CGA) accumulates to high levels in some crop plants. CGA acts as an antioxidant in plants and protects against degenerative, age-related diseases in animals when supplied in their diet. cDNA clones encoding the enzyme that synthesizes CGA, hydroxycinnamoyl-CoA quinate: hydroxycinnamoyl transferase (HQT), were characterized from tomato and tobacco. Gene silencing proved HQT to be the principal route for accumulation of CGA in solanaceous species. Overexpression of HQT in tomato caused plants to accumulate higher levels of CGA, with no side-effects on the levels of other soluble phenolics, and to show improved antioxidant capacity and resistance to infection by a bacterial pathogen. Tomatoes with elevated CGA levels could be used in foods with specific benefits for human health.  相似文献   

14.
Two enzymes thought to be involved in the biosynthesis of chlorogenic acid have been separated and purified by ion exchange chromatography and their properties studied. These two enzymes, p-coumarate CoA ligase and hydroxycinnamyl CoA: quinate hydroxycinnamyl transferase, acting together catalyse the conversion of p-coumaric acid to 5′-p-coumarylquinic acid and of caffeic acid to chlorogenic acid. The ligase has a higher affinity for p-coumaric than for caffeic acid and will in addition activate a number of other cinnamic acids such as ferulic, isoferulic and m-coumaric acids but not cinnamic acid. The transferase shows higher activity and affinity with p-coumaryl CoA than caffeyl CoA. It also acts with ferulyl CoA but only very slowly. The enzyme shows high specificity for quinic acid; shikimic acid is esterified at only 2% of the rate with quinic acid and glucose is not a substrate. The transferase activity is reversible and both chlorogenic acid and 5′-p-coumarylquinic acids are cleaved in the presence of CoA to form quinic acid and the corresponding hydroxycinnamyl CoA thioester.  相似文献   

15.
绿原酸是金银花(Lonicera japonica Thunb.)入药的主要化学成分,如何稳定和提高绿原酸的含量是近年来金银花研究的热点。本研究通过对金银花分别根施Fe、B和Mo3种微量元素,比较处理前、后金银花中微量元素与绿原酸含量的变化,并定量分析3种微量元素对金银花绿原酸合成关键酶基因LjHCT和LjC3H1表达的影响。研究结果显示,高浓度的Fe处理对LjHCT基因的表达有明显的抑制作用,而中、低浓度的Fe处理可以促进LjHCT基因的表达;随着B和Mo元素浓度的提高,LjHCT基因的表达量也逐渐增加。低浓度的Fe处理可以促进LjC3H1基因的表达,而高浓度的Fe处理对LjC3H1基因的表达具有抑制作用;B元素对LjC3H1基因表达无显著影响,而高浓度的Mo处理可以促进LjC3H1基因的表达。根施中、低浓度的Fe元素,中、高浓度的Mo和B元素后金银花绿原酸含量显著增加;而根施高浓度的Fe元素后金银花中绿原酸含量显著减少。研究结果表明微量元素Fe、B和Mo可通过调节绿原酸生物合成关键酶基因的表达从而有效促进绿原酸的形成和积累。本研究为人工定向调控金银花绿原酸含量、开发人工栽培金银花专用微量元素肥料提供了理论依据。  相似文献   

16.
Sander M  Petersen M 《Planta》2011,233(6):1157-1171
cDNAs and genes encoding a hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyltransferase (CbRAS; rosmarinic acid synthase) and a hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase (CbHST) were isolated from Coleus blumei Benth. (syn. Solenostemon scutellarioides (L.) Codd; Lamiaceae). The proteins were expressed in E. coli and the substrate specificity of both enzymes was tested. CbRAS accepted several CoA-activated phenylpropenoic acids as donor substrates and d-(hydroxy)phenyllactates as acceptors resulting in ester formation while shikimate and quinate were not accepted. Unexpectedly, amino acids (d-phenylalanine, d-tyrosine, d-DOPA) also yielded products, showing that RAS can putatively catalyze amide formation. CbHST was able to transfer cinnamic, 4-coumaric, caffeic, ferulic as well as sinapic acid from CoA to shikimate but not to quinate or acceptor substrates utilized by CbRAS. In addition, 3-hydroxyanthranilate, 3-hydroxybenzoate and 2,3-dihydroxybenzoate were used as acceptor substrates. The reaction product with 3-aminobenzoate putatively is an amide. For both enzymes, structural requirements for donor and acceptor substrates were deduced. The acceptance of unusual acceptor substrates by CbRAS and CbHST resulted in the formation of novel compounds. The rather relaxed substrate as well as reaction specificity of both hydroxycinnamoyltransferases opens up possibilities for the evolution of novel enzymes forming novel secondary metabolites in plants and for the in vitro formation of new compounds with putatively interesting biological activities.  相似文献   

17.
Berger A  Meinhard J  Petersen M 《Planta》2006,224(6):1503-1510
Purification of rosmarinic acid synthase (hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyltransferase) from suspension cells of Coleus blumei Benth. (Lamiaceae) by fractionated ammonium sulphate precipitation, hydrophobic interaction chromatography and two affinity chromatography steps led to the identification of peptide sequences, which enabled a PCR-based approach to isolate the full-length cDNA encoding this enzyme. The open reading frame of the cDNA had a length of 1290 base pairs encoding a protein of 430 amino acid residues with a molecular mass of 47,932 Da with typical characteristics of an acyltransferase of the BAHD superfamily. The cDNA was heterologously expressed in Escherichia coli. The enzyme displayed the activity of rosmarinic acid synthase using 4-coumaroyl- and caffeoyl-coenzyme A and 4-hydroxyphenyllactate as well as 3.4-dihydroxyphenyllactate as substrates. Shikimic acid and quinic acid were not able to serve as hydroxycinnamoyl acceptors. This therefore is the first report of the cDNA-cloning of a rosmarinic acid synthase.  相似文献   

18.
In cell suspensions cultures from grape berry pulp (Vitis vinifera cv. Gamay fréaux)hydroxycinnamoyl CoA ligase (CoAL) displayed maximum activity (100 %) forp-coumaric acid and then, in decreasing order, for ferulic acid (81.3 %) and caffeic acid (60.4 %). No activity was detected with sinapic and cinnamic acids. The changes in CoAL activity during the growth cycle of the culture displayed two peaks : the highest (6 h after subculturing) was linked with a strong increase in protein caused by dilution ; the second was weaker and occurred on the 7th day of culture.Grape cell suspension accumulated mainly peonidin (Pn) and cyanidin (Cy) glucosides (Pn 3-glucoside, Cy 3-glucoside, Pn 3-acetylglucoside, Pn 3-caffeylglucoside, Pn 3-p-coumarylglucoside, and Cy 3-p-coumarylglucoside). Maximum accumulation of anthocyanins was associated with the exponential growth phase of the culture and might be the result of the substantial increase in CoAL activity resulting from the effect of dilution. The second enzyme activity peak was probably oriented towards the acylation of anthocyanins since the percentage of acylated forms increased with time after subculturing.Abbreviations CoAL hydroxycinnamoyl-CoA: ligase  相似文献   

19.
As part of the response to pathogen infection, potato plants accumulate soluble and cell wall-bound phenolics such as hydroxycinnamic acid tyramine amides. Since incorporation of these compounds into the cell wall leads to a fortified barrier against pathogens, raising the amounts of hydroxycinnamic acid tyramine amides might positively affect the resistance response. To this end, we set out to increase the amount of tyramine, one of the substrates of the hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)-transferase reaction, by placing a cDNA encoding a pathogen-induced tyrosine decarboxylase from parsley under the control of the 35S promoter and introducing the construct into potato plants via Agrobacterium tumefaciens-mediated transformation. While no alterations were observed in the pattern and quantity of cell wall-bound phenolic compounds in transgenic plants, the soluble fraction contained several new compounds. The major one was isolated and identified as tyrosol glucoside by liquid chromatography-electrospray ionization-high resolution mass spectrometry and NMR analyses. Our results indicate that expression of a tyrosine decarboxylase in potato does not channel tyramine into the hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)-transferase reaction but rather unexpectedly, into a different pathway leading to the formation of a potential storage compound.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号